QUANTUM AND QUANTUM-INSPIRED SIMULATION OF LATTICE GAUGE THEORIES

Simone Montangero University of Padova

Università degli Studi di Padova

LATTICE GAUGE THEORIES

The current wisdom on the phase diagram of nuclear matter.

McLerran, L. Nucl.Phys.Proc.Suppl. 195 (2009) 275-280

EFFICIENT WAVE FUNCTION REPRESENTATION – TODAY

Quantum simulation of fundamental particles and forces

 $\underline{Christian W. Bauer} \, \underline{\bigtriangledown}, \underline{Zohreh Davoudi} \, \underline{\bigtriangledown}, \underline{Natalie Klco} \, \underline{\bigtriangledown} \, \underline{\&} \, \underline{Martin J. Savage} \, \underline{\bigtriangledown}$

Quantum Technologies for Lattice Gauge Theories

Simulating Lattice Gauge Theories within Quantum Technologies

M.C. Bañuls^{1,2}, R. Blatt^{3,4}, J. Catani^{5,6,7}, A. Celi^{3,8}, J.I. Cirac^{1,2}, M. Dalmonte^{9,10}, L. Fallani^{5,6,7}, K. Jansen¹¹, M. Lewenstein^{8,12,13}, S. Montangero^{7,14} ^a, C.A. Muschik³, B. Reznik¹⁵, E. Rico^{16,17} ^b, L. Tagliacozzo¹⁸, K. Van Acoleyen¹⁹, F. Verstraete^{19,20}, U.-J. Wiese²¹, M. Wingate²², J. Zakrzewski^{23,24}, and P. Zoller³

EPJD (2020)

TENSOR NETWORKS STATES

Tensor networks states are a compressed description of the system tunable between mean field and exact

ENTANGLEMENT OF PURE MANY-BODY QUANTUM SYSTEMS

.

For pure states:

 $\mathcal{S} = -\mathrm{Tr}\,\rho\log\rho$

Von Neumann Entropy

Area law

 $\mathcal{S} \propto \gamma$

 $\mathcal{S} \propto N^{(D-1)}$

1D critical systems: $\mathcal{S} = \frac{c}{3} \log N$

AREA LAWS AND TENSOR NETWORKS

Tensor Network	Complexity	Area law in 2D	Typical Bond dimensions	Exact contractable
MPS / DMRG	$\mathcal{O}\left\{ \chi^{3} ight\}$	No (Only in 1D)	> 10.000	Yes $(\mathcal{O}\left\{\chi^3\right\})$
TTN	$\mathcal{O}\left\{\chi^4 ight\}$	No (Only in 1D)	$\approx 1.000 - 2.000$	Yes $(\mathcal{O}\left\{\chi^{4}\right\})$
PEPS	$\mathcal{O}\left\{\chi^{10} ight\}$	Yes	~ 10	No $(\mathcal{O}\left\{\chi^L\right\})$
MERA	$\mathcal{O}\left\{\chi^{8}\right\}$ (1D), $\mathcal{O}\left\{\chi^{16}\right\}$ (2D)	Yes	~ 10	Yes $(\mathcal{O}\left\{\chi^8\right\})$

AUGMENTED TREE TENSOR NETWORKS

T. Felser, S. Notarnicola, S. Montangero PRL (2021)

2D RYDBERG QUANTUM SIMULATOR

RYDBERG QUANTUM SIMULATOR

32x32 sites

T. Felser, S. Notarnicola, S. Montangero PRL (2021)

LATTICE GAUGE TENSOR NETWORKS

Local degrees of freedom

$$[\psi^a_x, U^{ab}_{x,x+\mu_x}]$$
Matter field Gauge field

Gauge symmetry generator (Gauss' law)

$$G_x |\varphi_{phys}\rangle = 0$$

Gauge invariant dynamics

Kogut-Susskind

Hamiltonian formulation of LGT

 $H = J \sum_{x} \left(\psi_x^{\dagger} U_{x,x+1} \psi_{x+1} + \text{h.c.} \right)$

abelian

$$H = t \sum_{x,a,b} \left[\psi_x^{a\dagger} U_{x,x+1}^{ab} \psi_{x+1}^b + \text{h.c.} \right]$$
non abelian

Dynamics commutes with symmetry generator

$$\left[H_{\text{int}}^{[\text{QED}]}, G_x\right] = 0 \quad \forall x$$

QUANTUM LINK AND RISHON REPRESENTATION

 $U_{x,y} \equiv S_{x,y}^+ = c_y^\dagger c_x$

Link operator

Electric field [U(1) generator]

$$E_{x,y} \equiv S_{x,y}^{(3)} = \frac{1}{2} \left[c_y^{\dagger} c_y - c_x^{\dagger} c_x \right]$$

$$\{c_x,c_y^\dagger\}=\delta_{x,y}$$
 Schwinger fermions (rishons)
 $[c_x,c_y^\dagger]=\delta_{x,y}$ Schwinger bosons

Local projection on a gauge invariant base +

Projection on rishon number

Matrix product operator

Spin representation:

$$N_{x,y} = c_y^{\dagger} c_y + c_x^{\dagger} c_x \qquad \left[\vec{S}_{x,y}\right]^2 \equiv \frac{N_{x,y}}{2} \left\lfloor \frac{N_{x,y}}{2} + 1 \right\rfloor$$

U(1) LATTICE GAUGE THEORY IN 1+1D

$$H = -t \sum_{x} \left[\psi_{x}^{\dagger} U_{x,x+1}^{\dagger} \psi_{x+1} \psi_{x+1} \int_{0.75}^{0.8} \psi_{x+1}^{\dagger} U_{x,x+1} \psi_{x} \right]$$

$$+m \sum_{x} (-1)^{x} \psi_{x}^{\dagger} \psi_{x} + 0.65 \\ 0.65 \\ 0.55 \\ 0.5$$

- Quantum link and rishon representation
- ► Staggered fermions
- ► Ising universality class
- Central charge $c = 0.49 \pm 0.01$
- Confirmed by higher-link representation

E. Rico, T. Pichler, M. Dalmonte, P. Zoller, and SM, PRL (2014)

T. Pichler, E. Rico, M. Dalmonte, P. Zoller, and SM, PRX (2016)

Real time

MESONS SCATTERING

T. Pichler, E. Rico, M. Dalmonte, P. Zoller, and SM, PRX (2016)

ENTANGLEMENT GENERATION IN QED SCATTERING PROCESSES

M. Rigobello, S. Notarnicola, G. Magnifico, and S. Montangero, Phys. Rev. D 104, 114501 (2021).

1+1D SU(2) LGT WITH QUDITS IN TRAPPED IONS

G. Calajò et al. arxiv:2402.07987

Quantum stars! arXiv:2405.13112

TWO DIMENSIONAL SIMULATION OF A LGT AT FINITE DENSITY

16x16 lattice sites

PHASE DIAGRAM

Hilbert space of ~80x80 qubits

T. Felser et al. PRX (2020)

FINITE DENSITY

 $m_c \approx +0.22$ $g_m^2 = 8/g_e^2$

SCREENING

.

.

 $g_e^2 = g^2/a, \, g_m^2 = 8/(g^2a)$

FINITE DENSITY

Finite charge density $\rho = Q/L = 1/4$

Charge at distance l from boundaries

2+1D NON-ABELIAN LGT

(2+1)D SU(2) Yang-Mills Lattice Gauge Theory at finite density via tensor networks G. Cataldi, G. Magnifico, P. Silvi, SM Phys. Rev. Res. (2024)

1+1D SU(3) 2-FLAVOURS LATTICE GAUGE THEORY

$$\begin{split} H &= \sum_{x,f,c,c'} \left[-\frac{i}{2} \psi_{x,f,c} U_{x,c;x+1,c'} \psi_{x+1,f,c'}^{\dagger} + \text{H.c.} \right] \\ &+ \sum_{x,f,c} m_f (-1)^x \psi_{x,f,c}^{\dagger} \psi_{x,f,c} + \sum_x \frac{g^2}{2} E_{x;x+1}^2 \,. \end{split}$$

M. Rigobello, G. Magnifico, P. Silvi, SM arXiv:2308.04488

CONFINEMENT IN 2D ISING MODEL

$$H = -J\sum_{\langle i,j\rangle} \sigma_i^z \sigma_j^z - g\sum_i \sigma_i^x \qquad |\downarrow \dots \downarrow\rangle$$

FIG. 1. Confinement in the 2D quantum Ising model. (a) Short time dependence of magnetization $\langle \sigma^z(t) \rangle$ for a set of g/J. (b) $\langle \sigma^z(t) \rangle$ for longer times and small g/J. (c) Time dependence of entanglement entropy S for a bipartition of two neighbouring spins and the rest of the system. S_{max} is the maximal entanglement entropy of the bipartition (in this case $S_{\text{max}} = 2 \ln 2$). (d) Time dependence of a horizontal cut of the connected correlation function C_{ij} where i = 4 for a set of g/J.

L. Pavešić et al. arxiv: 2406.11979

FIG. 2. Spectrum of σ^z , given by the Fourier transform $\mathcal{F}(\sigma^z)$. (a) Spectrum of magnetization for two cases of g/J. Dashed vertical lines correspond to $\omega/J = 4, 8$, and 12. (b) Heatmap of the spectrum for a range of g/J. Black dashed lines correspond to the transition energies obtained by perturbation theory.

$$E_0 = -rac{g^2}{8J}N^2 + \mathcal{O}(g^4),$$

 $E_1 = 8J - rac{g^2}{8J}(N^2 + 6) + \mathcal{O}(g^4),$
 $E_2 = 12J - rac{g^2}{8J}N^2 + \mathcal{O}(g^4).$

INTERFACE PHYSICS IN 2D ISING MODEL

FIG. 3. Spread of correlations near an interface. (a) Sketch of the initial state, with blue representing \uparrow and red \downarrow spins. Black lines indicate the cuts shown in (d). (b) Sketch of the resonant process along the interface. (c) Heatmap of the spectral density of $\langle \sigma^z \rangle (t)$ for a spin at the interface for a range of g/J. White dashed lines correspond to the transition energies of a freely propagating edge mode. (d) Horizontal (x) and vertical (y) cuts of the connected correlations function C_{ij} with respect to the spin at (4, 4) (white square in (a)). Blue dashed lines are $\pm 4gt$, showing that the interface mode carries the correlations.

L. Pavešić et al. arxiv: 2406.11979

ENTANGLEMENT OF MIXED MANY-BODY QUANTUM SYSTEMS

For pure states:

 $\mathcal{S} = -\mathrm{Tr}\,\rho\log\rho$

Von Neumann Entropy

.

Area law

$${\cal S} \propto \gamma$$

 $\mathcal{S} \propto N^{(D-1)}$

1D critical systems: $\mathcal{S} = \frac{c}{3} \log N$

For mixed states:

$$\rho = \sum p_j |\psi_j\rangle \langle \psi_j |$$

$$E_F(\rho) = \inf_{\{p_j, \psi_j\}} \left\{ \sum_j p_j \mathcal{S}(|\psi_j\rangle) : \rho = \sum_j p_j |\psi_j\rangle \langle \psi_j| \right\}$$

 $E_F(\rho, T) \stackrel{?}{\propto} \log N^{c/3}$

Entanglement of formation

C.H. Bennet et al. PRA 1996

TREE TENSOR OPERATORS

N

$$\hat{H}_{Ising} = J \sum_{i=1}^{N} \left(\hat{\sigma}_j^x \hat{\sigma}_{j+1}^x + h \hat{\sigma}_j^z \right)$$
$$\hat{H}_{XXZ} = J \sum_{j=1}^{N} \left(\hat{\sigma}_j^x \hat{\sigma}_{j+1}^x + \hat{\sigma}_j^y \hat{\sigma}_{j+1}^y + \xi \hat{\sigma}_j^z \hat{\sigma}_{j+1}^z \right)$$

$$E_F(\rho) = \min_{K \ge K_0} \inf_{\mathcal{U}} \left\{ \sum_{j=1}^K p_j \mathcal{S}(|\psi_j'\rangle) : X' = X\mathcal{U} \right\}$$

Thermal equilibrium state (Mixture of K_0 Boltzmann factors) $X = \frac{1}{\sqrt{Z}} \sum_{j}^{K_0} e^{-E_j/2T} |\psi_j\rangle\langle j|$

L. Arceci, P. Silvi, and S. Montangero PRL (2022)

CONFORMAL SCALING OF ENTANGLEMENT OF FORMATION

$$E_F = \log(N^{c/3} f(TN^z))$$

N = 16, 32, 64, 128

on entropy, not entanglement!

L. Arceci, P. Silvi, and S. Montangero PRL (2022)

RYDBERG ARRAYS AT FINITE TEMPERATURE

N. Reinic et al. arxiv: 2405.18477

ROADMAP FOR LGT QUANTUM SIMULATION

0*

ℓ				
	(2 +			
	U(1)	SU(2)	SU(3)	1
1	35	30	164	
2	165	168	752	
3	455	600	3738	18
4	969	1650	19878	64
5	1771	3822	43698	17
6	2925	7840	82128	408
7	4495	14688	212496	83!
8	6545	25650	333538	156

System size	χ	Factor	Estimated walltime
$\overline{64 \times 64}$	450	$\overline{T_{ ext{base}}}$	4.16 days
64×64	900	$16 \cdot T_{ ext{base}}$	$66.6 \mathrm{~days}$
256×256	450	$28 \cdot T_{ ext{base}}$	$116.5 \mathrm{~days}$
256×256	900	$448 \cdot T_{ ext{base}}$	5.1 years
$16\times 16\times 16$	450	$4\cdot T_{ ext{base}}$	$16.6 \mathrm{~days}$
$16\times 16\times 16$	900	$64 \cdot T_{ ext{base}}$	266 days
$64 \times 64 \times 64$	450	$1984 \cdot T_{ ext{base}}$	23 years
$64 \times 64 \times 64$	900	$31744 \cdot T_{\text{base}}$	362 years

TABLE I. Dressed site Hilber creasing number ℓ of allowed in some 2- and 3-dimensional namical matter and gauge grou

TABLE II. *Estimated simulation time*. We derive the baseline from a single-tensor optimization of a 64×64 quantum Ising simulation with \mathbb{Z}_2 symmetry taking 7192s on a A100 GPU. Further, we assume that single-tensor update, one tensor and one GPU per MPI thread, and 50 sweeps for the baseline. To extrapolate to larger systems, we assume a scaling with $\mathcal{O}(\chi^4 N^{D-1})$ as well as seven (thirty-one) tensors per MPI thread for 256×256 ($64 \times 64 \times 64$) systems. The empirical is QED plaquette for a grid scalings are approximately a factor of 2.3 for doubling the system size and 13 for doubling the bond dimension, which we obtain from smaller simulations with $\chi = 225$ and for 32×32 qubits. The times are valid for any $d < \chi$.

 $^{-2}, 10^1$ and $g^2 \in [10^{-1}, 10^1]$. ℓ^* required to reach a preciic energy $\langle \operatorname{Re} \hat{U}_{\sqcap} \rangle$. (c) Corv S associated with a symte.

G. Magnifico et al. arxiv:2407.03058

TAKE HOME MESSAGES

- Tensor network algorithms will benchmark, verify, support and guide quantum simulations/computations development
- High-dimensional tensor network simulations are becoming more and more available (PEPS, aTTN,...)
- Entanglement of mixed many-body states can be quantified
- Scalability to full HPC will be necessary to produce quantitative results
- ► Interaction with HEP is becoming more and more relevant
- Interesting developments also in other directions (classical optimisers/annealers, machine learning)

