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FIG. 1. Sketch of the system: N hard-core bosons (red balls) are
hopping on a L × L lattice, perpendicular to an external magnetic
field. The magnetic field gives rise to a flux φ through each plaquette,
which in Landau gauge leads to the indicated phase factors in the
hopping amplitudes t . The fluxes in the topmost row and rightmost
column (faded) are only present in case of periodic boundary
conditions (PBC). For PBC, additional phase twists θx and θy can
be introduced (see text), allowing for the definition of topological
invariants.

as illustrated in Fig. 1. In the Landau gauge, the system is
described by the following Hamiltonian [11]:

H = U
∑

x,y

nx,y(nx,y − 1) − t
∑

x,y

{a†
x+1,yax,y e−i 2πδxLθx

+ a
†
x,y+1ax,y ei 2π(φx−δyLθy ) + H.c.} (1)

of bosonic particles, [ax,y,a
†
x ′,y ′ ] = δxx ′δyy ′ ,n = a†a. Here, φ

is the magnetic flux through each plaquette [resulting in a
magnetic filling factor ν = N/(φL2), with N the number of
bosons in the system] and θx , θy implement the twists in the
boundary condition [12]. In the dilute limit (small densities
and small fluxes), the lattice physics approaches the one of
the continuum.1 However, in the large flux limit, available
in cold gases experiments, the phase diagram is not set. On
small systems, it has been shown by exact diagonalization
(ED) that the GS of the model described by Eq. (1) at filling
factor ν = 1/q (where q is an even integer) is compatible
with a lattice analog of the (bosonic) Laughlin wave function
[12–14,24,25], exhibiting topological GS degeneracy and a
nonzero Chern number [26]. However, the overlap with the
exact Laughlin wave functions rapidly degrades with system
size already for small systems of six particles. From a
complementary viewpoint, the ladder version of the Hofstadter
model has also been shown to share similarities with FQH
states [27–30]. Very recently, iDMRG results on cylinders
have shown strong signatures of integer quantum Hall states,
and have reported fractional current quantization in regimes
different from the one we consider here [31]. Throughout,
we focus on the strongly interacting case U → ∞ (hard-core
bosons) with flux values φ = 1

8 and 1
16 , respectively, which

1Notice that the continuum limit is also recovered by adding tailored
long-range hoppings, which effectively flatten the lowest band [47].
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FIG. 2. Binary tree-tensor network ansatz for a L × L lattice.
The blue dots are the physical sites with local dimension d (d = 2
for hard-core bosons). Each tensor groups two sites to one virtual
site (gray dots), leading to a hierarchical tree structure. In order to
capture the 2D lattice geometry, the grouping is performed in the x

and y directions, alternating from level to level. The dimension of
the virtual sites in the lth level (counting from below) is min(d2l

,m),
where m is the bond dimension of the TTN. The additional cyan link
at the top left tensor has dimension one and selects the global particle
number N [32].

correspond to flux setups that are experimentally available.
Finally, we fix the energy scale by setting t = 1.

III. TREE-TENSOR NETWORK ANSATZ

We employ a tree-tensor network (TTN) ansatz [33] for the
GS and the two lowest excited states to verify the properties
discussed above. The specific binary TTN used in this work
is illustrated in Fig. 2, where the standard graphical notation
for tensor networks (TN) is employed [34,35]: tensors are
drawn as cubes, with attached lines symbolizing tensor indices
(links). Links that are shared by two tensors are contracted,
which in TN language means that over their corresponding
mutual indices is to be summed. The dimension of each
link in the TTN is upper bounded by a constant m (bond
dimension), which serves as the refinement parameter of the
ansatz: the larger m, the more accurate the true many-body
state can be approximated. In a binary TTN, each tensor has
at most three links; therefore, the scaling of the computational
resources with the bond dimension is moderate in algorithms
using this class of TN states [19]. Furthermore, we exploit
particle-number conservation by restricting the ansatz to the
N -particle symmetry sector [32].

While it is known that a two-dimensional (2D) TTN is not
compatible with the area law for the entanglement entropy
[17,36], it possesses several beneficial features which make it
a promising tool for the study of intermediate system sizes:
(a) the existence of a numerically stable search algorithm
for eigenstates [18,19,35]; (b) a low-order polynomial scaling
O(m4L2) of the computational cost; (c) easy interchange of
various boundary conditions (open, periodic, twisted); (d)
access to the entanglement entropy for bipartition shapes
that enable the determination of the topological entanglement
entropy (TEE) [23]. In what follows, we will exploit these
properties to gather a number of numerical pieces of evidence
supporting a FQH GS of the model (1) in the case of filling
ν = 1

2 .
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TENSOR NETWORKS STATES
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Tensor networks states are a compressed description of the system  
tunable between mean field and exact 



ENTANGLEMENT OF PURE MANY-BODY QUANTUM SYSTEMS

For pure states:

Von Neumann Entropy 

S / �
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Area law

S = �Tr ⇢ log ⇢
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temperatures T ⇠ �). For PBC, this behaviour can be
expressed as EF = log(N c/3

f(TN
z)), or

EF (T, N) =
c

3
log N + g(TN

z) (4)

in analogy to Ref. [42], where c is the critical exponent
that connects lengthscales to entanglement, while z is
the critical exponent that connects lengthscales to en-
ergyscales (� / N

�z). The functions f(·) and g(·) =
log f(·) are non-universal and depend on the microscopi-
cal details of the model. This behaviour actually extends,
to finite T , the known scaling law for the entanglement
entropy with size, valid for critical ground states [40, 41].
We validate this argument in the inset of Fig. 3, where
the EF (T, N) data sets are appropriately rescaled, ac-
cording to N . As we expect, the curves collapse when
the appropriate critical exponents of the corresponding
model are used (c = 1

2 , z = 1 for critical Ising; c = 1,
z = 1 for Luttinger liquid XXZ).

As a final remark, we stress that the EoF analy-
sis enabled by the TTO method is not limited to low-
temperature many-body states of lattice models. We
have employed the same diagnostic tool on other classes
of mixed many-body states, including on sets where the
EoF is known, as reported in the SM.

Conclusions In this letter, we have presented a new
tensor network approach that enables the numerical anal-
ysis of bipartite entanglement for many-body quantum
systems, even for those entanglement monotones that
are considered hard since they require convex-roof opti-
mization. We employed a Tree Tensor Operator (TTO)
to well-approximate the global density matrix at low
temperatures. Such a tensor network architecture com-
presses information of the bipartite entanglement into
a single tensor, whose dimensions in many cases scale
polinomially with the system size. As a result, evaluat-
ing entanglement monotones is numerically e�cient, as
illustrated for 1D interacting lattice models. Our analy-
sis observed a scaling law for the Entanglement of For-
mation, compatible with a logarithmic conformal scal-
ing law. We successfully tested this argument for a free
fermion (Ising) and an interacting fermion (XXZ) criti-
cal models, where it is satisfied in a temperature range
commensurate with the finite-size energy gap (T ⇠ �).

While the TTOs we constructed were generated start-
ing from ED, alternative strategies to directly construct-
ing the thermal TTO which require polynomial time and
computer memory in N can be developed. Similarly, we
envision the possibility of replacing the TTN branches
of the ansatz with Matrix Product State branches: an
alternative TN design that is still e�cient toward EoF
estimation. Finally, we expect that TTO may be
capable to accurately capture some features of open-
system quantum dynamics. This will actually extend
the bipartite-entanglement analysis, presented here, from
finite-temperature states to a larger set of open-system

FIG. 3. Scale-invariance of the EoF EF at temperatures T (in
units of J/kB) in the range kBT  0.5�, where � / N

�z, for
the critical Ising model in Eq. (2) (top) and the XXZ model in
Eq. (3) in the critical phase at ⇠ = 0.5 (bottom). Main figures
show data for N = 8, 12, 16, 20, which are respectively blue
pentagons, orange squares, green diamonds and red circles.
Inset: curves in the main figures after rescaling according
to Eq. (4). The agreement is stunning, using c = 1/2 and
z = 1.02±0.02 (top) and c = 1 and z = 0.98±0.02 (bottom).
The grey area highlights the temperature range T  0.2�(N).

physically relevant states, i.e. the stationary states of a
Lindblad master equation [43–45]. The Time-Dependent
Variational Principle [46, 47] is surely a good candidate
strategy towards this goal. This will likely be the focus
of our research in the near future, aiming to enable the
EoF analysis presented here onto even larger system sizes
of the order of hundreds of sites.

We thank M. Dalmonte and B. Kraus for stimulat-
ing discussions. Authors kindly acknowledge support
from the Italian PRIN2017 and Fondazione CARIPARO,
the Horizon 2020 re-search and innovation programme
under grant agreementNo 817482 (Quantum Flagship
- PASQuanS), the Quan-tERA projects QTFLAG and
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show that the improvement introduced by our approach
already enables the investigation of relevant scaling prop-
erties of critical systems not achievable before.

Once the TTO is built, we proceed to calculate the
optimization from Eq. (1) on the top tensor R. To build
sets of U matrices, we fix a value for K � K0 and pa-
rameterize a Hermitian matrix A = A

† of dimensions
K ⇥ K. Then, we get the corresponding unitary from
U = exp{iA}, and finally we take K0 random rows of U

to build U . For every column of R
0 = RU , its entangle-

ment entropy is calculated via S = �
P

i
s
2
i
log s

2
i
, where

the singular values si are obtained by a singular value de-
composition (SVD). In the results section, entropies are
expressed in basis of log2, so that a Bell pair defines the
unit of entanglement. For a given K � K0, minimization
in the space of the U is carried out via direct search meth-
ods, but other choices are possible. Extensive proofs of
the stability of this method, as well as some results on
many-body random density matrices, are provided in the
SM. Convergence of the minima is rapidly reached when
increasing K � K0. For all practical purposes, choosing
K ⇡ K0 is often su�cient to achieve close convergence
(see SM). We stress that, even in case of incomplete or
failed convergence, our method still provides an upper
bound to the actual EoF of the quantum state. In par-
ticular, in every case we could check, the results provided
tight bounds.

Results � We consider two well-known prototype quan-
tum critical spin- 12 models as benchmarks [39]: specifi-
cally, the Ising model

ĤIsing = J

NX

i=1

�
�̂

x

j
�̂

x

j+1 + h�̂
z

j

�
(2)

in a transverse field h, and the XXZ model

ĤXXZ = J

NX

j=1

�
�̂

x

j
�̂

x

j+1 + �̂
y

j
�̂

y

j+1 + ⇠ �̂
z

j
�̂

z

j+1

�
(3)

with anisotropy ⇠, both models considered in periodic
boundary conditions (PBC) and �̂

↵

j
s (↵ = x, y, z) are the

Pauli matrices. The temperature T , defining the thermal
state ⇢ = 1

Z
e
�Ĥ/T , is expressed in units of the Hamilto-

nian energyscale (J = kB = 1). To appropriately choose
a suitable number K0 we start from K0 = 2. We then
evaluate the resulting EoF, gradually increasing K0 until
convergence of the estimated EoF is reached. We employ
a similar strategy to choose the best M .

Fig. 2 shows a typical benchmark comparison of the
total computational time required to estimate the EoF:
(i) using the full description (X matrix, orange data)
(ii) using the TTO method (R matrix, blue data). The
time needed to solve the full optimization increases as
O(dim{H}3/2), since the bottleneck of our algorithm is
the SVD to calculate S for each of the K pure states. By

FIG. 2. Scaling of computational times versus N , for thermal
states of ĤIsing in Eq. (2) at h = 1 and with kBT = 0.1J .
Green diamonds correspond to optimizations done on density
matrices with no approximations. Orange squares refer in-
stead to states where K0 has been truncated, but still pure
states are not compressed (see Fig. 1(c)): the exponential fit
of the last five data points shows that the complexity scales as
O((2N )1.503), in agreement with the theoretical expectation.
Blue circles report the optimization times needed using the
root tensor R of the TTO with a maximal bond dimension M

and truncated K0 (see Fig. 1(b)). Inset: Smallest M needed
to achieve convergence of the EoF within 1% of its exact value.
Red pentagons and purple diamonds refer respectively to the
critical Ising model at kBT = 0.1J and to the XXZ model
with ⇠ = 0.5 (critical) at kBT = 0.5J .

contrast, this runtime scales like O(M3) for a TTO rep-
resentation, with M ⌧

p
dim{H}. In fact, we studied

the M needed to achieve 99% of the exact EoF value as
a function of the size N , for both Ising and XXZ models
in the gapless phase. The growth is linear and smooth,
as shown in the inset.

Equipped with our diagnostic tool, we perform inter-
esting investigations of bipartite entanglement properties
of intermediate-size quantum systems at finite T . The
two panels in Fig. 3 focus on critical phases of the two
models, the quantum phase transition point of the Ising
model (h = 1, top), and the Luttinger liquid phase of the
XXZ model (⇠ = 0.5, bottom) respectively. While the
system is strongly-correlated at zero temperature, entan-
glement seems to survive roughly unaltered up to T of the
order of 0.2�(N), with �(N) the finite-size energy gap,
and smoothly drop at higher T . This phenomenon is to
be contrasted with the Von Neumann entropy S (global,
or of either subsystem), which instead grows with T , and
can not capture alone the entanglement decrease [40, 41].
More importantly, we observe an emergent scaling behav-
ior when plotting EF (T, N). In fact, the EoF appears to
follow the logarithm of a conformal scaling function, in
proximity of the quantum critical point (i.e., for small

1D critical systems:

S / N (D�1)
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We introduce a novel tensor network structure augmenting the well-established Tree Tensor Net-
work representation of a quantum many-body wave function. The new structure satisfies the area
law in high dimensions remaining e�ciently manipulatable and scalable. We benchmark this novel
approach against paradigmatic two-dimensional spin models demonstrating unprecedented precision
and system sizes. Finally, we compute the ground state phase diagram of two-dimensional lattice
Rydberg atoms in optical tweezers observing non-trivial phases and quantum phase transitions,
providing realistic benchmarks for current and future two-dimensional quantum simulations.

Recent experiments investigated one- and two-
dimensional lattice quantum many-body systems at un-
precedented sizes, calling for a continuous search of nu-
merical techniques to provide accurate benchmarking
and verification of future quantum simulations [1–9]. In
particular, Rydberg atoms in optical tweezers are one
of the most promising platforms for the study of quan-
tum phase transitions, quantum simulation and compu-
tation [10–18]. In the last decades, Monte Carlo and
Tensor Networks (TN) algorithms have been employed
widely to study quantum many-body systems, and they
are routinely used to benchmark quantum simulation re-
sults [19–29]. However, Monte Carlo methods are limited
by the sign problem [30], while combining accuracy and
scalability in simulating high-dimensional systems still
represent an open challenge for TN methods [31, 32].
Here, we introduce a novel TN variational ansatz, able
to encode the area law of quantum many-body states in
any spatial dimension by keeping a low algorithmic com-
plexity with respect to standard algorithms (see Fig. 1),
thus opening a pathway towards the application of TN to
high-dimensional systems. Hereafter, we benchmark this
approach against spin models up to sizes of N = 64⇥64,
in and out of criticality. Finally, we simulate 2D lattices
of N ⇠ 1000 Rydberg atoms obtaining a phase diagram
which exhibits nontrivial phase transitions, complement-
ing recent results concerning a quasi two-dimensional
similar model [33].

In the last three decades, TN have been developed and
applied to classically simulate quantum many-body sys-
tems, representing the exponentially large wavefunction
with a set of local tensors connected via auxiliary indices
with a bond-dimension m. The bond dimension m allows
to control the amount of information in the TN, interpo-
lating between mean field (m = 1) and the exact but inef-
ficient representation. While for one-dimensional systems
the Matrix Product States (MPS) are the established TN
geometry for equilibrium and out-of-equilibrium prob-
lems, the development of TN algorithms for two- or even
higher-dimensional systems is still ongoing [34–39]. The
most successful TN representations are the Projected En-

| TTN i

D(u)

H

(a) (b)

(d)(c)

Area law in 2D

FIG. 1: (a) An aTTN for a 8 ⇥ 8 2D system: The dis-
entanglers in D(u) are applied to the TTN state | TTN i
across the boundaries @⌫ of each link ⌫, in order to fulfill
the area law depicted (b) for a sublattice A (shaded re-
gion) and its boundary @A (purple dots).(c), (d): relative
error of the Ising model ground state energy computed
with the aTTNs and the TTNs. While for L = 8 the
precision achieved with the two methods is the same, a

clear improvement emerges for L = 64.

tangled Pair States (PEPS) [40–43] and the Tree Tensor
Networks (TTN) [44–47], as well as the Multi-scale En-
tanglement Renormalization Ansatz (MERA) [48–50].
TNs shall satisfy the same entanglement bounds un-

der real-space bipartitions, known as area laws, of the
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TABLE I: Comparison of the most prominent TNs discussed in the main text: Numerical complexity as a function
of the bond-dimension �, obeying the entanglement area law, the typical bond-dimension to be used in current high

performance simulations and the calculation of expectation values, i.e. the exact contractability.

Tensor Network Complexity Area law in 2D Typical Bond dimensions Exact contractable
MPS / DMRG O

�
�
3
 

No (Only in 1D) > 10.000 Yes (O
�
�
3
 
)

TTN O
�
�
4
 

No (Only in 1D) ⇡ 1.000� 2.000 Yes (O
�
�
4
 
)

PEPS O
�
�
10
 

Yes ⇠ 10 No (O
�
�
L
 
)

MERA O
�
�
8
 
(1D), O

�
�
16
 
(2D) Yes ⇠ 10 Yes (O

�
�
8
 
)

aTTN O
�
�
4
 

Yes* ⇡ 500 Yes (O
�
�
4
 
)

| i 2 ⌦N
i Hi on the lattice L is given by

| aTTNi = D†(u)| TTNi (4)

with | TTNi describing the wave-function
parametrised by the internal TTN. Therein, the
appended layer D(u) contains ND disentanglers {uk},
which all act independently of each other on di↵erent
sites of the lattice L . Each of the disentanglers uk is a
unitary when fusing its first two and its last two indices
respectively, thus obeying the isometry condition

X

k3,k4

(uk)
k1,k2

k3,k4
(u†

k)
k3,k4

k0
1,k

0
2
= �k1,k0

1
�k2,k0

2
. (5)

Hence, one disentangler uk performs a unitary transfor-

mation on two physical sites (i[k]1 , i[k]2 ) towards the at-
tached TTN. This local transformation aims to decou-
ple - or disentangle - relevant degrees of freedom in the
quantum many-body state which consequently disappear
for the TTN. Thus, the complete layer D(u) maps a pure
state  of the lattice L to another pure state  aux within
the same Hilbert space H by applying all of its disen-
tanglers uk.

D(u) : H ! H (6)

D(u)| i = u1u2...uK | i = | auxi (7)

Note, that the di↵erent disentanglers uk commute with
each other, as they all act on di↵erent spaces Hk1 ⌦Hk2 .
In this manner, D(u) can be as well seen as a unitary
mapping for a given physical Hamiltonian H 2 H to
an auxiliary Hamiltonian Haux = D(u)HD†(u) towards
the TTN within the aTTN. This preconditioning of the
Hamiltonian H for the internal TTN can be performed
in a way, such that it introduces an area law for higher-
dimensional systems of the complete network while keep-
ing the complexity for the optimisation at O

�
�4

�
. Thus

the aTTN avoids the weakness of a TTN - being the lack
of an area law - and still maintains its main advantages,
namely (i) the reasonably low scaling with bond dimen-
sion � compared to both MERA and PEPS, and (ii) the
ability to contract the network exactly, which in general
is not guaranteed for a PEPS (see also Tab. I for com-
parison). Let us point out as well, that the aTTN is not
restricted to a certain dimensionality of the underlying

system, but can be applied for a general D-dimensional
system.
In Fig. 1 we give an illustrative example of an aTTN for

a two-dimensional 8⇥8 system with its disentangler layer
D(u) consisting of 6 di↵erent disentanglers uk (green). As
shown therein, not every physical site j is addressed by a
disentangler, which - as we will explain later on - is key
for a better numerical complexity. Thus the positioning
of the disentanglers uk for a general aTTN is critical in
order to (i) keep an optimal numerical complexity for the
optimisation and (ii) e�ciently encode an area law in the
TN.
Resuming, the total number of parameters for an

aTTN state scales with O(N�3 +NDd4) where � is the
bond dimension of the TTN within, and ND is the num-
ber of disentanglers uk in the disentangler layer D(u).

3. Area Law in aTTN

For the description of the area-law captured by the
aTTN, we illustrate the case of a two-dimensional square
lattice L with N = L ⇥ L sites, where furthermore
L = 2n. The fundamental idea anyhow holds true for
an D-dimensional lattice structure with arbitrary dimen-
sions Li. Furthermore, we here assume a binary TTN,
which is arranged so that the tensors within the tree al-
ternatingly in x- and y-direction coarse-grain neighboring
sites going from layer to layer, as it is as well the case
for the internal TTN of the in Fig. 1 shown aTTN (the
internal TTN is illustrated by its tensors in blue and its
links in gray). The topmost link of such a tree bipartites
the whole system L into the two equally (L⇥L/2)-sized
subsystems A and B. Going from the topmost link down-
wards in the TTN, each link within a layer further divides
a smaller lx ⇥ ly-dimensional sublattice.

TABLE II: Size of boundaries of di↵erent bipartitions in
a 2D system L for di↵erent boundary conditions of L

�⌫[1] �⌫[2] �⌫[3] �⌫[4] ...
Open BC L L

5
4L or 3

4L

cylindrical BC L
3
2L

3
2L or L

toroidal BC 2L 2L
·3/4�! 3

2L
·2/3�! 3

2L
·3/4�!

When we now consider an area-law state  , the bipar-
tition entanglement scales with the boundary @⌫ of the

nlinks / L
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FIG. 1. Sketch of the system: N hard-core bosons (red balls) are
hopping on a L × L lattice, perpendicular to an external magnetic
field. The magnetic field gives rise to a flux φ through each plaquette,
which in Landau gauge leads to the indicated phase factors in the
hopping amplitudes t . The fluxes in the topmost row and rightmost
column (faded) are only present in case of periodic boundary
conditions (PBC). For PBC, additional phase twists θx and θy can
be introduced (see text), allowing for the definition of topological
invariants.

as illustrated in Fig. 1. In the Landau gauge, the system is
described by the following Hamiltonian [11]:

H = U
∑

x,y

nx,y(nx,y − 1) − t
∑

x,y

{a†
x+1,yax,y e−i 2πδxLθx

+ a
†
x,y+1ax,y ei 2π(φx−δyLθy ) + H.c.} (1)

of bosonic particles, [ax,y,a
†
x ′,y ′ ] = δxx ′δyy ′ ,n = a†a. Here, φ

is the magnetic flux through each plaquette [resulting in a
magnetic filling factor ν = N/(φL2), with N the number of
bosons in the system] and θx , θy implement the twists in the
boundary condition [12]. In the dilute limit (small densities
and small fluxes), the lattice physics approaches the one of
the continuum.1 However, in the large flux limit, available
in cold gases experiments, the phase diagram is not set. On
small systems, it has been shown by exact diagonalization
(ED) that the GS of the model described by Eq. (1) at filling
factor ν = 1/q (where q is an even integer) is compatible
with a lattice analog of the (bosonic) Laughlin wave function
[12–14,24,25], exhibiting topological GS degeneracy and a
nonzero Chern number [26]. However, the overlap with the
exact Laughlin wave functions rapidly degrades with system
size already for small systems of six particles. From a
complementary viewpoint, the ladder version of the Hofstadter
model has also been shown to share similarities with FQH
states [27–30]. Very recently, iDMRG results on cylinders
have shown strong signatures of integer quantum Hall states,
and have reported fractional current quantization in regimes
different from the one we consider here [31]. Throughout,
we focus on the strongly interacting case U → ∞ (hard-core
bosons) with flux values φ = 1

8 and 1
16 , respectively, which

1Notice that the continuum limit is also recovered by adding tailored
long-range hoppings, which effectively flatten the lowest band [47].

x

y

L
L

m
N

FIG. 2. Binary tree-tensor network ansatz for a L × L lattice.
The blue dots are the physical sites with local dimension d (d = 2
for hard-core bosons). Each tensor groups two sites to one virtual
site (gray dots), leading to a hierarchical tree structure. In order to
capture the 2D lattice geometry, the grouping is performed in the x

and y directions, alternating from level to level. The dimension of
the virtual sites in the lth level (counting from below) is min(d2l

,m),
where m is the bond dimension of the TTN. The additional cyan link
at the top left tensor has dimension one and selects the global particle
number N [32].

correspond to flux setups that are experimentally available.
Finally, we fix the energy scale by setting t = 1.

III. TREE-TENSOR NETWORK ANSATZ

We employ a tree-tensor network (TTN) ansatz [33] for the
GS and the two lowest excited states to verify the properties
discussed above. The specific binary TTN used in this work
is illustrated in Fig. 2, where the standard graphical notation
for tensor networks (TN) is employed [34,35]: tensors are
drawn as cubes, with attached lines symbolizing tensor indices
(links). Links that are shared by two tensors are contracted,
which in TN language means that over their corresponding
mutual indices is to be summed. The dimension of each
link in the TTN is upper bounded by a constant m (bond
dimension), which serves as the refinement parameter of the
ansatz: the larger m, the more accurate the true many-body
state can be approximated. In a binary TTN, each tensor has
at most three links; therefore, the scaling of the computational
resources with the bond dimension is moderate in algorithms
using this class of TN states [19]. Furthermore, we exploit
particle-number conservation by restricting the ansatz to the
N -particle symmetry sector [32].

While it is known that a two-dimensional (2D) TTN is not
compatible with the area law for the entanglement entropy
[17,36], it possesses several beneficial features which make it
a promising tool for the study of intermediate system sizes:
(a) the existence of a numerically stable search algorithm
for eigenstates [18,19,35]; (b) a low-order polynomial scaling
O(m4L2) of the computational cost; (c) easy interchange of
various boundary conditions (open, periodic, twisted); (d)
access to the entanglement entropy for bipartition shapes
that enable the determination of the topological entanglement
entropy (TEE) [23]. In what follows, we will exploit these
properties to gather a number of numerical pieces of evidence
supporting a FQH GS of the model (1) in the case of filling
ν = 1

2 .
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We introduce a novel tensor network structure augmenting the well-established Tree Tensor Net-
work representation of a quantum many-body wave function. The new structure satisfies the area
law in high dimensions remaining e�ciently manipulatable and scalable. We benchmark this novel
approach against paradigmatic two-dimensional spin models demonstrating unprecedented precision
and system sizes. Finally, we compute the ground state phase diagram of two-dimensional lattice
Rydberg atoms in optical tweezers observing non-trivial phases and quantum phase transitions,
providing realistic benchmarks for current and future two-dimensional quantum simulations.

Recent experiments investigated one- and two-
dimensional lattice quantum many-body systems at un-
precedented sizes, calling for a continuous search of nu-
merical techniques to provide accurate benchmarking
and verification of future quantum simulations [1–9]. In
particular, Rydberg atoms in optical tweezers are one
of the most promising platforms for the study of quan-
tum phase transitions, quantum simulation and compu-
tation [10–18]. In the last decades, Monte Carlo and
Tensor Networks (TN) algorithms have been employed
widely to study quantum many-body systems, and they
are routinely used to benchmark quantum simulation re-
sults [19–29]. However, Monte Carlo methods are limited
by the sign problem [30], while combining accuracy and
scalability in simulating high-dimensional systems still
represent an open challenge for TN methods [31, 32].
Here, we introduce a novel TN variational ansatz, able
to encode the area law of quantum many-body states in
any spatial dimension by keeping a low algorithmic com-
plexity with respect to standard algorithms (see Fig. 1),
thus opening a pathway towards the application of TN to
high-dimensional systems. Hereafter, we benchmark this
approach against spin models up to sizes of N = 64⇥64,
in and out of criticality. Finally, we simulate 2D lattices
of N ⇠ 1000 Rydberg atoms obtaining a phase diagram
which exhibits nontrivial phase transitions, complement-
ing recent results concerning a quasi two-dimensional
similar model [33].

In the last three decades, TN have been developed and
applied to classically simulate quantum many-body sys-
tems, representing the exponentially large wavefunction
with a set of local tensors connected via auxiliary indices
with a bond-dimension m. The bond dimension m allows
to control the amount of information in the TN, interpo-
lating between mean field (m = 1) and the exact but inef-
ficient representation. While for one-dimensional systems
the Matrix Product States (MPS) are the established TN
geometry for equilibrium and out-of-equilibrium prob-
lems, the development of TN algorithms for two- or even
higher-dimensional systems is still ongoing [34–39]. The
most successful TN representations are the Projected En-

| TTN i

D(u)

H

(a) (b)

(d)(c)

Area law in 2D

FIG. 1: (a) An aTTN for a 8 ⇥ 8 2D system: The dis-
entanglers in D(u) are applied to the TTN state | TTN i
across the boundaries @⌫ of each link ⌫, in order to fulfill
the area law depicted (b) for a sublattice A (shaded re-
gion) and its boundary @A (purple dots).(c), (d): relative
error of the Ising model ground state energy computed
with the aTTNs and the TTNs. While for L = 8 the
precision achieved with the two methods is the same, a

clear improvement emerges for L = 64.

tangled Pair States (PEPS) [40–43] and the Tree Tensor
Networks (TTN) [44–47], as well as the Multi-scale En-
tanglement Renormalization Ansatz (MERA) [48–50].
TNs shall satisfy the same entanglement bounds un-

der real-space bipartitions, known as area laws, of the

3

gorithmic scaling remains of the order O(m4
d
2) (see the

SM for details). Moreover, the area law is still satisfied
removing the disentanglers crossing the boundaries of the
bipartitions @⌫ corresponding to the lower layers of the
tree (l ! logL). On the contrary, one shall keep the
maximal allowed number of disentanglers (i.e., not con-
nected by Hamiltonian terms) to support the boundaries
corresponding to the higher branches (l ! 1). Indeed,
for ⌫ 2 ⇤l with l ! logL, the TTN bond-dimension m⌫

is su�ciently large to capture the area law entanglement
- or even the complete state - accurately, especially for
reasonably small local dimensions d. Instead, the contri-
bution ⇠⌫ of the TTN is negligibly small for ⌫ 2 ⇤l with
l ! 1 compared to the required exponentially large bond-
dimension, calling for the support of the disentanglers.
In conclusion, as we numerically confirm hereafter, it is
possible to engineer the disentangler positions in D(u),
keeping both computational e�ciency and the area-law
fulfilled resulting in high-precision results also for large
system sizes.

Ising model — We first benchmark the aTTN ansatz
via a ground state search on the 2D Ising model with
periodic boundary conditions. We consider a L ⇥ L

lattice with L = {8, 16, 32, 64} and the Ising Hamilto-

nianH =
P

L

i,j=1 �
x

i,j
�
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x

i,j
�
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i,j+1+
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L
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. �

�

i,j

(with � 2 {x, y, z}) are Pauli matrices acting on the site
(i, j). For small system sizes (L = 8 and L = 16) both
the TTN and the aTTN reach the chosen machine pre-
cision of 1E-8 with high bond dimension. However, as
expected, for larger sizes we find a significant improve-
ment in the precision of the aTTN simulations. Indeed,
the di↵erent performances become evident for L = 32
and L = 64, as the aTTN and the TTN converge with in-
creasing bond dimension to di↵erent values for the energy
Fig. 1 reports the relative error ✏m = |(hHim�Eex)/Eex|
for increasing bond dimension m with respect to the en-
ergy Eex obtained by extrapolating the results of the
aTTN for L = 8 and L = 64 (For the L = 16, 32 re-
sults see Fig. 6 in the Supplementary material).

Heisenberg model — We now analize the
more challenging critical antiferromagnetic
two dimensional Heisenberg model H =P

L

i,j=1

P
�2{x,y,z}

�
�

i,j
�
�

i+1,j + �
�

i,j
�
�

i,j+1, with peri-
odic boundary conditions. In Fig. 2 we compare the
estimated energy density obtained by extrapolating the
results from the TTN and the aTTN at m ! 1 with
previous results from di↵erent variational ansätze. In
particular, we plot the relative error obtained by the
di↵erent tensor network ansätze and the best known
results, obtained via Quantum Monte Carlo [21]. Dif-
ferently from the Ising model, we find the aTTN to be
more accurate than the TTN even at lower system sizes,
such as L = 8, 16. Interestingly, the aTTN for L = 16
obtains an even more precise ground state energy density
compared to most of the alternative variational ansätze
at lower finite system size of L = 10, such as Neural

10 15 20 25 30

10-4

10-3
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FIG. 2: Relative error ✏ of the 2D Heisenberg ground-
state energy as a funciotn of the system linear size L

compared with the best available estimates obtained
by MC [21] for the TTN, aTTN, NNS [59], EPS [60],
PEPS [61], 2D-DMRG [57]. Depending on the method
open (obc), cylindrical (cbc) or periodic (pbc) bound-
ary conditions have been chosen. For each datapoint, we
compare the Monte Carlo result with the same boundary

conditions.

Network states, Entangled Pair States or PEPS [59–61].
We mention that, while the PEPS is very e�cient with
its ability to work directly in the thermodynamic limit
in describing infinite systems as iPEPS [62, 63], the
PEPS analysis for finite sizes are, for now, limited to
N = 20⇥ 20 systems. It turns out that for this model a
very competitive variational approach is the 2D-DMRG,
which outperforms the alternative methods for finite
sizes with open or cylindrical boundary conditions up
to the system size L = 12, but struggles with periodic
boundary conditions and with increasing both system
sizes L & 12 [57]. Finally, we extended our analysis to
reach the system size of L = 32 for which, to the best of
our knowledge, no public result is available. Thus, we
estimated the error, extrapolating the value of the finite
size scaling of Monte Carlo [21].

We point out that the here performed aTTN simula-
tions (as well as the TTN simulations) exploit a U(1)
symmetry. However, for this model, we could further
drastically improve the performance of the aTTN by in-
corporating the present SU(2) symmetry in the simula-
tion framework [31, 64, 65].

Interacting Rydberg atoms — We now present new
physical results, on a long-range interacting system by
studying the zero-temperature phase diagram of an in-
teracting Rydberg atoms two-dimensional lattice [4], de-
scribed by the Hamiltonian Hryd =

P
r[

⌦
2 �

x
r � �nr +

1
2

P
s V (|r � s|)nrns] where the Rabi frequency ⌦ cou-

ples the ground |gir and the excited Ryderg state |rir
and nr = |ri hr|r. � is the detuning and V (|r � s|) =
c6/|r�s|6 is the interaction strength between two excited
atoms placed at sites r and s. We keep the interaction
terms up to the fourth-nearest neighbor and set the Rabi
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FIG. 4: Disentangler positions for simulations of Hamiltonians with periodic boundary conditions and
nearest-neighbor interactions only for system size L = 8 (a), L = 16 (b), L = 32 (c). The red(blue)-dotted lines

indicate the bipartition of the up-most(second highest) link of the internal TTN.

�5 = 32 ( see Fig. 4 (b) ).
In contrast to the analysis of the Ising model and

Heisenberg model, the Rydberg computations deal with
open boundary conditions and we consider next-nearest-
neighbor terms in the Hamiltonian, i.e. with the lat-
tice spacings (0,1), (1,0), (1,1), (1,-1), (2,0), (0,2), (2,1),
(2,-1), (1,2), (1,-2). Therefore, the disentanglers are posi-
tioned more distant to each other with at least two empty
sites between each other (compare Fig. 5). Following
the same strategy as before, we place as many disentan-
glers as possible, starting from the top-most link. Con-
sequently, we position here ND = 4 (with �1 = 3 and
�2 = 2) disentanglers for a 8⇥ 8 system, ND = 22 (with
�1 = 6, �2 = 4, �3 = 8, �4 = 4) for a 16 ⇥ 16 system
and ND = 77 (with �1 = 11, �2 = 10, �3 = 20, �4 = 12,
�5 = 24) for a 32⇥ 32 system.

Ising model

As referred to in the main text, we provide the compar-
ison of the aTTN against the TTN for the ground state
search on the 2D Ising model at system size L = {16, 32}.
In Fig. 6 we report the relative error ✏m = |(hHim �
Eex)/Eex| for increasing bond dimension m with respect

to the energy Eex obtained by extrapolating the results of
the aTTN. We point out that, for the lower system size of
L = 16, the TTN is as precise as the aTTN and the data
points for both tensor networks analysis indeed overlap
reaching the chosen machine precision of 1E-8 with high
bond dimension. This confirms that the TTN is as much
as the aTTN capable of capturing the entanglement in
the 2D system for lower system size. However, going to
larger system sizes, the TTN cannot hold up to the with
L exponentially growing area law and eventually fails to
represent the ground state accurately, while the aTTN in
contrast is able to maintain a higher precision.

Rydberg atom phase diagram analysis

In this section, we provide some detail concerning the
computation of the Rydberg atom lattice phase diagram
and the analysis of the phases we have observed. We
focus, in particular, on the region marked by the dashed
black line in Fig. 3 of the main text, corresponding to
Vnn = 46MHz.
The simulations have been realized by using the aTTN

ansatz with maximum bond dimension m = 300. In or-
der to simulate the ground state as it would be observed
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points for both tensor networks analysis indeed overlap
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larger system sizes, the TTN cannot hold up to the with
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represent the ground state accurately, while the aTTN in
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We introduce a novel tensor network structure augmenting the well-established Tree Tensor Net-
work representation of a quantum many-body wave function. The new structure satisfies the area
law in high dimensions remaining e�ciently manipulatable and scalable. We benchmark this novel
approach against paradigmatic two-dimensional spin models demonstrating unprecedented precision
and system sizes. Finally, we compute the ground state phase diagram of two-dimensional lattice
Rydberg atoms in optical tweezers observing non-trivial phases and quantum phase transitions,
providing realistic benchmarks for current and future two-dimensional quantum simulations.

Recent experiments investigated one- and two-
dimensional lattice quantum many-body systems at un-
precedented sizes, calling for a continuous search of nu-
merical techniques to provide accurate benchmarking
and verification of future quantum simulations [1–9]. In
particular, Rydberg atoms in optical tweezers are one
of the most promising platforms for the study of quan-
tum phase transitions, quantum simulation and compu-
tation [10–18]. In the last decades, Monte Carlo and
Tensor Networks (TN) algorithms have been employed
widely to study quantum many-body systems, and they
are routinely used to benchmark quantum simulation re-
sults [19–29]. However, Monte Carlo methods are limited
by the sign problem [30], while combining accuracy and
scalability in simulating high-dimensional systems still
represent an open challenge for TN methods [31, 32].
Here, we introduce a novel TN variational ansatz, able
to encode the area law of quantum many-body states in
any spatial dimension by keeping a low algorithmic com-
plexity with respect to standard algorithms (see Fig. 1),
thus opening a pathway towards the application of TN to
high-dimensional systems. Hereafter, we benchmark this
approach against spin models up to sizes of N = 64⇥64,
in and out of criticality. Finally, we simulate 2D lattices
of N ⇠ 1000 Rydberg atoms obtaining a phase diagram
which exhibits nontrivial phase transitions, complement-
ing recent results concerning a quasi two-dimensional
similar model [33].

In the last three decades, TN have been developed and
applied to classically simulate quantum many-body sys-
tems, representing the exponentially large wavefunction
with a set of local tensors connected via auxiliary indices
with a bond-dimension m. The bond dimension m allows
to control the amount of information in the TN, interpo-
lating between mean field (m = 1) and the exact but inef-
ficient representation. While for one-dimensional systems
the Matrix Product States (MPS) are the established TN
geometry for equilibrium and out-of-equilibrium prob-
lems, the development of TN algorithms for two- or even
higher-dimensional systems is still ongoing [34–39]. The
most successful TN representations are the Projected En-
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H
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(d)(c)
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FIG. 1: (a) An aTTN for a 8 ⇥ 8 2D system: The dis-
entanglers in D(u) are applied to the TTN state | TTN i
across the boundaries @⌫ of each link ⌫, in order to fulfill
the area law depicted (b) for a sublattice A (shaded re-
gion) and its boundary @A (purple dots).(c), (d): relative
error of the Ising model ground state energy computed
with the aTTNs and the TTNs. While for L = 8 the
precision achieved with the two methods is the same, a

clear improvement emerges for L = 64.

tangled Pair States (PEPS) [40–43] and the Tree Tensor
Networks (TTN) [44–47], as well as the Multi-scale En-
tanglement Renormalization Ansatz (MERA) [48–50].
TNs shall satisfy the same entanglement bounds un-

der real-space bipartitions, known as area laws, of the
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frequency ⌦ = 4MHz, while the interaction parameters
refer to 87Rb atoms excited to the state

��70S1/2

↵
, for

which c6 = 863GHzµm6.

The interactions limit the maximum excitation density
according to the Rydberg blockade radius r⇤ – the mini-
mum distance at which two atoms can be simultaneously
excited – defined by the relation V (r⇤) = ⌦. The com-
petition between the interactions strength and � gener-
ates non-trivial phases characterized by regular spatial
excitation-density distributions. The Fig. 3a shows the
phase diagram of the system as a function of the de-
tuning and the nearest-neighbor interaction energy Vnn,
obtained via aTTN simulations with L = 4, 8, 16, 32 with
open boundary conditions.

For low values of the detuning �, the system exhibits
a disordered phase characterized by the absence of exci-
tations while, increasing �, excitations are energetically
favored and the interactions determine their spatial ar-
rangement. In the limit of Vnn ! 0, or a ! 1, the atoms
are non-interacting and the expectation value hnri ! 1
for � ⌧ ⌦. At larger values of Vnn, corresponding to
r
⇤
/
p
2 < a < r

⇤, nearest neighbor atoms cannot be si-
multaneously excited, giving rise to the Z2 phase [4, 66]
with a two-degenerate ground state with the excitations
distributed in a chess-bond like configuration, as shown
in Fig. 3a. Nevertheless, the Z2 disappears at low val-
ues of Vnn and large detuning, as all the atoms are ex-
cited (light orange, right-bottom region of the phase di-
agram). The spatial distribution of the excitations in
the orderded phase is well captured by the peaks of the
static structure factor S(k) = 1

N2

P
r,s e

�ik·(r�s)hnrnsi .
In particular, the phase Z2 exhibits a peak in (⇡,⇡),
as shown in Fig. 3b. The transition from the dis-
ordered to the Z2 phase is a second-order one, as it
emerges by computing the second derivative of the en-
ergy with respect to � (see Supplementary Material). In
order to determine the critical line separating the two

phases we define the nonlocal order parameter O
(2)
r =

(nrx,ry � nrx+1,ry � nrx,ry+1 + nrx+1,ry+1)/4 and per-

form a finite-size scaling analysis of hO(2)†
r O

(2)
r i vs �,

where hO(2)†
r O

(2)
r i is estimated by S(⇡,⇡) [67, 68] (see

SM). By further reducing a, the blockade radius pre-
vents diagonal-adjacent atoms to be excited. As a con-
sequence, each one of the Z2 ground states breaks into
two di↵erent states, giving rise to the four-degenerate
phase Z4: In each one of the ground states of this phase,
each excited atom is surrounded by atoms in their ground
states (see upper inset in Fig. 3a). We observe a second-
order phase transition in Vnn for � ' 10MHz from the
Z2 to the Z4 phase at V

c
nn

= 32 ± 2.5MHz (or equiv-
alently a = r

⇤
/
p
2). The static structure factor ex-

hibits four additional peaks in the points such as (0,⇡)
as shown in Fig. 3c. As in the Z2 case, a second-order
phase transition occurs between the disordered phase
to the Z4 by changing � at a fixed Vnn. We deter-

(a)

(b) (c)

FIG. 3: Up: Phase diagram as a function of the detuning
� and the nearest-neighbors interaction energy Vnn. The
disordered phase is characterized by a substantially uni-
form distribution of the excitations, while in the phases
Z2 and Z4 the excitations are distributed as shown in the
upper (Z4) and lower (Z2) insets. Down: Renormalized
structure factor S

0(k) = S(k)/S(0) for Vnn = 46MHz
and (a) � = 28MHz (Z2 phase) and (b) � = 12MHz

(Z4 phase). Other parameters: ⌦ = 4MHz.

mine the critical line by introducing the order parameter

O
(4)
r = (nrx,ry+i nrx+1,ry�i nrx,ry+1�nrx+1,ry+1)/4, de-

fined such that the value of hO(4)†
r O

(4)
r i equals S(0,⇡) in

the Z4 phase. Remarkably, we find that another second-
order phase transition occurs by further increasing �,
leading the system from the Z4 to the Z2 phase. We
expect that at larger values of Vnn new phases would
emerge and accordingly, new phase transitions would oc-
cur by changing �.

Conclusions — We have augmented the well-
established TTN geometry with a new ansatz which re-
produces area law for high dimensional quantum many-
body systems. The aTTNs allowed us to reach unprece-
dented sizes (32⇥ 32) in the study of critical system, go-
ing beyond the current possibilities of PEPS and DMRG,
and therefore set new benchmarks for future numerical
simulations. As a first application of aTTNs, we have
characterized the phase diagram of two dimensional Ry-
dberg atoms in optical tweezers, with atoms number of
the order of current and near future experiments [2]. In
conclusion, the aTTN ansatz introduced here provides
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(a) (b)

Z4 Z2

FIG. 7: (a) Staggered magnetization as a function of �
at Vnn = 46MHz. It emerges the staircase-like behavior
corresponding to the phase transitios from the disordered
to the Z2 phase and from the Z2 to the Z4 one. The
dashed lines mark the positions of the critical points. (b)
Static structure factor computed at L = 4, 8, 16. Other

parameters: ⌦ = 4MHz.

(a) (b)

FIG. 8: Finite-size scaling analysis for the disorder- Z4

(a) and for the Z4-Z2 (b) transitions. The critical points
are located at �c = 7.69 , 19.8 ,MHz respectively. Other

parameters: ⌦ = 4MHz, Vnn = 46MHz.

the transition Z4-Z2. The errors are computed as the
standard deviation of the best estimations obtained from
each point on the corresponding critical lines.

Finally, we estimate the order of the transition by com-
puting the discrete derivatives of the energy with respect
to the detuning. We observe that the energy and the first
derivative change continuously with the detuning, while

the second derivative exhibits two peaks, confirming the
presence of two transitions (see Fig 9 (a)) and allowing us
to conclude, therefore, that the transitions observed are
of the second order. Moreover, we can use the position
of the peaks to estimate the critical detuning value. We
start by estimating the position of the finite-size critical
point �⇤(L) by taking the position of the peak in the cor-
responding curve and assuming that at �⇤(L) the corre-
lation length is ⇠ ⇠ L. Since, in general, |���c| ⇠ ⇠

�⌫ ,
we can estimate the critical value �⇤

c
by imposing that

the linear fit for the relation |�⇤(L)��⇤

c
| ⇠ L

�⌫ passes
through the origin. In Fig. 8 (b) we show the results
of this analysis performed for the disorder-Z4 transition,
where we find �⇤

c
= 8.6 ± 1.3MHz and the exponent

1/⌫ = 0.62 is the one found from the finite-size scaling
analysis. The error is determined by taking into account
the uncertainty of the peak positions�⇤(L). The compu-
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(a) (b)

FIG. 9: (a) Discrete second-order derivative of the en-
ergy, whose peaks reveals the second-order nature of the
two phase transitions we observe. By using the posi-
tions of the peaks at di↵erent values of L �⇤(L) and
the value of ⌫ from the finite-size scaling analysis it
is possible to obtain another estimation for the critical
�⇤

c
= 8.6±1.3MHz for the disorder- Z4 transition. Other

parameters: ⌦ = 4MHz.

tation of�⇤

c
allowed us to estimate the errors in the phase

diagram in Fig. 3 in the main text as the semi-di↵erence
between the critical values found from the finite-size scal-
ing analysis and the energy one.
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(a)

(b) (c)

FIG. 5: Disentangler positions for system size L = 8 (a), L = 16 (b), L = 32 (c) for the Rydberg simulations, i.e.
for Hamiltonians with open boundary conditions and nearest-neighbor and next-nearest-neighbor interactions. The

red(blue)-dotted lines indicate the bipartition of the up-most(second highest) link of the internal TTN.

(a) (b)

FIG. 6: Relative error ✏ of the 2D Ising ground-state
energy compared with the best available estimates

obtained by extrapolating the results of the aTTN for
the system sizes L = {16, 32}.

in an experiment, we have adopted open boundary condi-
tions. At the same time, in order to break the degeneracy
of the ground states of the Z2 and Z4 phases, we have
replaced the detuning terms along the bottom and right
boundary sites with the term �br = �7MHz, forcing the
corresponding atoms not to remain in the ground state
(see the panels in the phase diagram of Fig. 3). For this
reason, the expectation values of the correlators and the
occpuations, used to estimate the structure factor and
the staggered magnetization respectively, are computed
only in the bulk. Moreover, we have checked that the

results we obtain are in agreement with those we would
obtain by imposing periodic boundary conditions.
In order to investigate the Z2 and Z4 phases, we have

first computed the staggered magnetization h�ziAFM . Its
expectation value is 1/4 in the phase Z4 and 1/2 in the
Z2 one, in agreement with Fig 7 (a), where a staircase
behavior emerges as the detuning � is increased. The
vertical dashed lines mark the positions of the disorder-
Z4 and Z4-Z2 transitions, respectively.
The positions of the critical points has been deter-

mined by performing a finite-size scaling analysis of
hO(4)†

O
(4)i against the detuning �, as they satisfy the

relation [67]

hO(4)†
O

(4)iL2�/⌫ = f(L1/⌫�̃), (6)

where �̃ = (� � �c)/�c, f(x) is a scaling function
and �, ⌫ are the critical exponents. Since the values
of hO(4)†

O
(4)i coincide with those of the structure fac-

tor S(0,⇡) in the disordered, Z2 and Z4 phases, we use
S(0,⇡) to estimate hO(4)†

O
(4)i and perform the scaling

analysis. As a result, we are able to determine the criti-
cal values of the detuning and the relative exponents for
the two di↵erent transitions, as shown in Fig 8. We ob-
tain 1/⌫ = 0.62(7) and � = 0.36(5) for the transition
disorder-Z4 and 1/⌫ = 0.51(19) and � = 0.49(19) for

32x32 sites

T. Felser, S. Notarnicola, S. Montangero PRL (2021) 
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a) b) c) d)

Uab
x,y = ca†x,+x̂c

b
y,�x̂

Figure 1: (Color online). a) The commutation relations [H,G
⌫
x] guarantees that the gauge invariant subspace, i.e. the trivial

irreducible representation subspace for every lattice gauge subgroup, is dynamically decoupled from the rest of the Hilbert
space. b) The nontrivial support of every lattice gauge generator is a single matter field site  x and all the gauge field links
Ux,x+µx connected to it. c) Typical coupling Hamiltonian terms involve two matter sites  x and  x+µx and the gauge boson
connecting them Ux,x+µx . d) In the QLM formulation, the gauge boson is split into a pair of rishons, linked together by a U(1)
symmetry constraint.

field. In non-abelian models, fermions  a

x
carry color degrees of freedom a. For example, in U(2) or SU(2)

models a 2 {", #}, in U(3) or SU(3) models a 2 {b, g, r}

• Gauge field Uab

x,x+µx
live on the links of the lattice hx, x + µxi. They are bosonic fields that describe the

gauge bosons of the model. We use the quantum link formulation to define these fields as bilinear operators:
Uab

x,x+µx
= ca†

x+µx,�µx
cb
x,+µx

, as sketched in figure 1, panel d.

The bilinear representation of the bosonic gauge fields is fermionic or bosonic depending on the commutation
relations of these operators [cb

x
, ca†

y
]± = �a,b�x,y. The statistics of the quantum link fields is completely arbitrary,

and does not change the physics of the gauge invariant model, since the link operators ca
x,µx

always appear in pairs
related to the same link. Usual terminology in quantum link models call these modes ‘rishons’ and their total number
Nx,x+µx = nx+µx,�µx + nx,+µx on every link is a conserved quantity. This is due to the fact that the rishon degrees
of freedom ca

x,µx
appear both in the gauge symmetry operators G⌫

x
and in the Hamiltonian H only via Uab

x,x+µx
, and

by construction [Nx,x+µx , U
ab

y,y+µy
] = 0: from this follows that [Nx,x+µ, G⌫

y
] = [Nx,x+µ, H] = 0. In other words, in the

QLM formulation of lattice gauge theories, an additional, artificial local symmetry arises: the conservation law of the
total rishons number on a given link, which is always U(1) symmetry generated by Nx,x+µx . Depending on the number
of rishons per link N̄ one selects, di↵erent physical phenomena of the gauge invariant theory can be captured. In any
case, we restrict the Hilbert space to the ‘physical’ states |'physi which satisfy Nx,x+µx |'physi = |'physiN̄x,x+µx . For
simplicity, we will refer to this symmetry selection rule as link constraint.

2. Local generators of the gauge symmetry, and gauge constraint (Gauss’ law).

The gauge symmetry is defined via the set of its generators G⌫

x
: they all commute with the Hamiltonian [H,G⌫

x
] = 0,

and have localized support. To properly characterize the generators G⌫

x
, it is convenient to define the elementary

transformation on the gauge fields beforehand:

• The abelian U(1) part of the elementary transformation is generated by the di↵erence of the rishon occupation
numbers on the same link, i.e. Ex,x+µx = 1

2 (nx+µx,�µx � nx,+µx), which plays an equivalent role of the electric
field in quantum electrodynamics. Its action on the gauge field changes the field with a phase,

Ũab

x,x+µx
= ei✓Ex,x+µxUab

x,x+µx
e�i✓Ex,x+µx = ei✓Uab

x,x+µx
, (1)

or infinitesimally
⇥
Ex,x+µx , U

ab

x,x+µx

⇤
= Uab

x,x+µx
.

• The non-abelian version of such electric field has a left component L⌫

x,x+µx
=

P
ab

ca†
x,+µx

�
⌫
ab
2 cb

x,+µx
and a right

component R⌫

x,x+µx
=

P
ab

ca†
x+µx,�µx

�
⌫
ab
2 cb

x+µx,�µx
operators, depending if their action changes the bosonic

Local degrees of freedom

2

Lattice gauge symmetries di↵er from global ones, since they have quasi-local supports and are typically homoge-
neous, yielding a combined Lie algebra of generators which grows extensively with the system size. Nevertheless,
several physical contexts have been found where tensor networks are an exact description of ground states of gauge-
invariant Hamiltonians, e.g., 2D toric code that is an Ising gauge theory [8, 41, 42]. More recently, this framework has
been successfully applied to LGT related problems [20, 43–49]. In fact, Tensor Networks represent microscopically the
local Hilbert spaces and at the same time are tailored on a real-space wave-function representation, so they can be
used to describe real-space locality and local symmetries altogether. Here we show how Tensor Network can exactly
encode lattice gauge symmetries providing an architecture that is completely general and computationally e�cient:
our approach outperforms a straightforward approach that do not explicitly exploits gauge symmetries by a factor of
up to the square of the lattice link dimension. To achieve this goal, the use of alternative formulations of gauge the-
ories is highly desirable, the principal motivation being the identification of models with a finite dimensional Hilbert
space at each link or site which can be simulated by tensor networks algorithms. Thus, we develop this architecture
in the Quantum Link Model (QLM) formulation [50–52] of Hamiltonian lattice gauge theories. Wilson’s formulation
of lattice gauge theory has an infinite dimensional Hilbert space at each link due to the use of continuously varying
fields [3]. Quantum link models provide a complementary formulation of lattice gauge theories introducing generalized
quantum spins associated with the links of a lattice. In fact, under some physically motivated assumptions, Wilson’s
lattice gauge theories can be obtained from QLM [53, 54]. In addition, there are several examples of condensed
matter models, characterized by lattice gauge symmetries, where the gauge degrees of freedom are inherently finite-
dimensional. This is the case, for instance, for spin-ice or quantum dimer models [55] or in discrete gauge models
like the Ising gauge theory [41]. The formulation of lattice gauge tensor network we present here in details, allows to
represent e�ciently and exactly the gauge constraints of this classes of systems, with a performance that improves up
to quadratically with the quantum link dimension, and thus it increases its e�ciency at the Wilson limit.

The manuscript is organized as follows: In Sec. II we review the framework to describe lattice gauge theories
into quantum link formulation. In Sec. III we provide a constructive scheme to embed the QLM picture within the
Tensor Network framework, which relies on matrix product formalism in 1D (and projected entangled pair formalism
in higher dimensions). The algorithm to exploit such representation in numerical context is described in Sec. IV,
mainly focusing on time evolution (both in real and imaginary time). In Sec. V we perform some theoretical scaling
investigation of e↵ective Hilbert spaces growth, under the QLM constraints, made easily available through the tensor
network picture. Finally, in Sec. VI we draw our conclusions.

II. QUANTUM LINK MODELS

From now on, as we focus on numerical simulations, we assume that the space of the gauge degrees of freedom is
finite dimensional. Starting from this assumption, the formulation in quantum link model language of lattice gauge
theories follows without additional loss of generality [50–52]. We define the gauge invariant model of interests by
defining three elements:

• The local degrees of freedom [ a

x
, Uab

x,x+µx
] - We describe as quantum degrees of freedom both the lattice

sites, which we will refer to as ‘matter field’, and the ‘gauge field’ located on the links (the lattice bonds between
neighboring sites, every link being shared by a di↵erent pair of sites).

• The gauge symmetry generators [G⌫

x
] - unlike global symmetries, which operate nontrivially upon the whole

lattice, gauge symmetry generators have a localized support, each one involving a single matter field site, and
all the gauge fields connected to it.

• The gauge invariant dynamics [H] - The dynamics is defined via a Hamiltonian which commutes with the
whole algebra of gauge generators, which guarantees that gauge invariance is conserved throughout the time
evolution (as in Fig. 1, panel a).

We now analyze in detail these elements, while stressing the connection to typical lattice gauge theory models.

1. Local degrees of freedom.

As we mentioned before, there are two types of degrees of freedom in lattice gauge models, which we describe as
finite-dimension quantum variables:

• Matter fields  x are located on the vertices of the lattice x. They are usually fermionic fields that describe the
“quarks” of the model, { x, †

y
} = �x,y. But they can also be bosonic fields describing, for instance, the Higgs

Matter field Gauge field

Gauge symmetry generator
(Gauss’ law)

Gauge  invariant dynamics

5

3. Gauge invariant dynamics

The last element that has to be to defined is a gauge invariant model, its dynamics formulated via the Hamiltonian
H. By construction, a gauge invariant Hamiltonian must commute with the local generators of the gauge symmetry
and those of the link symmetry in the QLM formulation, i.e. [H,G⌫

x
] = [H,Nx,x+µx ] = 0. Clearly, the class of

Hamiltonians satisfying these requirements is still extremely wide. Here we will focus on short-range Hamiltonians
that encompass the physics of typical lattice gauge models.

In a pure gauge model, there are two competing terms in the Hamiltonian: for similarity to QED we refer to them
respectively as electric and magnetic terms, but they include non-abelian gauge behavior as well. The electric term
associates a positive energy density to the electric flux on every link; while the magnetic term associates a positive
energy density to every non-zero magnetic flux on every plaquette,

Hpure =Helectric +Hmagn

=
X

x,µx

(
g2abel (Ex,x+µx)

2 + g2non-ab
X

⌫

h�
L⌫

x,x+µx

�2
+

�
R ⌫

x,x+µx

�2i
)

� 1

g2magn

X

x,µx,µy

⇥
Tr

�
Ux,x+µxUx+µx,x+µx+µyUx+µx+µy,x+µyUx+µy,x

�
+ h.c.

⇤
(7)

with g2abel, g
2
non-ab and g2magn are the coupling constants for the abelian part of the electric field, non-abelian part and

magnetic term, respectively.
The coupling of the gauge fields with the matter fields is done with the lattice version of the “minimal” coupling,

i.e. a hopping term of fermions mediated by the gauge field. Also, the mass term of the fermions is a gauge invariant
term, hence,

Hcoup =
X

x,µx

Jx,µx

�
 †
x
Ux,x+µx x+µx + h.c.

�
+

X

x

mx 
†
x
 x (8)

where we have defined site dependence hopping constants Jx,µx and mass term mx, in case a specific distributions
of signs, depending on the sites, is needed for a particular type of fermion introduced on the lattice. This type of
minimal coupling is also sketched in Fig. 1, panel c.

4. Examples

We have presented all the ingredients that are necessary to define a quantum link version of a lattice gauge theory,
however for the sake of clarity and concreteness, we now present four particular examples: the simplest (1 + 1)
dimensional Quantum Link Model with the abelian U(1) symmetry, the simplest (1 + 1) dimensional Quantum
Link Model with non-abelian U(2) symmetry, and then, an application to two relevant models in condensed matter
physics: quantum dimer and spin ice models on the square lattice.

a. U(1) Quantum Link Model - The gauge invariant quantum Hamiltonian is given by

H = J
X

x

�
 †
x
Ux,x+1 x+1 + h.c.

�
+ g2

X

x

(Ex,x+1)
2 +m

X

x

(�1)x  †
x
 x (9)

where the last term is a staggered chemical potential profile for the matter field, which is a spinless fermion field
{ x, †

y
} = �x,y. Here J is the strength of the matter-gauge field coupling, g2 the electric-field energy density and m

the staggered mass. The gauge fields can be written in terms of rishons Ux,x+1 = cx,+c
†
x+1,�, which are bosonic in

nature [cx,a, c
†
y,b

] = �x,y�a,b.
The two independent local symmetries in this U(1) Quantum Link Model are:

1. Constant number of rishons per link: Nx,x+1|'physi = (nx+1,� + nx,+)|'physi = N̄ |'physi

2. Gauss’ law on every vertex:
�
 †
x
 x + nx,� + nx,+

�
|'physi = |'physi

⇣
2N̄ � 1+(�1)x

2

⌘

In what follows, we would like to understand in more detail two limits depending on the occupation N̄ . Thus, we
characterize the action of the gauge operators and electric field operators on a Hilbert space defined by the occupation
of rishons nx,+ and nx+1,� or equivalent by the total number of rishons on the link Nx,x+1 = N̄ and the electric flux
Ex,x+1 = nx+1,��nx,+

2 , i.e., |n+, n�i = |N̄ , Ei, where we have omitted the labels of the link hx, x+ 1i:
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• N̄ � 1 (Wilson limit) [17]: Wilson formulation of compact U(1) gauge theories starts with an infinite local
dimensional Hilbert space defined with two conjugate variables: the electric field E and an angle #, that fulfill
the usual commutation relation of position and momentum [E,#] = i. Then, defining the link operator U = e�i#,
it is straightforward to check that

⇥
U,U†⇤ = 0, [E,U ] = U or in an eigenstate basis of the electric field operator

U |Ei = |E + 1i.
In U(1) QLM for general occupation N̄ , the link operator and the electric field fullfil U |N̄ , Ei =r

N̄

2

⇣
N̄

2 + 1
⌘
� E (E + 1)|N̄ , E + 1i and

⇥
U,U†⇤ = E. In the limit N̄ � E,
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⇣
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2

⇣
N̄

2 + 1
⌘ [E,U ] =

1r
N̄

2

⇣
N̄

2 + 1
⌘U (10)

which are the usual definition of the Wilson type lattice theories if we identify 1q
N̄
2 ( N̄

2 +1)
U with a unitary

operator or parallel transporter of a U(1) gauge model.

• The other extreme limit is N̄ = 1: In this case there is only one rishon per link and the dimension of the gauge
invariant Hilbert space around every vertex is three, having one empty mode and two occupied on the odd
vertices and two empty modes and one occupied on the even ones.

b. U(2) Quantum Link Model - The generators of the SU(2) gauge transformations fulfill the usual algebra
[Gµ

x
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y
] = i✏µ⌫!G!
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cb
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The gauge invariant subspace corresponds to a singlet of this operator, i.e. G⌫

x
|'physi = 0. A U(2) gauge invariant

Hamiltonian can be written as

H =
1

2

X

x

 
g2a E
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x
+ g2na

X
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⇥
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x
)2 + (L⌫
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(�1)x  a†
x
 a

x

+ t
X

x,a,b

⇥
 a†
x
Uab

x,x+1 
b

x+1 + h.c.
⇤ (12)

The g2a and g2na terms describe respectively the abelian and non-abelian electric field energy contributions, m represents
the staggered mass and t the interaction between matter and gauge fields. In U(2) model with a uniform distribution
of fermions 1-1-1-1, the non-abelian part of the symmetry requires to have an even number of particles per gauge
invariant block [link-site-link] so that it is possible to built a singlet state. The abelian part of the symmetry
requires: nx, + nx,R + nx,L � 1 � N̄ = 0. Because, 1 + N̄ has to be even, then the only meaningful solution
is, nx+1,R + nx,L = N̄ = 1 and nx, + nx,R + nx,L = 2. The local gauge invariant basis is four dimensional:
{| ", #, 0i, | ", 0, #i, |0, ", #i, |0,�, 0i}, where | ", #i ⌘ 1p

2
(| ", #i � | #, "i), and |�i is the doubly-occupied site, with

the two spin- 12 particles forming a spin singlet.

c. Quantum dimer and spin ice models - In these models the matter field is fixed, and constitutes no
quantum degree of freedom. The dynamics involves only gauge degrees on freedom, which are encoded in spins
(hereafter we use spins- 12 for simplicity) living on the links of a square lattice. The gauge symmetry generators are
built upon one component of the Pauli matrices vector, say the third one �z

x,x+µ
. The spin-ice and dimer model share

the same gauge symmetry generator, which reads

Gx = �z

x,x+µx
+ �z

x,x+µy
+ �z

x�µx,x
+ �z

x�µy,x
, (13)

however, in the two cases a di↵erent symmetry sector (irreducible subspace) is selected. The QLM prescription splits
the spin- 12 in a pair of rishons, which are spinless fermions in both cases: we thus rewrite �z

x,x+µ
= 1

2 (nx+µ,�µ�nx,µ),
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The g2a and g2na terms describe respectively the abelian and non-abelian electric field energy contributions, m represents
the staggered mass and t the interaction between matter and gauge fields. In U(2) model with a uniform distribution
of fermions 1-1-1-1, the non-abelian part of the symmetry requires to have an even number of particles per gauge
invariant block [link-site-link] so that it is possible to built a singlet state. The abelian part of the symmetry
requires: nx, + nx,R + nx,L � 1 � N̄ = 0. Because, 1 + N̄ has to be even, then the only meaningful solution
is, nx+1,R + nx,L = N̄ = 1 and nx, + nx,R + nx,L = 2. The local gauge invariant basis is four dimensional:
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c. Quantum dimer and spin ice models - In these models the matter field is fixed, and constitutes no
quantum degree of freedom. The dynamics involves only gauge degrees on freedom, which are encoded in spins
(hereafter we use spins- 12 for simplicity) living on the links of a square lattice. The gauge symmetry generators are
built upon one component of the Pauli matrices vector, say the third one �z
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however, in the two cases a di↵erent symmetry sector (irreducible subspace) is selected. The QLM prescription splits
the spin- 12 in a pair of rishons, which are spinless fermions in both cases: we thus rewrite �z
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Ingredient: The dynamics preserves the Gauss' Law:

Gx|'physi = 0
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Dynamics commutes with symmetry generator



QUANTUM LINK AND RISHON REPRESENTATIONSchwinger representation

Ux,y ⌘ S+
x,y = c†ycx

Ex,y ⌘ S(3)
x,y =
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2

⇥
c†ycy � c†xcx

⇤

x y x y
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†
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Schwinger fermions (rishons)
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Figure 4: (color online) Tensor network graphical diagram of the Q̄r in the canonical link-gauge basis. Left: the diagonal
projector Qr,x,x+1 decomposed according to Eq. (26). Right: simplified MPO representation of the combined link constraint
in the reduced space Q̄r.

where simply we substituted V [x]
j,q

= �n̄L(x,j),q and Z [x+1]
q,j

= �N̄x�q,n̄L(x+1,j). Such simplified decomposition is sketched

in Fig. 4 (left panel). Notice that N̄x is exactly the Schmidt rank of the operator Qr,x,x+1, so this decomposition
is optimal in bondlink m dimension. Combining all the Qr,x,x+1 together is straightforward now, since they are
nearest-neighbor projectors diagonal in the reduced basis: doing so leads again to a MPO form of Q̄r like Eq. (20),
but with simpler tensor blocks:

F [x]qx�1,qx

jx,j
0
x

= �jx,j0x · Z [x]qx�1,jx · V [x]qx,jx , (27)

as sketched in Fig. 4 (right panel). We know that this MPO representation is optimal in bondlink dimensions
because it uses the minimal bondlink to represent faithfully the Schmidt ranks of the matrices Qr,x,x+1. Such
representation is extremely versatile: we will exploit it, for instance, to understand how QLM spaces dimensions (and
thus computational costs) grow as a function of the total system size, in section V.

IV. FAST LINK-CONSTRAINED TIME-EVOLUTION SCHEME

As mentioned before, since the Hamiltonian commutes with every gauge or link symmetry in the original model,
time-evolution of the QLM dynamics should theoretically preserve all the constraints. Unfortunately, in numerical
frameworks, systematic errors are generated, and they may have dramatic, disruptive impact in conservation of
symmetries (if not addressed properly), especially in contexts where signals have exponential scalings, such as in
imaginary time-evolution. To prevent errors from growing uncontrollably, it is mandatory to tailor a strategy which
keeps symmetry constraints intact. Moreover, the quasi-local constraints will allow us to speed up significantly the
time-evolution algorithms by performing all the linear algebraic operations in a computationally e�cient block-wise
fashion.

A. Enforcing link constraints over time

In this section we assume that we want to apply a (real or imaginary) time-evolution scheme of a nearest-neighbor,
time-independent QLM Hamiltonian H̄ onto a many-body (unnormalized) mixed state ⇢:

⇢(t0 + t) = eiH̄t⇢(t)e�iH̄t for real-time, or ⇢(�0 + �) = e�H̄�/2⇢(�0)e
�H̄�/2 for imaginary-time. (28)

We also assume to have ⇢ expressed variationally in a Matrix Product Density Operator (MPDO) formulation, i.e.
if X is written as an MPO, then ⇢ = XX†. If ⇢ is pure, then X is a simple matrix product state. Here we focus
on nearest-neighbor Hamiltonians and thus it is convenient to evolve the state by Time-Evolved Block Decimation
(TEBD), a well-known procedure in DMRG contexts based on Suzuki-Trotter (ST) decomposition of H̄ into odd-even
sites blocks and even-odd sites blocks [27]. More precisely,

exp
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(29)
where p is known as ST-order and the coe�cients ct and dt are calculated via Baker-Campbell-Hausdor↵ formula.
To enforce the link constraint, one might evolve the state via Q̄ exp(�

P
x
H̄x,x+1)Q̄ (applying the link projector

Local projection on a gauge  

invariant base  

+ 

Projection on rishon number 

=  

Matrix product operator



μ ≫ ϵ, due to the gauge invariance, the Hamiltonian has
two possible ground states where the configuration of the
fermions is staggered (leftmost occupied site) and the
configuration of the bosons is also staggered with two
possible patterns. This phase is twofold degenerate, the
vacuum states break charge and parity symmetry and they
have nonzero electric flux. For μ ≪ ϵ, the vacuum is unique
and the staggered fermion has the rightmost site occupied.
This phase is C and P symmetric and it has a net zero
electric flux.
The “physical” subspace.—The number of bosons per

link Nx;xþ1 ¼ N is a local conserved quantity of the model
written in terms of Schwinger bosons. Because of gauge
invariance of the model, i.e., ½H;Gx$ ¼ 0, the gauge
generator of the local Uð1Þ symmetry Gx is a second local
conserved quantity. The usual convention is to define the
“physical” subspace as the one that fulfills
Gxjphysicali ¼ 0, ∀ x [32]. In a quantum link model,
we can solve the gauge invariance or Gauss’s law locally,
that is, in terms of the Schwinger bosons, the constraint is
given by

c†x;rcx;r þ ψ†
xψx þ c†x;lcx;ljphys ¼ N − ð−1Þx − 1

2
: (2)

Because of this feature, we can show that the gauge
invariant condition and the conserved number of bosons
per link can be written exactly in a MPS form. Indeed, the
Gauss projection can be done locally defining the local
Hilbert space fjsxig, while the link representation is
implemented by the product between the MPS matrices.
Recently, the action of global symmetries on MPS-like
wave function has been considered [40–42], what follows
can be seen as the counterpart of this for local (gauge)
symmetries.
For concreteness, we build the MPS for a case with S ¼ 1

2
on the link, but a similar discussion can be carried out for
any representation S, gauge symmetry group, Abelian or
non-Abelian, and space-time dimensions for the Quantum
link models (see Supplemental Material [28]).

For N ¼ 1 bosons per link, there are just three local
gauge invariant states jnx;r; nx; nx;li where the configura-
tions depend on the site: if it is odd (n2x−1;r þ n2x−1þ
n2x−1;l ¼ 2) or even (n2x;r þ n2x þ n2x;l ¼ 1). Being a spin-
1
2 the representation of the quantum link variable implies
that on every link, there is only one boson present, i.e.,
nx;l þ nxþ1;r ¼ 1. These two conditions are fulfilled if the
wave function has a general MPS form

jphysi ¼
X

s1;''';sx;'''
aðs1; ' ' ' ; sx; ' ' 'Þ

× TrfA½s1$ ' ' 'A½sx$ ' ' 'gjs1; ' ' ' ; sx; ' ' 'i (3)

with

A½1$ ¼
!
0 0
1 0

"
; A½2$ ¼

!
1 0
0 0

"
; A½3$ ¼

!
0 1
0 0

"
;

this MPS structure codifies both the gauge invariance and
the representation of the link variable; aðs1; ' ' ' ; sx; ' ' 'Þ is a
general amplitude, in principle nonlocal, that could also be
represented by a MPS.
MPS as a variational set.—To get the thermodynamical

properties of this model, we use an imaginary time
evolution algorithm with a MPS decomposition of the
ground state [43,44]. We show results for chains with up to
L ¼ 140 sites and bond dimension D up to 30.
We use open boundary conditions (see Fig. 1) fixing the

occupation of the first boson to one, hc†1;rc1;ri ¼ 1, and the
occupation of the last boson to zero, hc†L;lcL;li ¼ 0. With
these boundary conditions, we observe the transition
between both phases and we avoid the double degeneracy
of the CP broken phase.
The parameter that controls the transitions between the

different phases is the staggered mass μ of the fermions.
From the behavior of the order parameter E, we extract an
estimate of the critical point and of the critical exponents.
Because of the Z2 parity and charge conjugation sym-
metries, the critical point belongs to the Ising universality
class, as confirmed by the following numerical analysis.
Indeed, the finite size scaling hypothesis predicts the order

(a) (b) (c)

FIG. 2 (color online). (a) Electric flux E as a function of μ for L ¼ f40; 60; 80; 100; 120; 140g from top to bottom, S ¼ 1
2 and D ¼ 30.

(b) Finite size scaling of the electric flux E shown in panel (a), resulting in the critical point μc ¼ 0.655( 0.003 and critical exponents
ν ∼ 1 and β ∼ 1=8. (c) Uniform part of the entanglement entropy (green circles, first order approximation, i.e., ux;L ¼ 1

2 ðux;L þ uxþ1;LÞ,
and blue squares, third order approximation [48]). Inset: fit of ux;L as a function of the system size logL: a linear fit results in the central
charge c ¼ 0.49( 0.01.
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allows us to solve exactly, within the tensor network
representation, the constraints imposed by the local sym-
metries of this model.
Quantum link models have two independent local

symmetries:
(i) Gauge models are invariant under local symmetry

transformations. The local generators of these symmetries,
Gx, commute with the Hamiltonian, ½H;Gx" ¼ 0. Hence,
Gx are constant of motion or local conserved quantities,
which constrain the physical Hilbert space of the theory,
Gxjphysi ¼ 0, ∀ x, and the total Hilbert space splits in a
physical or gauge invariant subspace and a gauge variant or
unphysical subspace:Htotal ¼ Hphys⊕Hunphys. In QED, this
gauge condition is the usual Gauss’s law.
(ii) The quantum link formulation of the gauge degrees

of freedom introduces an additional constraint at every link,
that is, the conservation of the number of link particles,
c†x;lcx;l þ c†xþ1;rcxþ1;r ¼ Nx;xþ1. Hence, ½H;Nx;xþ1" ¼ 0
which introduce a second and independent local constraint
in the Hilbert space.
In the following, first, we present the theoretical char-

acterization of the local constraint (i) and (ii) in terms of
tensor networks. Second, we exploit this exact representa-
tion to implement a MPS-based approach which allows us
to characterize the full phase diagram of nontrivial gauge
invariant models. In particular, we study a quantum link
version of the Schwinger model identifying the different
phases and the universality class of the phase transition in
the presence of a background field.
The gauge invariant model.—Gauge theories in (1þ 1)

dimensions, and in particular the Schwinger model describ-
ing quantum electrodynamics in one space and one time
dimension [29–31], are nontrivial interacting models of
fermions and gauge fields. They provide a playground to
compute and understand many interesting phenomena with
surprising analogies with non-Abelian gauge theories in
higher dimensions as, to name a few, the confinement of
fermionic degrees of freedom and the appearance of a
massive boson in the spectrum, chiral symmetry breaking
through the axial anomaly, screening of external charges,
and a topological θ vacuum. In particular, we consider a
Uð1Þ gauge invariant model in (1þ 1) dimensions defined
by the Hamiltonian

H ¼ g2

2

X

x

½Ex;xþ1 − ð−1ÞxE0"2 þ μ
X

x

ð−1Þxψ†
xψx

− ϵ
X

x

ψ†
xUx;xþ1ψxþ1 þ H:c:; (1)

where ψx are spinless fermionic operators (matter fields
with a staggered mass term μ) living on the vertices of the
one-dimensional lattice, i.e., fψx;ψ

†
yg ¼ δx;y, usually

denoted as staggered fermions [32,33]. The vacuum of
the staggered fermions is given by a quantum state at half-
filling describing the Fermi-Dirac sea. The bosonic

operators Ex;xþ1 and Ux;xþ1 (electric and gauge field) live
on the links of the one-dimensional lattice, such that
½Ex;xþ1; Uy;yþ1" ¼ δx;yUx;xþ1. The coupling constant that
measures the strength of the electric energy term is from
now on set to one, i.e., g2=2 ¼ 1 while ϵ describes the
interaction between the matter and gauge fields. Finally, E0

corresponds to a classical background field which at
E0 ¼ 1

2, the ground state at every link is twofold degenerate.
In the Wilson formulation, the lattice Schwinger model has
been numerically investigated using Monte Carlo tech-
niques [34,35], strong coupling expansion [36–38], and
MPS-based methods [13,16].
The quantum link [19–21,39] representation of the gauge

degrees of freedom is given by the SUð2Þ spin operators if
we identify Ex;xþ1 ≡ SðzÞx;xþ1 and Ux;xþ1 ≡ Sþx;xþ1. We use
Schwinger bosons (cx;l, cxþ1;r) to represent the spin algebra
such that Ux;xþ1 ≡ Sþx;xþ1 ¼ cx;lc

†
xþ1;r where we have

introduced a local set of states given by the occupation
numbers of bosons on the right (x, r), on the fermion (x)
and on the bosons on the left (x, l) as follows jnx;r; nx; nx;li.
The number of bosons per link Nx;xþ1 determines the
representation of the spin. In this work, we use the two
smallest integer and half-integer representations, i.e., S ¼ 1

2
for Nx;xþ1 ¼ 1 and S ¼ 1 for Nx;xþ1 ¼ 2.
With these definitions, the Hamiltonian is invariant

under local Uð1Þ symmetry transformations, and also it
is invariant under the discrete parity transformation P and
charge conjugation C (see Supplemental Material [28]).
Because of the Z2 discrete nature of these symmetries, they
can be broken in one-dimensional systems, allowing
critical points between a CP broken phase and an unbroken
one. The order parameter, the total electric flux, E ¼P

xhEx;xþ1i=L ¼
P

xhS
ðzÞ
x;xþ1i=L locates the transition. It

is zero in the disordered phase, nonzero in the ordered
phase, and changes the sign under the C or P symmetry,
i.e., PE ¼ CE ¼ −E.
Representative states of the different phases appear at the

strong coupling limit jμj ≫ jϵj where the Hamiltonian is
given by Hstr ¼ μ

P
xð−1Þxψ

†
xψx (sketched in Fig. 1). For
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FIG. 1 (color online). Ground state of the spin-12 quantum link
model in the limiting cases of jμj ≫ jϵj: in the upper (lower) panel
the fermion and the gauge field states are represented for μ ≪ ϵ
(μ ≫ ϵ) resulting inzero electric flux,E ¼ 0, andaC andP invariant
state (nonzero electric flux, E ≠ 0, C and P symmetry broken).
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allows us to solve exactly, within the tensor network
representation, the constraints imposed by the local sym-
metries of this model.
Quantum link models have two independent local

symmetries:
(i) Gauge models are invariant under local symmetry

transformations. The local generators of these symmetries,
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that is, the conservation of the number of link particles,
c†x;lcx;l þ c†xþ1;rcxþ1;r ¼ Nx;xþ1. Hence, ½H;Nx;xþ1" ¼ 0
which introduce a second and independent local constraint
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tion to implement a MPS-based approach which allows us
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With these definitions, the Hamiltonian is invariant
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is invariant under the discrete parity transformation P and
charge conjugation C (see Supplemental Material [28]).
Because of the Z2 discrete nature of these symmetries, they
can be broken in one-dimensional systems, allowing
critical points between a CP broken phase and an unbroken
one. The order parameter, the total electric flux, E ¼P
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how entanglement entropies are directly tied to string-
breaking. Finally, we present our result on scattering in
Sec. V, and draw a summary of our results in Sec. VI.

II. MODEL AND METHODS

A. Model Hamiltonian: QED in (1+1)d

QED in (1+1)d, also known as the Schwinger model,
represents an ideal test-ground for the benchmark and
development of new computational methods. Despite
its relative simplicity, it captures fundamental aspects of
gauge theories such as, e.g., the presence of a chiral sym-
metry undergoing spontaneous symmetry breaking [49–
59]. Even more importantly, this theory, like QCD,
displays confinement: di↵erently from (3+1)d QED, in
(1+1)d electrons and positrons are confined, and interact
via a long-range potential which increases linearly with
distance. Due to the large energy cost associated with
the electric flux between charges at large inter-charge
distances, the electric flux string is unstable to particle-
antiparticle creation as in QCD and string breaking
takes place. While this phenomenon, directly connected
to the Schwinger mechanism of mass production out of
a vacuum, has been long debated, and notable insights
have been provided using a variety of approximate meth-
ods, a full quantum mechanical understanding of the
complex real-time dynamics taking place during string
breaking is lacking due to the computationally complex-
ity of the many-body problem [60–63].

In the Hamiltonian formulation, its dynamics is defined
by the following form:

H = �t

X

x

h
 
†
xU

†
x,x+1 x+1 +  

†
x+1Ux,x+1 x

i

+m

X

x

(�1)x †
x x +

g
2

2

X

x

E
2
x,x+1. (2)

where  †
x, x are fermionic creation/annihilation opera-

tors describing Kogut-Susskind (staggered) fermions (see
Fig. 1), Ux,x+1 are the gauge fields residing on the
(x, x + 1) link, and we denote the strength of fermion-
hopping (the kinetic energy of electrons or positrons)
with t, the staggered mass of the fermions with m, and
the electric coupling strength with g, where Ex,x+1 is the
electric-field operator. The gauge generator is given by

G̃x =  
†
x x + Ex,x+1 � Ex�1,x +

(�1)x � 1

2
, (3)

satisfying the Gauss law if all physical states | i sat-
isfy G̃x| i = 0. While in the Wilson formulation Ux,x+1

are parallel transporters acting on an infinite dimensional
Hilbert space, we focus here on a formulation based on
QLM, where the gauge fields are represented by spin-
1 operators, Ux,x+1 = S

+
x,x+1, Ex,x+1 = S

z
x,x+1 and, as

such, act on a finite-dimensional link Hilbert space. In

particular, the electric field operator allows three possible
states for the electric flux, which constraint the physical
states per site as described in Fig. 1. A detailed dis-
cussion of the quantum link formulation can be found in
Ref. [29–31], while in Ref. [23] it was shown how such
quantum link formulation reproduces the phase diagram
and quantum criticality of the continuum theory.

B. String breaking and classical cartoon states

String breaking is the process of cutting and shorten-
ing the electric flux string that connects a pair particle-
antiparticle by creating a new charge-anticharge pair [36].
In our framework a string consists of two charges creat-
ing non-zero electric flux between them. The charges
are represented by appropriate boundary conditions or
as dynamical charges as excitations of the mass field at
the site of the fermion. This is realized by an e↵ective
jump of a fermion from the site of one charge to the
site of the second charge satisfying the Gauss law. The
string of electric flux then follows from Gauss’ law. The
charges force the links in a non-zero flux state, according
to the configuration of the charges either in one direction
or the other. Before embarking in a full quantum me-
chanical investigation of string breaking, we now discuss
its classical (t = 0) static picture, which provides a sim-
ple, yet informative illustration of the di↵erent stages of
the string breaking mechanism. A set of cartoons of the
classical states is provided in Fig. 1:
Vacuum. In the vacuum (A), neither mass nor electric

field excitations are present. Its energy is thus E0 =
�

L
2m.
String. In the string state (B), two mass excitations

are present at the boundaries, and all electric fields con-
necting the two are also in the |+1i state. The resulting
string energy then takes the form

Estring � E0 =
g
2

2
(L� 1) + 2m. (4)

Pairs. In the pairs state (C) all the masses are excited
forming charge-anticharge pairs with an energy Epairs =
g2L
4 +mL.
Mesons. In a confined phase, particle-antiparticle

pair production can favor the establishment of a vacuum
state between two static charges, which then form mesons
at the boundary of the string (see (D)). The resulting
energy is:

Emesons � E0 = g
2 + 4m. (5)

At the static level, string breaking takes place at a critical
distance Lc, above which the mesons state is energetically
favored over the string state (Estring(Lc) = Emesons):

Lc =
4m

g2
+ 3 (6)

μ ≫ ϵ, due to the gauge invariance, the Hamiltonian has
two possible ground states where the configuration of the
fermions is staggered (leftmost occupied site) and the
configuration of the bosons is also staggered with two
possible patterns. This phase is twofold degenerate, the
vacuum states break charge and parity symmetry and they
have nonzero electric flux. For μ ≪ ϵ, the vacuum is unique
and the staggered fermion has the rightmost site occupied.
This phase is C and P symmetric and it has a net zero
electric flux.
The “physical” subspace.—The number of bosons per

link Nx;xþ1 ¼ N is a local conserved quantity of the model
written in terms of Schwinger bosons. Because of gauge
invariance of the model, i.e., ½H;Gx$ ¼ 0, the gauge
generator of the local Uð1Þ symmetry Gx is a second local
conserved quantity. The usual convention is to define the
“physical” subspace as the one that fulfills
Gxjphysicali ¼ 0, ∀ x [32]. In a quantum link model,
we can solve the gauge invariance or Gauss’s law locally,
that is, in terms of the Schwinger bosons, the constraint is
given by

c†x;rcx;r þ ψ†
xψx þ c†x;lcx;ljphys ¼ N − ð−1Þx − 1

2
: (2)

Because of this feature, we can show that the gauge
invariant condition and the conserved number of bosons
per link can be written exactly in a MPS form. Indeed, the
Gauss projection can be done locally defining the local
Hilbert space fjsxig, while the link representation is
implemented by the product between the MPS matrices.
Recently, the action of global symmetries on MPS-like
wave function has been considered [40–42], what follows
can be seen as the counterpart of this for local (gauge)
symmetries.
For concreteness, we build the MPS for a case with S ¼ 1

2
on the link, but a similar discussion can be carried out for
any representation S, gauge symmetry group, Abelian or
non-Abelian, and space-time dimensions for the Quantum
link models (see Supplemental Material [28]).

For N ¼ 1 bosons per link, there are just three local
gauge invariant states jnx;r; nx; nx;li where the configura-
tions depend on the site: if it is odd (n2x−1;r þ n2x−1þ
n2x−1;l ¼ 2) or even (n2x;r þ n2x þ n2x;l ¼ 1). Being a spin-
1
2 the representation of the quantum link variable implies
that on every link, there is only one boson present, i.e.,
nx;l þ nxþ1;r ¼ 1. These two conditions are fulfilled if the
wave function has a general MPS form

jphysi ¼
X

s1;''';sx;'''
aðs1; ' ' ' ; sx; ' ' 'Þ

× TrfA½s1$ ' ' 'A½sx$ ' ' 'gjs1; ' ' ' ; sx; ' ' 'i (3)

with

A½1$ ¼
!
0 0
1 0

"
; A½2$ ¼

!
1 0
0 0

"
; A½3$ ¼

!
0 1
0 0

"
;

this MPS structure codifies both the gauge invariance and
the representation of the link variable; aðs1; ' ' ' ; sx; ' ' 'Þ is a
general amplitude, in principle nonlocal, that could also be
represented by a MPS.
MPS as a variational set.—To get the thermodynamical

properties of this model, we use an imaginary time
evolution algorithm with a MPS decomposition of the
ground state [43,44]. We show results for chains with up to
L ¼ 140 sites and bond dimension D up to 30.
We use open boundary conditions (see Fig. 1) fixing the

occupation of the first boson to one, hc†1;rc1;ri ¼ 1, and the
occupation of the last boson to zero, hc†L;lcL;li ¼ 0. With
these boundary conditions, we observe the transition
between both phases and we avoid the double degeneracy
of the CP broken phase.
The parameter that controls the transitions between the

different phases is the staggered mass μ of the fermions.
From the behavior of the order parameter E, we extract an
estimate of the critical point and of the critical exponents.
Because of the Z2 parity and charge conjugation sym-
metries, the critical point belongs to the Ising universality
class, as confirmed by the following numerical analysis.
Indeed, the finite size scaling hypothesis predicts the order

(a) (b) (c)

FIG. 2 (color online). (a) Electric flux E as a function of μ for L ¼ f40; 60; 80; 100; 120; 140g from top to bottom, S ¼ 1
2 and D ¼ 30.

(b) Finite size scaling of the electric flux E shown in panel (a), resulting in the critical point μc ¼ 0.655( 0.003 and critical exponents
ν ∼ 1 and β ∼ 1=8. (c) Uniform part of the entanglement entropy (green circles, first order approximation, i.e., ux;L ¼ 1

2 ðux;L þ uxþ1;LÞ,
and blue squares, third order approximation [48]). Inset: fit of ux;L as a function of the system size logL: a linear fit results in the central
charge c ¼ 0.49( 0.01.
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possible patterns. This phase is twofold degenerate, the
vacuum states break charge and parity symmetry and they
have nonzero electric flux. For μ ≪ ϵ, the vacuum is unique
and the staggered fermion has the rightmost site occupied.
This phase is C and P symmetric and it has a net zero
electric flux.
The “physical” subspace.—The number of bosons per
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written in terms of Schwinger bosons. Because of gauge
invariance of the model, i.e., ½H;Gx$ ¼ 0, the gauge
generator of the local Uð1Þ symmetry Gx is a second local
conserved quantity. The usual convention is to define the
“physical” subspace as the one that fulfills
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we can solve the gauge invariance or Gauss’s law locally,
that is, in terms of the Schwinger bosons, the constraint is
given by
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Because of this feature, we can show that the gauge
invariant condition and the conserved number of bosons
per link can be written exactly in a MPS form. Indeed, the
Gauss projection can be done locally defining the local
Hilbert space fjsxig, while the link representation is
implemented by the product between the MPS matrices.
Recently, the action of global symmetries on MPS-like
wave function has been considered [40–42], what follows
can be seen as the counterpart of this for local (gauge)
symmetries.
For concreteness, we build the MPS for a case with S ¼ 1

2
on the link, but a similar discussion can be carried out for
any representation S, gauge symmetry group, Abelian or
non-Abelian, and space-time dimensions for the Quantum
link models (see Supplemental Material [28]).

For N ¼ 1 bosons per link, there are just three local
gauge invariant states jnx;r; nx; nx;li where the configura-
tions depend on the site: if it is odd (n2x−1;r þ n2x−1þ
n2x−1;l ¼ 2) or even (n2x;r þ n2x þ n2x;l ¼ 1). Being a spin-
1
2 the representation of the quantum link variable implies
that on every link, there is only one boson present, i.e.,
nx;l þ nxþ1;r ¼ 1. These two conditions are fulfilled if the
wave function has a general MPS form
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this MPS structure codifies both the gauge invariance and
the representation of the link variable; aðs1; ' ' ' ; sx; ' ' 'Þ is a
general amplitude, in principle nonlocal, that could also be
represented by a MPS.
MPS as a variational set.—To get the thermodynamical

properties of this model, we use an imaginary time
evolution algorithm with a MPS decomposition of the
ground state [43,44]. We show results for chains with up to
L ¼ 140 sites and bond dimension D up to 30.
We use open boundary conditions (see Fig. 1) fixing the

occupation of the first boson to one, hc†1;rc1;ri ¼ 1, and the
occupation of the last boson to zero, hc†L;lcL;li ¼ 0. With
these boundary conditions, we observe the transition
between both phases and we avoid the double degeneracy
of the CP broken phase.
The parameter that controls the transitions between the

different phases is the staggered mass μ of the fermions.
From the behavior of the order parameter E, we extract an
estimate of the critical point and of the critical exponents.
Because of the Z2 parity and charge conjugation sym-
metries, the critical point belongs to the Ising universality
class, as confirmed by the following numerical analysis.
Indeed, the finite size scaling hypothesis predicts the order
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FIG. 2 (color online). (a) Electric flux E as a function of μ for L ¼ f40; 60; 80; 100; 120; 140g from top to bottom, S ¼ 1
2 and D ¼ 30.

(b) Finite size scaling of the electric flux E shown in panel (a), resulting in the critical point μc ¼ 0.655( 0.003 and critical exponents
ν ∼ 1 and β ∼ 1=8. (c) Uniform part of the entanglement entropy (green circles, first order approximation, i.e., ux;L ¼ 1
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and blue squares, third order approximation [48]). Inset: fit of ux;L as a function of the system size logL: a linear fit results in the central
charge c ¼ 0.49( 0.01.
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➤ Quantum link and rishon representation 

➤ Staggered fermions 

➤ Ising universality class 

➤ Central charge 

➤ Confirmed by higher-link representation
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FIG. 1: Left panel: Hilbert space and Gauge invariant states of the QLM. (i) In the quantum link formulation, the gauge
fields defined on the links are described by spins (in our case, S=1). (ii) Staggered fermions represent matter and antimatter
fields on a lattice bipartition: on the even (odd) bipartition, a full (empty) site represents a particle (antiparticle). (iii) Hilbert
space and Gauge invariant states of the QLM. The Gauss law, Eq. (3), constraints the number of possible states at each lattice
site. Notice that the Gauss law depends on the lattice site due to the staggered fermions. Middle panel: cartoon states for
the di↵erent stages of the string breaking dynamics (see text). Right panel: sample simulation for the electric field dynamics
quenching an initial string state (B region) connecting two charges, and surrounded by the vacuum (A regions) for m = 0 = g.
Primary string breaking takes place in four stages (C-F), until an anti-string is created in place of the original string. The latter
decays as well during the secondary string breaking. The shaded areas represent the wave-fronts estimated from entanglement
entropies (see Sec. IV), which are directly tied up with the electric field evolution.

system: The tensor structure is chosen to best accommo-
date some general system properties, e.g., dimensional-
ity, boundary conditions or symmetry, while a controlled
approximation is introduced in such a way that one can
interpolate between a mean field and an exact representa-
tion of the system. Being a wave function based method,
one has direct access to all of the relevant information
on the system itself, including quantum correlations, i.e.,
entanglement. In one-dimensional systems, an e�cient
tensor structure is given by the Matrix Product State
(MPS) ansatz [9, 11], defined as,

| MPSi =
X

~↵

A
�1
↵1
A

�1,�2
↵2

. . . A
�N�1
↵N

|~↵i, (1)

where tensor A contains the variational parameters to
be accomodate to describe the system wavefunction,
↵i = 1, . . . , d characterizes the local Hilbert space and
�i = 1, . . . ,m accounts for quantum correlations or en-
tanglement (Schmidt rank) between di↵erent bipartitions
of the lattice. Indeed, setting m = 1 results in a mean
field description, while any m > 1 allows to describe cor-
related many-body states. Given the tensor structure,
the tensor dimensions and coe�cients are then optimized
to e�ciently and accurately describe the system proper-
ties by means of algorithms polynomial in the system
size and m. Usually, these algorithms exploit the sys-
tem Hamiltonian tensor structure, naturally arising from
the few-body and local nature of the interactions, to ef-
ficiently describe the system ground or low-lying eigen-
states, or to follow the system real or imaginary time
evolution. Indeed, in the TN approach, real and imag-
inary time evolution have no fundamental di↵erences at
the computational level, as there is no sign problem, and
limitations arise only from the amount of quantum cor-

relations present in the system wave function.

Here, we show how TN algorithms allow to study the
real time dynamics of LGT, focusing on the string break-
ing in a paradigmatic confining theory, the Schwinger
model [49–51] in a quantum link formulation. We char-
acterize the real-time dynamics of the primary and sec-
ondary string breaking and we show that string breaking
is intimately related to entanglement production in the
system. A qualitative picture for the string breaking in
our models, together with a typical result for our time-
dependent simulations on a system of L = 100 lattice
sites, is illustrated in Fig. 1.Even more importantly, our
simulations allow us to track the entanglement evolutions
along string breaking: as we will show below, the string
breaking and the so-called Schwinger mechanism are in-
timately connected to entanglement propagation, which
we address evaluating the so called von Neumann entan-
glement entropies. Finally, we show that TN methods
can be used to study scattering processes between bound
states of LGTs: we develop a scheme to engineer me-
son collisions, and we show how, very surprisingly, the
scattering does not only reflects into an enhanced rate
of particle-antiparticle creation, but it a↵ects drastically
the entanglement properties of the system, which stays
significantly correlated well beyond the scattering time-
window.

The paper is structured as follows: in Sec. II we present
the system Hamiltonian and recall the TN algorithm we
are using throughout this work. In Sec. III we present the
results on string breaking and mass production dynamics,
including a discussion on how this phenomenon can be
observed in quantum simulation platform. In Sec. IV we
show how entanglement follows the string breaking dy-
namics, providing a quantitative picture which underlines
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how entanglement entropies are directly tied to string-
breaking. Finally, we present our result on scattering in
Sec. V, and draw a summary of our results in Sec. VI.

II. MODEL AND METHODS

A. Model Hamiltonian: QED in (1+1)d

QED in (1+1)d, also known as the Schwinger model,
represents an ideal test-ground for the benchmark and
development of new computational methods. Despite
its relative simplicity, it captures fundamental aspects of
gauge theories such as, e.g., the presence of a chiral sym-
metry undergoing spontaneous symmetry breaking [49–
59]. Even more importantly, this theory, like QCD,
displays confinement: di↵erently from (3+1)d QED, in
(1+1)d electrons and positrons are confined, and interact
via a long-range potential which increases linearly with
distance. Due to the large energy cost associated with
the electric flux between charges at large inter-charge
distances, the electric flux string is unstable to particle-
antiparticle creation as in QCD and string breaking
takes place. While this phenomenon, directly connected
to the Schwinger mechanism of mass production out of
a vacuum, has been long debated, and notable insights
have been provided using a variety of approximate meth-
ods, a full quantum mechanical understanding of the
complex real-time dynamics taking place during string
breaking is lacking due to the computationally complex-
ity of the many-body problem [60–63].

In the Hamiltonian formulation, its dynamics is defined
by the following form:

H = �t

X

x

h
 
†
xU

†
x,x+1 x+1 +  

†
x+1Ux,x+1 x

i

+m

X

x

(�1)x †
x x +

g
2

2

X

x

E
2
x,x+1. (2)

where  †
x, x are fermionic creation/annihilation opera-

tors describing Kogut-Susskind (staggered) fermions (see
Fig. 1), Ux,x+1 are the gauge fields residing on the
(x, x + 1) link, and we denote the strength of fermion-
hopping (the kinetic energy of electrons or positrons)
with t, the staggered mass of the fermions with m, and
the electric coupling strength with g, where Ex,x+1 is the
electric-field operator. The gauge generator is given by

G̃x =  
†
x x + Ex,x+1 � Ex�1,x +

(�1)x � 1

2
, (3)

satisfying the Gauss law if all physical states | i sat-
isfy G̃x| i = 0. While in the Wilson formulation Ux,x+1

are parallel transporters acting on an infinite dimensional
Hilbert space, we focus here on a formulation based on
QLM, where the gauge fields are represented by spin-
1 operators, Ux,x+1 = S

+
x,x+1, Ex,x+1 = S

z
x,x+1 and, as

such, act on a finite-dimensional link Hilbert space. In

particular, the electric field operator allows three possible
states for the electric flux, which constraint the physical
states per site as described in Fig. 1. A detailed dis-
cussion of the quantum link formulation can be found in
Ref. [29–31], while in Ref. [23] it was shown how such
quantum link formulation reproduces the phase diagram
and quantum criticality of the continuum theory.

B. String breaking and classical cartoon states

String breaking is the process of cutting and shorten-
ing the electric flux string that connects a pair particle-
antiparticle by creating a new charge-anticharge pair [36].
In our framework a string consists of two charges creat-
ing non-zero electric flux between them. The charges
are represented by appropriate boundary conditions or
as dynamical charges as excitations of the mass field at
the site of the fermion. This is realized by an e↵ective
jump of a fermion from the site of one charge to the
site of the second charge satisfying the Gauss law. The
string of electric flux then follows from Gauss’ law. The
charges force the links in a non-zero flux state, according
to the configuration of the charges either in one direction
or the other. Before embarking in a full quantum me-
chanical investigation of string breaking, we now discuss
its classical (t = 0) static picture, which provides a sim-
ple, yet informative illustration of the di↵erent stages of
the string breaking mechanism. A set of cartoons of the
classical states is provided in Fig. 1:
Vacuum. In the vacuum (A), neither mass nor electric

field excitations are present. Its energy is thus E0 =
�

L
2m.
String. In the string state (B), two mass excitations

are present at the boundaries, and all electric fields con-
necting the two are also in the |+1i state. The resulting
string energy then takes the form

Estring � E0 =
g
2

2
(L� 1) + 2m. (4)

Pairs. In the pairs state (C) all the masses are excited
forming charge-anticharge pairs with an energy Epairs =
g2L
4 +mL.
Mesons. In a confined phase, particle-antiparticle

pair production can favor the establishment of a vacuum
state between two static charges, which then form mesons
at the boundary of the string (see (D)). The resulting
energy is:

Emesons � E0 = g
2 + 4m. (5)

At the static level, string breaking takes place at a critical
distance Lc, above which the mesons state is energetically
favored over the string state (Estring(Lc) = Emesons):

Lc =
4m

g2
+ 3 (6)
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(dashed lines), we see that the entanglement entropy for
the vacuum stays close to zero as the large mass and
electric coupling strongly suppress the particle-pair cre-
ation which triggered the strong growth of the entropy
in the previous case. Also in the middle of the string
the entanglement entropy is drastically a↵ected: the blue
dashed line initially behaves as the full one in the mass-
less case, reflecting the same mass excitation by pair cre-
ation. However, the violet dashed line always remains
close to zero as further evolution into the string broken
state is energetically forbidden: the state evolves back
into the string and the correlations between the even-odd
sites cannot be created. The system is then oscillating
between two almost degenerate states, the initial string
state and the state made out of pairs, resulting in the os-
cillating behavior of the entanglement entropy between
zero and one. Finally, the third case with m = 0.25 and
g = 1.25 (dot-dashed lines) lies between the two previous
limiting cases: here the string breaks, but does not evolve
into an anti-string. In the vacuum, the entanglement evo-
lution is very similar to the first case as the entropy grows
almost linearly after a transient, however the slope is re-
duced by the nonzero mass. The correlation in center of
the string initially evolves as for the massless case, but
after the first two hopping processes the oscillation turns
into a vacuum-like growth. This is a strong indication
for non periodic string breaking, represented by the two
hopping processes followed by the evolution of a lattice
without an electric field: the dynamics although being
unitary, resemble a dissipative process where the electric
field energy irreversibly disperses into the vacuum. This
behavior directly resembles what we observe in the elec-
tric field dynamics, where no string-breaking is observed
in this parameter regime, and the electric field does not
display any clear periodic signature.When we have an
evolution without an electric field, then we defi-
nitely have string breaking or do I misunderstand
the last sentence?

B. Entanglement propagation and wavefront

Even more remarkably, the real-space particle cre-
ations and the entanglement dynamics are quantitatively
tied. We concentrate on the signatures of the wavefront
of the string imprinted on the evolution of the entangle-
ment entropy. We consider the case m = g = 0 as it is
characterized by the most pronounced wavefront, where
the string with its slow entanglement growth is embed-
ded in the fast growing vacuum (see Fig. 3, panel C1).
To characterize the entanglement spreading due to the
wavefront, we exploit the fact that the entanglement en-
tropy in the vacuum is constant in space even though it
evolves in time. Therefore, far enough from both sides
of the string there is a plateau of constant entropy much
higher than the entropy in the middle of the string. Thus,
to define the wavefront of entanglement spreading due
to the string, one can look for the lattice site at which
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FIG. 12: Scattering of two dynamical mesons using the system
parameters m = 0, g = 8. The plot illustrate the time evolu-
tion of the electric field E(x) as a function of the position x.
After the scattering has taken place, two clear wave-fronts are
clearly visible. Lower panel: number of charges N� =

P
x nx

in the system during the evolution (blue: � = 1 . . . 32), num-
ber of particles present in the center (purple: � = 16), number
of charges on either side of the center (coinciding lines red:
� = 1 . . . 15 and orange: � = 17 . . . 32).

the entropy plateau starts to decrease. We identify this
point computing the di↵erence of entropy between near-
est neighbor bipartitions: tracking when this quantity
become bigger than a given threshold allows to charac-
terize the entanglement wavefront spreading.
In Fig. 11 we show the estimated spreading velocity for

di↵erent values of the threshold: the limit for the thresh-
old value going to zero gives an estimate of the spreading
velocity. A power law fit results in a spreading velocity of
vS = 2.0± 0.2 in very good agreement with the analytic
estimate of vT ' 2 and the result from the electric field of
vE = 1.96± 0.02 demonstrating the intimate connection
between entanglement and electric field spreading.

V. SCATTERING

Finally, in this last Section we explore a completely dif-
ferent process that we think might be highly interesting
to study using either our numerical methods and possi-
bly in quantum simulations, that is real-time scattering
processes. We then define composite particles as a pair of
charge and anti-charge divided only by one link, namely
a meson, and give them some momentum such that they
collide. The new exciting feature that we enable with
our approach, is that during the scattering process, we

12

FIG. 13: Scattering of two dynamical mesons. Main panel:
Entanglement entropy S(x) using a bipartition between sites
x and x+1 as a function to time. After the scattering, the en-
tropy significantly increases in the system: this is a direct sig-
nature of enhanced quantum correlations. Right panel: S(x)
at di↵erent times (see color bar), showing a clear plateau af-
ter the collision, which enlarges as a function of time. The
empty circles show the current position of the maxima of the
electric-field which follow approximately the mesons center of
mass. The dashed line represents S(x) generated by a single
meson, while the green bar highlights the di↵erence �S to
the entropy of the colliding mesons (di↵erence between full
and dashed line at ⌧ = 120, xi = 17).

the electric field dynamics after the collision. Then, we
present results for the entanglement dynamics during and
after the collisions showing that the meson collision is ac-
companied by the creation of entanglement between the
two mesons. Indeed, as we will show, the entanglement is
bounded by the propagation wavefronts of the particles
after collision, and is characterized by a constant plateau
of the entanglement entropy within the region.

A. Electric field patterns during meson collisions

In order to produce the scattering process, we shall
start with two particles, each of them composed by a
pair of charge and anti-charge divided only by one link,
namely a meson, with opposite momentum such that
they collide. For the two-meson problem, there is a sim-
ple picture from the Schwinger model in the strong cou-
pling limit: the massless theory is a free massive boson
(meson) theory that is expected to become weakly inter-
acting once a small mass term is included. Hence, in the
strong coupling region, a possible two-meson bound state
is loosely bound, while in the weak coupling region it is
tightly bound.

We start the numerical simulation with the state repre-
sented in the cartoon (D) in Fig. 1: two mesons separated
by a vacuum state of ten sites, which can be straightfor-
wardly be written in a simple, separable matrix product

state with t = 0. We provide momentum to the mesons
by adiabatically moving them from the boundaries to-
ward the center of the system: this is done by introducing
a deep box-shaped potential which decouples the mesons
from the rest of the system leaving it only the possibility
to oscillate between its position and a neighboring site.
The box-potential is removed at time ⌧i = 17.4 when
the meson is exactly at half oscillation: from that point
on the mesons evolve freely with an e↵ective momentum
mostly in one direction, one towards the other and even-
tually colliding [85]. In order to avoid vacuum fluctua-
tions during the process, we choose a large value of g = 8.
Fig. 12 shows an example of such a scattering process.
In particular, it shows the absolute value of the electric
field of two mesons approaching each other, colliding in
the center and the parting again. While before the col-
lision the meson are tightly bound, after the scattering
process the electric field di↵uses, and the corresponding
wavefront has a significantly attenuated signal. In the
lower panel of Fig. 12, we monitor the time-evolution of
the total particle number (blue), clearly indicating that
this quantity is approximately conserved over the entire
time-evolution, due to the large electric field strength,
which suppresses particle-antiparticle creation.

B. Post-collision entanglement generation

A classical-like picture of the scattering process pre-
sented above, reads that two particles move against each
other and then bounce back as there is not enough energy
available to generate a more complex inelastic scattering.
However, this picture is oversimplified, as this is a fully
quantum process and indeed one can, once more, monitor
the quantum correlations generated during the scattering
process. This is done in Fig. 13, where we show the evo-
lution of the bipartite entanglement entropy: one sees
that entanglement is created and that it is mostly car-
ried by the two mesons - in this parameter regime, the
vacuum does not generate entanglement due to the very
large value of g2. Studying the bipartite entanglement
entropy for di↵erent bipartitions and times, one clearly
sees that there are two regimes: before the scattering
occurs, the entanglement is present only in the biparti-
tion that cuts the mesons wave packets, indicating two
electron-positron wave packets internally correlated, but
not sharing any quantum correlations among them. On
the contrary, after the scattering, the two wave packets
become highly correlated even when their two centers of
mass are clearly separated (see Fig. 12 for times ⌧ > 100).
The values of the entanglement entropy indicate that

one ebit of quantum information has been created dur-
ing the scattering process. In the right panel of Fig.
13, we present various cuts of the entanglement entropy
profile taken at di↵erent times, together with a compar-
ison with the entanglement generated by a single meson
moving through the lattice (dashed line). The di↵er-
ence of �S ⇡ 1 between the two cases (highlighted in
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PHASE DIAGRAM 6

Figure 3. Phase diagram for m < 0 obtained from the
evaluation of the density of matter in the TTN ground state
for a 8⇥ 8 lattice system with periodic boundary conditions.
The insets are schematic representations of the ground state
deep in the two phases: the bare vacuum for g

2
e/2 � 2|m|,

a typical dimer configuration for g
2
e/2 ⌧ �2m. The dashed

line is located at the classical (t = 0) transition g
2
e/2 = �2m.

Hamiltonian (1) within this subspace. Unless otherwise
stated, we consider periodic boundary conditions. We
characterise the ground state of the Hamiltonian by look-
ing at the energy density hĤi/L

2, and the particle den-
sity hn̂i = 1

L2

P
xhn̂xi where n̂x = (�x,e ̂†

x ̂x+ �x,o ̂x ̂
†
x)

counts how many charges are in the system, both posi-
tive and negative, i.e. fermions in even sites plus holes
in odd sites. We start our analysis by first focusing on
the case in which the magnetic coupling has been set to
zero, gm = 0. Before detailing the numerical results,
some analytically-solvable limit cases should be consid-
ered. For large positive values of the bare mass m � t,
the fluctuations above the bare vacuum are highly sup-
pressed; the system exhibits a unique phase since there
is no competition between the matter term and the elec-
tric field term in the Hamiltonian. Indeed, to construct
pairs of particle/antiparticle, the matter energy and the
electric field energy both contribute to an overall increas-
ing of the ground-state energy. In order to explore more
interesting phenomena, we allow the mass coupling to
reach negative values. Doing so, we can identify two dif-
ferent regions depending on the competition between the
electric coupling g

2
e/2 and the values of the mass m < 0:

(i) for g2e/2 � 2|m|, we still have a vacuum-like phase,
where we expect a unique non-degenerate ground-state
with small particle-density fluctuations. This phase ex-
ists, no matter the value of the mass, as far as the energy
cost to turn on a non-vanishing electric field on a single
link overcomes the gain in creating the associated pairs
of particle/antiparticle. Indeed, for any value of the mass

and g
2
e/2 ! 1, or for g

2
e/2 6= 0 and m ! 1, the pres-

ence of a finite electric field, or finite particle density, is
strictly forbidden and the ground-state flows toward the
only admissible configuration, namely the bare vacuum.

(ii) for �2m � g
2
e/2 > 0 the phase of matter is charac-

terised by slightly deformed particle-antiparticle dimers;
this phase of course only exists for negative value of the
mass and represents the region wherein the energy gain
for creating a couple of particle/antiparticle largely over-
comes the associated electric field energy cost. Here the
ground-state remains highly degenerate as far as the ki-
netic energy coupling |t| is much smaller than all the
others energy scales (degeneracy being lifted only at the
fourth order in t). In particular, for g

2
e/2 6= 0 and

m ! �1 the ground state reduces to a completely filled
state. In order to minimise the electric field energy, par-
ticles and antiparticles are arranged in L

2
/2 pairs (where

we are assuming L even) sharing a single electric flux in
between. All these configurations are energetically equiv-
alent and their degeneracy corresponds to the number
of ways in which a finite quadratic lattice (with open
or periodic boundary conditions) can be fully covered
with given numbers of “horizontal” and “vertical” dimers.
This number scales exponentially with the system size as
exp(L2

C/⇡) for L ! 1, with C ' 0.915966 the Cata-
lan’s constant [77]. For sake of clarity, we stress that such
‘dimers’ are not entangled clusters of matter and gauge
fields; they are roughly product states.

Let us mention that the case ge = 0 with m ! 1

(m ! �1) is more pathological since any gauge-field
configuration compatible with the vacuum (dimerised)
state is admissible, provided the Gauss’s law is fulfilled.
In practice, we may draw a generic closed loop with finite
electric flux on top of the vacuum state without modify-
ing its energy; similar gauge loops may be realised on top
of the dimerised state, provided it is compatible with the
occupied links, without changing its energy as well. All
these configurations are gauge-invariant by construction,
and increase the degeneracy of the ground-state energy
sector.

Our numerical results confirm and extend this picture,
as it can easily be seen in the phase diagram displayed in
Fig. 3, obtained from TTN simulations in a 8⇥8 system.
The matter density is roughly zero in the vacuum phase;
otherwise, it takes on a finite value whenever the system
exhibits “dimerisation”, i.e. in the charge-crystal phase.
We checked that the numerical data, both the ground-
state energy density and the particle density, show an
asymptotic tendency toward the perturbative estimates.
Interestingly, the particle density experiences an abrupt
change mainly in a narrowed region around m ' �g

2
e/4,

where the local slope is becoming steeper as the elec-
tric coupling (and the mass) is approaching zero (see left
panel in Fig. 4), as roughly predicted by perturbation
theory and supported by the exact results in the 2 ⇥ 2
case (see Appendices C and D).

As a confirmation of this scenario, we expect particle
fluctuations to be enhanced around such region, mainly

T. Felser et al. PRX (2020)
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Figure 7: TTN representations for (a) 1D lattice and (b) 2D square lattice. Green circles indicate the sites of the
lattice connected to the physical indices of the tree, whereas the yellow circles are the tensors making up the TTN.
In (c) we shown our generalization to the 3D cubic lattice that we use for the numerical simulations of the LGT.

The different colours of the bond indices are just for a better visualization of the tree structure.

generalization to 3D lattice. TTNs offer more tractable
computational costs since the complete contraction and
the variational optimization algorithms scale as O(�4),
making it easier to reach high values of the bond dimen-
sion (up to � ⇡ 1000). The price to pay for using the
loopless structure is related to the area law that TTNs
may not explicitly reproduce in dimensions higher than
one [101]. Nevertheless, we use the TTN ansatz in a vari-
ational optimization, so we can improve the precision by
using increasing values of �, providing in this way a care-
ful control over the convergence of our numerical results.

The TTN algorithm for the ground state computation
of our LTG model follows the technical implementation
described in [85] and it takes into account the conserva-
tion of the total charge through the definition of global
U(1) symmetry sectors encoded in the TTN. In this way

we can easily access finite charge-density regimes, with
any imbalance between charges and anticharges.

Our TTN for the 3D lattice is composed entirely of
tensors with three links (this structure is usually called
binary tree). The construction of the TTN starts from
merging the physical indices at the bottom, that repre-
sent two neighboring lattice sites along the x-direction,
into one tensor. Then, these tensors are connected along
the y-direction through new tensors in an upper layer.
The tensors in this layer are then connected along the
z-direction through a new layer of tensors. Thus, this
procedure is iteratively repeated by properly setting the
connections along the three spatial directions in the up-
per layers of the tree. At the beginning of the simula-
tion, we randomly initialize all the tensors in the net-
work and the distribution of the global symmetry sec-

10

(a) (b)

(c)

Figure 7: TTN representations for (a) 1D lattice and (b) 2D square lattice. Green circles indicate the sites of the
lattice connected to the physical indices of the tree, whereas the yellow circles are the tensors making up the TTN.
In (c) we shown our generalization to the 3D cubic lattice that we use for the numerical simulations of the LGT.

The different colours of the bond indices are just for a better visualization of the tree structure.

generalization to 3D lattice. TTNs offer more tractable
computational costs since the complete contraction and
the variational optimization algorithms scale as O(�4),
making it easier to reach high values of the bond dimen-
sion (up to � ⇡ 1000). The price to pay for using the
loopless structure is related to the area law that TTNs
may not explicitly reproduce in dimensions higher than
one [101]. Nevertheless, we use the TTN ansatz in a vari-
ational optimization, so we can improve the precision by
using increasing values of �, providing in this way a care-
ful control over the convergence of our numerical results.

The TTN algorithm for the ground state computation
of our LTG model follows the technical implementation
described in [85] and it takes into account the conserva-
tion of the total charge through the definition of global
U(1) symmetry sectors encoded in the TTN. In this way

we can easily access finite charge-density regimes, with
any imbalance between charges and anticharges.

Our TTN for the 3D lattice is composed entirely of
tensors with three links (this structure is usually called
binary tree). The construction of the TTN starts from
merging the physical indices at the bottom, that repre-
sent two neighboring lattice sites along the x-direction,
into one tensor. Then, these tensors are connected along
the y-direction through new tensors in an upper layer.
The tensors in this layer are then connected along the
z-direction through a new layer of tensors. Thus, this
procedure is iteratively repeated by properly setting the
connections along the three spatial directions in the up-
per layers of the tree. At the beginning of the simula-
tion, we randomly initialize all the tensors in the net-
work and the distribution of the global symmetry sec-
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Figure 1: Scheme of the three-dimensional LGT with
three electric field levels (spin-1 compact

representation). Fermionic degrees of freedom are
represented by staggered fermions on sites with different
parity: on the even (odd) sites, a full red (blue) circle
corresponds to a particle (antiparticle) with positive
(negative) charge. As an illustrative example, it is

shown a gauge-invariant configuration of matter and
gauge fields with one particle and one antiparticle in the

sector of zero total charge.

effect akin to the Schwinger mechanism. Furthermore,
we address the confinement problem by evaluating the
binding energies of charged particle pairs pinned at spec-
ified distances. Finally, we consider the scenario with a
charge imbalance into the system, i.e. at finite charge
density, and we characterize a regime where charges ac-
cumulate at the surface of our finite sample, analogously
to a classic perfect conductor.

I. THE MODEL

Hereafter, we numerically simulate, at zero tempera-
ture, the Hamiltonian of U(1) quantum electrodynamics
on a finite L⇥L⇥L three-dimensional simple cubic lattice
[16]:
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with x ⌘ (i, j, k) for 0  i, j, k  L � 1
labelling the sites of the lattice and ⇤µ↵,µ� =

Ûx,µ↵Ûx+µ↵,µ� Û†
x+µ� ,µ↵

Û†
x,µ�

. Here we adopted the
Kogut-Susskind formulation [16], representing fermionic
degrees of freedom with a staggered spinless fermion
field { ̂x,  ̂†

x0} = �x,x0 on lattice sites. Their bare mass
mx = (�1)xm is staggered, as tracked by the site parity

(�1)x = (�1)i+j+k, so that fermions on even sites rep-
resent particles with positive electric charge +q, while
holes on odd sites represent anti-particles with negative
charge �q, as shown in Fig. 1. Charge Q̂ conservation is
thus expressed as global fermion number N̂ conservation,
since Q̂ =

P
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1�(�1)x
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⌘
= N̂ � L3/2.

The links of the 3D lattice are uniquely identified by
the couple of parameters (x, µ) where x is any site, µ is
one of the three positive lattice unit vectors µx ⌘ (1, 0, 0),
µy ⌘ (0, 1, 0), µz ⌘ (0, 0, 1). The gauge fields are defined
on lattice links through the pair of operators Êx,µ (elec-
tric field) and Ûx,µ (unitary comparator) that satisfy the
commutation relation

[Êx,µ, Ûx0,µ0 ] = �x,x0�µ,µ0Ûx,µ. (2)
For comfort of notation, we can extend the definition to
negative lattice unit vectors via Êx+µ,�µ = �Êx,µ and
Ûx+µ,�µ = Û†

x,µ.
The Hamiltonian of Eq. (1) consists of four terms: the

parallel transporter (1a) describes creation and annihi-
lation of a particle-antiparticle pair, shifting the gauge
field in-between to preserve local gauge symmetries. The
staggered mass and the electric energy density (1b) are
completely local. Finally, the plaquette terms (1c) cap-
ture the magnetic energy density, and are related to the
smallest Wilson loops along the closed plaquettes along
the three planes x � y, x � z, y � z of the lattice. In
dimensionless units (~ = c = 1), the couplings in Eq. (1)
are not independent: They can be expressed as t = 1/a,
m = m0, g2

e = g2/a, g2
m = 8/(g2a), where a is the lattice

spacing, g is the coupling constant of QED and m0 is
the bare mass of particles/antiparticles. The numerical
setup allows us to consider the couplings (t, m, ge, gm)
as mutually independent. We then recover the physical
regime of QED by enforcing gegm = 2

p
2t. We also fix

the energy scale by setting t = 1.
The local U(1) gauge symmetry of the theory is en-

coded in Gauss’s law, whose generators

Ĝx =  ̂†
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1 � (�1)x

2
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Êx,µ, (3)

are defined around each lattice site x. The sum in Eq. (3)
involves the six electric field operators on the links iden-
tified by ±µx, ±µy, ±µz. Each Ĝx commutes with the
Hamiltonian Ĥ and the gauge invariant Hilbert space
consists of physical many-body quantum states |�i sat-
isfying Ĝx |�i = 0 at every site x.

As stressed in the standard Wilson’s formulation of
lattice QED [11], faithful representations of the (Ê, Û)
algebra are infinite-dimensional. A truncation to a fi-
nite dimension becomes therefore necessary for numeri-
cal simulations with TN methods, which require a finite
effective Hilbert dimension at each lattice site. We use
the quantum link model (QLM) approach in which the
gauge field algebra is replaced by SU(2) spin algebra, i.e.
Êx,µ ⌘ Ŝz

x,µ and Ûx,µ ⌘ Ŝ+
x,µ/s for a spin-s representa-

tion. This substitution keeps the electric field operator
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effect akin to the Schwinger mechanism. Furthermore,
we address the confinement problem by evaluating the
binding energies of charged particle pairs pinned at spec-
ified distances. Finally, we consider the scenario with a
charge imbalance into the system, i.e. at finite charge
density, and we characterize a regime where charges ac-
cumulate at the surface of our finite sample, analogously
to a classic perfect conductor.

I. THE MODEL

Hereafter, we numerically simulate, at zero tempera-
ture, the Hamiltonian of U(1) quantum electrodynamics
on a finite L⇥L⇥L three-dimensional simple cubic lattice
[16]:
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Ûx,µ↵Ûx+µ↵,µ� Û†
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x,µ.
The Hamiltonian of Eq. (1) consists of four terms: the

parallel transporter (1a) describes creation and annihi-
lation of a particle-antiparticle pair, shifting the gauge
field in-between to preserve local gauge symmetries. The
staggered mass and the electric energy density (1b) are
completely local. Finally, the plaquette terms (1c) cap-
ture the magnetic energy density, and are related to the
smallest Wilson loops along the closed plaquettes along
the three planes x � y, x � z, y � z of the lattice. In
dimensionless units (~ = c = 1), the couplings in Eq. (1)
are not independent: They can be expressed as t = 1/a,
m = m0, g2

e = g2/a, g2
m = 8/(g2a), where a is the lattice

spacing, g is the coupling constant of QED and m0 is
the bare mass of particles/antiparticles. The numerical
setup allows us to consider the couplings (t, m, ge, gm)
as mutually independent. We then recover the physical
regime of QED by enforcing gegm = 2

p
2t. We also fix

the energy scale by setting t = 1.
The local U(1) gauge symmetry of the theory is en-

coded in Gauss’s law, whose generators
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tified by ±µx, ±µy, ±µz. Each Ĝx commutes with the
Hamiltonian Ĥ and the gauge invariant Hilbert space
consists of physical many-body quantum states |�i sat-
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As stressed in the standard Wilson’s formulation of
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effect akin to the Schwinger mechanism. Furthermore,
we address the confinement problem by evaluating the
binding energies of charged particle pairs pinned at spec-
ified distances. Finally, we consider the scenario with a
charge imbalance into the system, i.e. at finite charge
density, and we characterize a regime where charges ac-
cumulate at the surface of our finite sample, analogously
to a classic perfect conductor.
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[Êx,µ, Ûx0,µ0 ] = �x,x0�µ,µ0Ûx,µ. (2)
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Figure 6: (a) Representation of the gauge field in terms
of two species of Dirac modes in the sector with a total
number of fermions equal to two. b) Generic state of
the local site composed by the the matter degrees of

freedom and six half-links along the three spatial
directions. On each half-link the coefficients

kj 2 {0, 1, 2} define the fermionic modes. (c) Examples
of gauge-invariant configurations for even and odd sites.

Due to the use of staggered-fermions, the
presence/absence of a fermion in an even/odd site
represents the presence of a charge/anti-charge.

Ĝx =  ̂†
x ̂x �

1 � (�1)x

2
�

X

µ

�
1 � n̂a

x,µ � n̂b
x,µ

�
.(A8)

Taking into account this property, it is possible to con-
struct the gauge-invariant basis for the local site x, that
is composed by the lattice site and the six half-links along
the directions ±µx, ±µy, ±µz (see Fig. 6):

������

k5

k1 � k4

k2

+k6

k3

= (�1)�k1,2+�k2,2+�k3,2
|�ix (A9)

⇥ |k1ix,�µx
|k2ix,�µy

|k3ix,�µz

⇥ |k4ix,µx
|k5ix,µy

|k6ix,µz

where |�ix = ( ̂†
x)�

|0i with � = 0, 1 describes the pres-
ence or the absence of the matter/antimatter particles.
The indices kj run over {0,1,2} selecting a configura-
tion of the 3-hardcore modes for each respective half-link.
The presence of the factor (�1)�k1,2+�k2,2+�k3,2 allows us
to satisfy the anticommutation relations of the fermionic
representation recovering the correct signs of Eq. (A5).
The occupation numbers � and kj are not independent
due to the constraint imposed by the Gauss’s law

Ĝx

������

k5

k1 � k4

k2

+k6

k3

= 0. (A10)

This equation, in the new language of matter fermions
and rishons, reads

�+
6X

j=1

kj = 6 +
1 � (�1)x

2
. (A11)

where the factor 6 is indeed the coordination number
of the cubic lattice. Thus, the gauge invariant configu-
rations of the local basis are obtained by applying this
constraint, effectively reducing the ‘dressed-site’ (matter
and 6 rishon modes) dimension from 2 · 36 = 1458 to
merely 267. We encode these states as building blocks of
our computational representation for the TN algorithms.
In Fig. 6 we show some examples of gauge-invariant con-
figurations for even and odd sites.

The construction of the gauge-invariant local sites is
particularly advantageous for our numerical purposes: in
fact, it is now possible to express all the terms in the
Hamiltonian of Eq. (1) of the main text as product
of completely local operators that commute on different
sites. Let us consider the kinetic term of the Hamiltonian
and apply the representation of the gauge field in terms
of the 3-hardcore fermionic modes:

 ̂†
xÛx,µ ̂x+µ =  ̂†

x⌘̂x,µ⌘̂
†
x+µ,�µ ̂x+µ

=
⇣
⌘̂†x,µ ̂x

⌘† ⇣
⌘̂†x+µ,�µ ̂x+µ

⌘

= M (↵)†
x M↵0

x+µ (A12)

where the indices ↵ and ↵0 select the right operators de-
pending on the different directions in which the hopping
process takes place. The operators M↵

x,µ are genuinely lo-
cal (i.e. they commute with operators acting elsewhere)
as they are always quadratic in the fermionic operators
( and/or ⌘). The same argument applies to the mag-
netic (plaquette) terms in the Hamiltonian

⇤µx,µy = Ux,x+µxUx+µx,µyU †
x+µy,µx

U †
x,µy

=

= ⌘x,µx⌘
†
x+µx,�µx

⌘x+µx,µy⌘
†
x+µx+µy,�µy

⇥

⇣
⌘x+µy,µx⌘

†
x+µx+µy,�µx

⌘† ⇣
⌘x,µy⌘

†
x+µy,�µy

⌘†

= �

⇣
⌘†x,µy

⌘x,µx

⌘ ⇣
⌘†x+µx,�µx

⌘x+µx,µy

⌘

⇥

⇣
⌘†x+µx+µy,�µy

⌘x+µx+µy,�µx

⌘ ⇣
⌘†x+µy,µx

⌘x+µy,�µy

⌘

⌘ �C(↵)
x C(↵0)

x+µx
C(↵00)

x+µx+µy
C(↵000)

x+µy
, (A13)

where the indices ↵, ↵0, ↵00, ↵000 depend on the plane of
the plaquette (in this case x � y) and the links involved
into the loop. The operators C↵

x are genuinely local and
act on the four sites at the corners of the plaquette. The
decomposition is the same for the other plaquettes in the
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Figure 8: (a) Driven optimization (in three steps: linear, quadratic, constant) of the penalty coefficient ⌫ (red) and
behavior of the energy (blue) as a function of the iterations for an exemplifying simulation. The energy is reported

as the difference with the lowest final energy that we reach. (b) Driven optimization of the penalty coefficient ⌫
(red) and global error �L (green) with respect to the link symmetry during the optimization steps. (c) Scaling of the

energy density as a function of the inverse of the bond dimension 1/�. The bond dimension � is in the range
[100, 450].

tors. During the variational optimization stage, in order
to improve the convergence, we perform the single-tensor
optimization with subspace-expansion technique, i.e., al-
lowing a dynamical increase of the local bond dimension
and adapting the symmetry sectors [85]. This scheme
has a global computational cost of the order O(�4). The
single tensor optimization is implemented in three steps:
(i) the effective Hamiltonian Heff for the tensor is ob-
tained by contracting the complete Hamiltonian of the
system with all the remaining tensors of the tree; (ii) the
local eigenvalue problem for Heff is solved by using the
Arnoldi method of the ARPACK library; (iii) the ten-
sor is updated by the eigenvector of Heff corresponding
to the lowest eigenvalue. This procedure is iterated by
sweeping through the TTN from the lowest to the highest
layers, gradually reducing the energy expectation value.
After completing the whole sweep, the procedure is it-
erated again and again, until the desidered convergence
in the energy is reached. The precision of the Arnoldi
algorithm is increased in each sweep, for gaining more
accuracy in solving the local eigenvalue problems as we
approach the final convergence.

TTN computations presented in this work are ex-
tremely challenging due to the complexity of LGTs in
the three-dimensional scenario. They were performed on
different HPC-clusters (CloudVeneto, CINECA, BwUni-
Cluster and ATOS Bull): a single simulation for the max-
imum size that we reached, a 8 ⇥ 8 ⇥ 8 lattice, can last
up to five weeks until final convergence, depending on the
different regimes of the model and the control parameters
of the algorithms.

Appendix C: Numerical Convergence

With our numerical simulations we characterize the
properties of the ground state of the system as a function
of the parameters in the Hamiltonian of Eq. (1) of the

main text. We fix the energy scale by setting the hopping
coefficient t = 1 and we access several regimes of the mass
m, the electric ge and the magnetic coupling gm. We
consider simple cubic lattices L ⇥ L ⇥ L with the linear
size L being a binary power; in particular, we simulate
the case with L = 2, 4, 8, that is, up to 512 lattice sites.

As explained in Appendix A, in order to obtain the
right representation of the electric field operators, we
have to enforce the extra link symmetry constraint
L̂x,µ = 2 at every pair of neighboring sites. For this
reason, we include in the Hamiltonian additional terms
that energetically penalise all the states with a number
of hardcore fermions per link different from two, namely:

Hpen = ⌫
X

x,µ

⇣
1 � �2,L̂x,µ

⌘
(C1)

where ⌫ > 0 is the penalty coefficient and �2,L̂x,µ
are

the projectors on the states that satisfy the extra link
constraint. In this way, the penalty terms vanish when
the link symmetry is satisfied and raise the energy of the
states violating the constraint. In principle, the link sym-
metry is rigorously satisfied for ⌫ ! 1. At numerical
level, this limit translates into choosing ⌫ much larger
than the other simulation parameters of the Hamilto-
nian, i.e., ⌫ � max {|t|, |m|, |gel|, |gm|}. However, set-
ting ⌫ too large in the first optimisation steps could lead
to local minima or non-physical states, since the varia-
tional algorithm would focus only on the penalty terms
more than the physical ones. In order to avoid this prob-
lem and reach the convergence, we adopt a driven op-
timization, by varying the penalty coefficient ⌫ in three
steps: (i) starting from a very small value of ⌫ and from
a random state of the TTN, that in general does not re-
spect the extra link symmetry, we drive the penalty term
with a linear growth of ⌫ during the first optimization
sweeps. In this stage, the optimization will focus mainly
on the physical quantities, until we notice a slight rise of
the energy: this effect signals that the global optmiza-
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tors. During the variational optimization stage, in order
to improve the convergence, we perform the single-tensor
optimization with subspace-expansion technique, i.e., al-
lowing a dynamical increase of the local bond dimension
and adapting the symmetry sectors [85]. This scheme
has a global computational cost of the order O(�4). The
single tensor optimization is implemented in three steps:
(i) the effective Hamiltonian Heff for the tensor is ob-
tained by contracting the complete Hamiltonian of the
system with all the remaining tensors of the tree; (ii) the
local eigenvalue problem for Heff is solved by using the
Arnoldi method of the ARPACK library; (iii) the ten-
sor is updated by the eigenvector of Heff corresponding
to the lowest eigenvalue. This procedure is iterated by
sweeping through the TTN from the lowest to the highest
layers, gradually reducing the energy expectation value.
After completing the whole sweep, the procedure is it-
erated again and again, until the desidered convergence
in the energy is reached. The precision of the Arnoldi
algorithm is increased in each sweep, for gaining more
accuracy in solving the local eigenvalue problems as we
approach the final convergence.

TTN computations presented in this work are ex-
tremely challenging due to the complexity of LGTs in
the three-dimensional scenario. They were performed on
different HPC-clusters (CloudVeneto, CINECA, BwUni-
Cluster and ATOS Bull): a single simulation for the max-
imum size that we reached, a 8 ⇥ 8 ⇥ 8 lattice, can last
up to five weeks until final convergence, depending on the
different regimes of the model and the control parameters
of the algorithms.

Appendix C: Numerical Convergence

With our numerical simulations we characterize the
properties of the ground state of the system as a function
of the parameters in the Hamiltonian of Eq. (1) of the

main text. We fix the energy scale by setting the hopping
coefficient t = 1 and we access several regimes of the mass
m, the electric ge and the magnetic coupling gm. We
consider simple cubic lattices L ⇥ L ⇥ L with the linear
size L being a binary power; in particular, we simulate
the case with L = 2, 4, 8, that is, up to 512 lattice sites.

As explained in Appendix A, in order to obtain the
right representation of the electric field operators, we
have to enforce the extra link symmetry constraint
L̂x,µ = 2 at every pair of neighboring sites. For this
reason, we include in the Hamiltonian additional terms
that energetically penalise all the states with a number
of hardcore fermions per link different from two, namely:

Hpen = ⌫
X

x,µ

⇣
1 � �2,L̂x,µ

⌘
(C1)

where ⌫ > 0 is the penalty coefficient and �2,L̂x,µ
are

the projectors on the states that satisfy the extra link
constraint. In this way, the penalty terms vanish when
the link symmetry is satisfied and raise the energy of the
states violating the constraint. In principle, the link sym-
metry is rigorously satisfied for ⌫ ! 1. At numerical
level, this limit translates into choosing ⌫ much larger
than the other simulation parameters of the Hamilto-
nian, i.e., ⌫ � max {|t|, |m|, |gel|, |gm|}. However, set-
ting ⌫ too large in the first optimisation steps could lead
to local minima or non-physical states, since the varia-
tional algorithm would focus only on the penalty terms
more than the physical ones. In order to avoid this prob-
lem and reach the convergence, we adopt a driven op-
timization, by varying the penalty coefficient ⌫ in three
steps: (i) starting from a very small value of ⌫ and from
a random state of the TTN, that in general does not re-
spect the extra link symmetry, we drive the penalty term
with a linear growth of ⌫ during the first optimization
sweeps. In this stage, the optimization will focus mainly
on the physical quantities, until we notice a slight rise of
the energy: this effect signals that the global optmiza-
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Figure 2: Ground state charge occupation and electric field on links for m = �3.0 (a) and m = 3.0 (c) and g2
m = 0.

(b) Particle density as a function of m, for different system size L and g2
m = 0. Ground state charge occupation and

electric field on links for m = �3.0 (d) and m = 3.0 (f) in the presence of magnetic interactions with g2
m = 8/g2

e = 4.
(e) Particle density as a function of m, for different system size L and g2

m = 8/g2
e = 4.

hermitian and preserves Eq. (2), but Û is no longer uni-
tary. Throughout this work, we will select s = 1, the
smallest representation ensuring a nontrivial contribution
of all the terms in the Hamiltonian (see also Fig. 1). This
truncation introduces a local energy cutoff based on g2

e ,
which in turn requires larger spin s to accurately repre-
sent weaker coupling regimes, still potentially accessible
via TNs [24].

II. TRANSITION AT ZERO CHARGE

We focus on the zero charge sector, i.e.
P

x  
†
x x = L3

2 ,
and Periodic Boundary Conditions (PBC). As shown in
Fig. 2 (upper panel), for g2

m = 0 the system under-
goes a transition between two regimes, analogously to
the (1+1)D and (2+1)D cases [22, 25, 32]: for large pos-
itive masses, the system approaches the bare vacuum,
while for large negative masses, the system is arranged
into a crystal of charges, a highly degenerate state in the
semiclassical limit (t ! 0) due to the exponential num-
ber of electric field configurations allowed. We track this
transition by monitoring the average matter density ⇢ =
1

L3

P
x hGS| n̂x |GSi where n̂x = 1+(�1)x

2 � (�1)x †
x x

is the matter occupation operator and the many-body
ground state |GSi has been computed by TTN algorithm

(see Appendices A, B, C for details). Fig. 2(b) displays
the result for different sizes L (and g2

e/2 = t = 1), por-
traying the transition. Panels (a) and (c) display local
configurations of matter hn̂xi and gauge sites hÊx,µi for
m = �3.0 and m = +3.0 respectively. In the former
regime, the algorithm seems to favor a single allowed con-
figuration of gauge fields rather than a superposition of
many configuations: This is due to the fact that, when
g2

m = 0, the matrix element that rearranges the configu-
rations occurs at very high perturbative order in |t/m|,
and is numerically neglected. A finite-size scaling analy-
sis of the transition (see Appendix D) yields results com-
patible with a II-order phase transition, with the critical
point occurying at negative bare masses m.

The same transition appears to be more interesting
when we ‘activate’ the magnetic coupling, by setting
g2

m = 8t2/g2
e = 4 (physical line). The phase at large

negative m now appears to be a genuine superposition
of many configurations of the electric field, as they are
coupled by matrix elements of the order ⇠ g2

m, kept as
numerically relevant by the algorithm. Moreover, the
transition is still compatible with a II-order phase tran-
sition, and the critical point is shifted to larger m values.
This can lead to a critical bare mass mc that is positive
(as we observed mc ⇡ +0.22 for the case g2

e/2 = t = 1),
ultimately making the transition physically relevant.
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(b) Particle density as a function of m, for different system size L and g2
m = 0. Ground state charge occupation and
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e = 4.

hermitian and preserves Eq. (2), but Û is no longer uni-
tary. Throughout this work, we will select s = 1, the
smallest representation ensuring a nontrivial contribution
of all the terms in the Hamiltonian (see also Fig. 1). This
truncation introduces a local energy cutoff based on g2

e ,
which in turn requires larger spin s to accurately repre-
sent weaker coupling regimes, still potentially accessible
via TNs [24].

II. TRANSITION AT ZERO CHARGE

We focus on the zero charge sector, i.e.
P

x  
†
x x = L3

2 ,
and Periodic Boundary Conditions (PBC). As shown in
Fig. 2 (upper panel), for g2

m = 0 the system under-
goes a transition between two regimes, analogously to
the (1+1)D and (2+1)D cases [22, 25, 32]: for large pos-
itive masses, the system approaches the bare vacuum,
while for large negative masses, the system is arranged
into a crystal of charges, a highly degenerate state in the
semiclassical limit (t ! 0) due to the exponential num-
ber of electric field configurations allowed. We track this
transition by monitoring the average matter density ⇢ =
1
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P
x hGS| n̂x |GSi where n̂x = 1+(�1)x

2 � (�1)x †
x x

is the matter occupation operator and the many-body
ground state |GSi has been computed by TTN algorithm

(see Appendices A, B, C for details). Fig. 2(b) displays
the result for different sizes L (and g2

e/2 = t = 1), por-
traying the transition. Panels (a) and (c) display local
configurations of matter hn̂xi and gauge sites hÊx,µi for
m = �3.0 and m = +3.0 respectively. In the former
regime, the algorithm seems to favor a single allowed con-
figuration of gauge fields rather than a superposition of
many configuations: This is due to the fact that, when
g2

m = 0, the matrix element that rearranges the configu-
rations occurs at very high perturbative order in |t/m|,
and is numerically neglected. A finite-size scaling analy-
sis of the transition (see Appendix D) yields results com-
patible with a II-order phase transition, with the critical
point occurying at negative bare masses m.

The same transition appears to be more interesting
when we ‘activate’ the magnetic coupling, by setting
g2

m = 8t2/g2
e = 4 (physical line). The phase at large

negative m now appears to be a genuine superposition
of many configurations of the electric field, as they are
coupled by matrix elements of the order ⇠ g2

m, kept as
numerically relevant by the algorithm. Moreover, the
transition is still compatible with a II-order phase tran-
sition, and the critical point is shifted to larger m values.
This can lead to a critical bare mass mc that is positive
(as we observed mc ⇡ +0.22 for the case g2

e/2 = t = 1),
ultimately making the transition physically relevant.
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hermitian and preserves Eq. (2), but Û is no longer uni-
tary. Throughout this work, we will select s = 1, the
smallest representation ensuring a nontrivial contribution
of all the terms in the Hamiltonian (see also Fig. 1). This
truncation introduces a local energy cutoff based on g2

e ,
which in turn requires larger spin s to accurately repre-
sent weaker coupling regimes, still potentially accessible
via TNs [24].

II. TRANSITION AT ZERO CHARGE

We focus on the zero charge sector, i.e.
P
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†
x x = L3

2 ,
and Periodic Boundary Conditions (PBC). As shown in
Fig. 2 (upper panel), for g2

m = 0 the system under-
goes a transition between two regimes, analogously to
the (1+1)D and (2+1)D cases [22, 25, 32]: for large pos-
itive masses, the system approaches the bare vacuum,
while for large negative masses, the system is arranged
into a crystal of charges, a highly degenerate state in the
semiclassical limit (t ! 0) due to the exponential num-
ber of electric field configurations allowed. We track this
transition by monitoring the average matter density ⇢ =
1
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x hGS| n̂x |GSi where n̂x = 1+(�1)x

2 � (�1)x †
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is the matter occupation operator and the many-body
ground state |GSi has been computed by TTN algorithm

(see Appendices A, B, C for details). Fig. 2(b) displays
the result for different sizes L (and g2

e/2 = t = 1), por-
traying the transition. Panels (a) and (c) display local
configurations of matter hn̂xi and gauge sites hÊx,µi for
m = �3.0 and m = +3.0 respectively. In the former
regime, the algorithm seems to favor a single allowed con-
figuration of gauge fields rather than a superposition of
many configuations: This is due to the fact that, when
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m = 0, the matrix element that rearranges the configu-
rations occurs at very high perturbative order in |t/m|,
and is numerically neglected. A finite-size scaling analy-
sis of the transition (see Appendix D) yields results com-
patible with a II-order phase transition, with the critical
point occurying at negative bare masses m.

The same transition appears to be more interesting
when we ‘activate’ the magnetic coupling, by setting
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m = 8t2/g2
e = 4 (physical line). The phase at large

negative m now appears to be a genuine superposition
of many configurations of the electric field, as they are
coupled by matrix elements of the order ⇠ g2

m, kept as
numerically relevant by the algorithm. Moreover, the
transition is still compatible with a II-order phase tran-
sition, and the critical point is shifted to larger m values.
This can lead to a critical bare mass mc that is positive
(as we observed mc ⇡ +0.22 for the case g2

e/2 = t = 1),
ultimately making the transition physically relevant.
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Figure 3: (a) Ground state configuration of the quantum capacitor for m = 3.0. (b) Mean charge density on the
sites along the transverse direction for different values of m. (c) Mean value of the electric field on the transverse

links for different values of m. (d) Ground state configuration of the quantum capacitor for m = �3.0. (e)
Illustration of the creation of a particle-antiparticle pair along the transverse direction, starting from the initial

electric field string generated by the boundary charges. (f) Particle density as a function of m, with a comparison to
the case with no boundary charges.

III. QUANTUM CAPACITOR

To investigate field-screening and equilibrium string-
breaking properties, we analyze the scenario where two
charged plates (an electric capacitor) are placed at the
opposite faces of a volume, with open boundary condi-
tions (OBC). In our simulations, we achieve this regime
by setting large local chemical potentials on the two
boundaries. We expect that for small positive masses m,
the vacuum inside the plates will spontaneously polarize
to an effective dielectric, by creating particle and antipar-
ticle pairs to screen the electric field from the plates, into
an energetically-favorable configuration.

We observe this phenomenon by monitoring the charge
density function along the direction µx orthogonal to the
plates qc(d) = 2

L2

PL
j,k=1 hGS| (�1)x ̂†

(d,j,k) ̂(d,j,k) |GSi

as well as the electric field amplitude along µx,
Ec

x,x+µx
(d) = 2

L2

PL
j,k=1 hGS| Ê(d,j,k),(d+1,j,k) |GSi, as

presented in Fig. 3.
A transition from a vacuum regime to a string-breaking

dielectric regime is observed, when driving m from neg-
ative to positive. However, here the critical point occurs
at positive masses (mc > 0) even at zero magnetic cou-

pling g2
m = 0, analogously to the (1+1)D case [22]. In

conclusion, the charged capacitor can make the phase
transition physical even when g can not be tuned.

The observed behaviour can be interpreted as an equi-
librium counterpart to the Schwinger mechanism, a real-
time dynamical phenomenon in which the spontaneous
creation of electron-positron pairs out of the vacuum is
stimulated by a strong external electric field [43]. This
could either be potentially verified in experiments or
quantum simulations, by means of adiabatic quenches,
ramping up the capacitor voltage.

IV. CONFINEMENT PROPERTIES

The (3+1)-dimensional pure compact lattice QED pre-
dicts a confining phase at large coupling g [11, 44–47].
This phase, where the magnetic coupling is negligible, is
characterized by the presence of a linear potential be-
tween static test charges, and is expected to survive at
the continuum limit. By decreasing g, the system under-
goes a phase transition to the Coulomb phase where the
magnetic terms are not negligible and the static charges
interact through the 1/r Coulomb potential at distance r
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[48]. When the gauge field is coupled to dynamical mat-
ter (t 6= 0 and finite m), new possible scenarios emerge,
such as the string-breaking mechanism. Nevertheless, the
transition between confined and deconfined phases is still
expected to occur [49].

We can investigate this specific scenario with our TN
method: we consider a 16 ⇥ 4 ⇥ 4 lattice and pin two
opposite charges via large local chemical potentials at
distance r along direction µx. The energy E(r) =
V (r)�V (1)+2✏1+E0 of this ground state comprises: the
work V (r) � V (1) needed to bring two charges from in-
finity to distance r, plus twice the excitation energy ✏1 of
an isolated pinned charge, on top of the dressed-vacuum
energy E0. Therefore we can estimate the interaction
potential as V (r) = E(r) � E0 + ⇠ where the additive
constant ⇠ does not scale with the volume (while E(r)
and E0 separately do).

The presence of dynamical matter heavily impacts the
strong-coupling picture (g2

m ⇠ 0), as it can be extrapo-
lated in the semiclassical limit (t ⇠ 0). Here, a particle-
antiparticle pair at distance r with, a field-string between
them, has an energy

E(r) � E0 = 2m +
g2

2
r. (4)

that scales linearly with r. On the contrary, two mesons
(neighboring particle-antiparticle pairs) have a flat en-
ergy profile

Epairs � E0 = 4m + g2. (5)

Thus, for any mass m, there is critical distance r0 above
which the string is broken, and formation of two mesons
is energetically favorable.

We observe this transition at finite t, as shown in Fig.
4 (bottom panel, g2 = 4). The crossover from the short-
range to long-range behavior is still relatively sharp, and
the distance rc at which it occurs strongly depends on the
bare mass m. This is in contrast to the weak-coupling
regime (top panel, g2 = 1/4), where the potential profile
V (r) (i) is smoothly increasing with r, (ii) it is roughly
independent from m, and (iii) its slope at short distances
disagrees with the string tension ansatz rg2/2 + const..
Thus our simulations highlight visibly different features
between confined and deconfined regimes, even with dy-
namical matter.

V. FINITE DENSITY

One of the most important features of our numerical
approach is the possibility to tackle finite charge-density
regimes. In fact, by exploiting the global U(1) fermion-
number symmetry, implemented in our TTN algorithms,
we can inject any desired charge imbalance into the sys-
tem, while working under OBC. Fig. 5 shows the results
for charge density ⇢ = Q/L3 = 1/4. In the vacuum phase
(m � g2

e/2 ⇡ t), we obtain configurations as displayed in

�20

�10

0

�/r + �

m = 5.0, g2 = 0.25

(g2/2)r + const

0 2 4 6 8 10 12
r

0

10

20

(g2/2)r m = 7.0, g2 = 4.00 m = 5.0, g2 = 4.00

V
(r

)

+q �q

+q �q +q �q

V
(r

)

r

�20

�10

0

�/r + �

m = 5.0, g2 = 0.25

(g2/2)r + const

0 2 4 6 8 10 12
r

0

10

20

(g2/2)r m = 7.0, g2 = 4.00 m = 5.0, g2 = 4.00
V

(r
)

�20

�10

0

�/r + �

m = 5.0, g2 = 0.25

(g2/2)r + const

0 2 4 6 8 10 12
r

0

10

20

(g2/2)r m = 7.0, g2 = 4.00 m = 5.0, g2 = 4.00

V
(r

)

Figure 4: Interaction potential V (r) between two
charges of opposite sign as a function of their distance r
in the (upper panel) weak coupling regime g ⌧ 1 and

(lower panel) strong coupling regime g � 1.

panel (a), where the charges are expelled from the bulk,
and stick to the boundaries to minimize the electric field
energy of the outcoming fields. To quantify this effect,
which can also be interpreted as a field-screening phe-
nomenon, we introduce the surface charge density
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where A(l) contains only sites sitting at lattice dis-
tance l from the closest boundary. The deeper we are
in the vacuum phase, the faster the surface charge de-
cays to zero away from the boundary (l = 1). By con-
trast, close to the transition, the spontaneous creation of
charge-anticharge pairs determines a finite charge den-
sity of the bulk. Finally, for large negative m, the charge
distribution is roughly uniform.

VI. OUTLOOK

We have shown that TN methods can simulate LGT
in three spatial dimensions, in the presence of matter
and charge imbalance, ultimately exploring those regimes
where other known numerical strategies struggle. We
have investigated collective phenomena of lattice QED
which stand at the forefront of the current research ef-
forts, including quantum phase diagrams, confinement is-
sues, and the string breaking mechanism at equilibrium.
We envision the possibility of including more sophisti-
cated diagnostic tools, such as the ’t Hooft operators [50]
which nicely fit TNs designs, to provide more quantita-
tively precise answers to the aforementioned open prob-
lems.
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[48]. When the gauge field is coupled to dynamical mat-
ter (t 6= 0 and finite m), new possible scenarios emerge,
such as the string-breaking mechanism. Nevertheless, the
transition between confined and deconfined phases is still
expected to occur [49].

We can investigate this specific scenario with our TN
method: we consider a 16 ⇥ 4 ⇥ 4 lattice and pin two
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energy E0. Therefore we can estimate the interaction
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constant ⇠ does not scale with the volume (while E(r)
and E0 separately do).
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them, has an energy
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that scales linearly with r. On the contrary, two mesons
(neighboring particle-antiparticle pairs) have a flat en-
ergy profile

Epairs � E0 = 4m + g2. (5)

Thus, for any mass m, there is critical distance r0 above
which the string is broken, and formation of two mesons
is energetically favorable.

We observe this transition at finite t, as shown in Fig.
4 (bottom panel, g2 = 4). The crossover from the short-
range to long-range behavior is still relatively sharp, and
the distance rc at which it occurs strongly depends on the
bare mass m. This is in contrast to the weak-coupling
regime (top panel, g2 = 1/4), where the potential profile
V (r) is smoothly increasing with r, and its slope at short
distances disagrees with the string tension ansatz rg2/2+
const.. Thus our simulations highlight visibly different
features between confined and deconfined regimes, even
with dynamical matter.
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One of the most important features of our numerical
approach is the possibility to tackle finite charge-density
regimes. In fact, by exploiting the global U(1) fermion-
number symmetry, implemented in our TTN algorithms,
we can inject any desired charge imbalance into the sys-
tem, while working under OBC. Fig. 5 shows the results
for charge density ⇢ = Q/L3 = 1/4. In the vacuum phase
(m � g2

e/2 ⇡ t), we obtain configurations as displayed in
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where A(l) contains only sites sitting at lattice dis-
tance l from the closest boundary. The deeper we are
in the vacuum phase, the faster the surface charge de-
cays to zero away from the boundary (l = 1). By con-
trast, close to the transition, the spontaneous creation of
charge-anticharge pairs determines a finite charge den-
sity of the bulk. Finally, for large negative m, the charge
distribution is roughly uniform.
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Thus, for any mass m, there is critical distance r0 above
which the string is broken, and formation of two mesons
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We observe this transition at finite t, as shown in Fig.
4 (bottom panel, g2 = 4). The crossover from the short-
range to long-range behavior is still relatively sharp, and
the distance rc at which it occurs strongly depends on the
bare mass m. This is in contrast to the weak-coupling
regime (top panel, g2 = 1/4), where the potential profile
V (r) is smoothly increasing with r, and its slope at short
distances disagrees with the string tension ansatz rg2/2+
const.. Thus our simulations highlight visibly different
features between confined and deconfined regimes, even
with dynamical matter.
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One of the most important features of our numerical
approach is the possibility to tackle finite charge-density
regimes. In fact, by exploiting the global U(1) fermion-
number symmetry, implemented in our TTN algorithms,
we can inject any desired charge imbalance into the sys-
tem, while working under OBC. Fig. 5 shows the results
for charge density ⇢ = Q/L3 = 1/4. In the vacuum phase
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and stick to the boundaries to minimize the electric field
energy of the outcoming fields. To quantify this effect,
which can also be interpreted as a field-screening phe-
nomenon, we introduce the surface charge density
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where A(l) contains only sites sitting at lattice dis-
tance l from the closest boundary. The deeper we are
in the vacuum phase, the faster the surface charge de-
cays to zero away from the boundary (l = 1). By con-
trast, close to the transition, the spontaneous creation of
charge-anticharge pairs determines a finite charge den-
sity of the bulk. Finally, for large negative m, the charge
distribution is roughly uniform.
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We have shown that TN methods can simulate LGT
in three spatial dimensions, in the presence of matter
and charge imbalance, ultimately exploring those regimes
where other known numerical strategies struggle. We
have investigated collective phenomena of lattice QED
which stand at the forefront of the current research ef-
forts, including quantum phase diagrams, confinement is-
sues, and the string breaking mechanism at equilibrium.
We envision the possibility of including more sophisti-
cated diagnostic tools, such as the ’t Hooft operators [50]
which nicely fit TNs designs, to provide more quantita-
tively precise answers to the aforementioned open prob-
lems.
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Figure 1: Scheme of the three-dimensional LGT with
three electric field levels (spin-1 compact

representation). Fermionic degrees of freedom are
represented by staggered fermions on sites with different
parity: on the even (odd) sites, a full red (blue) circle
corresponds to a particle (antiparticle) with positive
(negative) charge. As an illustrative example, it is

shown a gauge-invariant configuration of matter and
gauge fields with one particle and one antiparticle in the

sector of zero total charge.

we address the confinement problem by evaluating the
binding energies of charged particle pairs pinned at spec-
ified distances. Finally, we consider the scenario with a
charge imbalance into the system, i.e. at finite charge
density, and we characterize a regime where charges ac-
cumulate at the surface of our finite sample, analogously
to a classic perfect conductor.

I. THE MODEL

Hereafter, we numerically simulate, at zero tempera-
ture, the Hamiltonian of U(1) quantum electrodynamics
on a finite L⇥L⇥L three-dimensional simple cubic lattice
[16]:

Ĥ = �t
X

x,µ

⇣
 ̂†

x Ûx,µ  ̂x+µ + H.c.
⌘

(1a)

+ m
X

x

(�1)x ̂†
x ̂x +

g2
e

2

X

x,µ

Ê2
x,µ (1b)

�
g2

m

2

X

x

�
⇤µx,µy + ⇤µx,µz + ⇤µy,µz + H.c.

�
(1c)

with x ⌘ (i, j, k) for 0  i, j, k  L � 1
labelling the sites of the lattice and ⇤µ↵,µ� =

Ûx,µ↵Ûx+µ↵,µ� Û†
x+µ� ,µ↵

Û†
x,µ�

. Here we adopted the
Kogut-Susskind formulation [16], representing fermionic
degrees of freedom with a staggered spinless fermion
field { ̂x,  ̂†

x0} = �x,x0 on lattice sites. Their bare mass
mx = (�1)xm is staggered, as tracked by the site parity
(�1)x = (�1)i+j+k, so that fermions on even sites rep-
resent particles with positive electric charge +q, while

holes on odd sites represent anti-particles with negative
charge �q, as shown in Fig. 1. Charge Q̂ conservation is
thus expressed as global fermion number N̂ conservation,
since Q̂ =

P
x

⇣
 ̂†

x ̂x �
1�(�1)x

2

⌘
= N̂ � L3/2.

The links of the 3D lattice are uniquely identified by
the couple of parameters (x, µ) where x is any site, µ is
one of the three positive lattice unit vectors µx ⌘ (1, 0, 0),
µy ⌘ (0, 1, 0), µz ⌘ (0, 0, 1). The gauge fields are defined
on lattice links through the pair of operators Êx,µ (elec-
tric field) and Ûx,µ (unitary comparator) that satisfy the
commutation relation

[Êx,µ, Ûx0,µ0 ] = �x,x0�µ,µ0Ûx,µ. (2)

For comfort of notation, we can extend the definition to
negative lattice unit vectors via Êx+µ,�µ = �Êx,µ and
Ûx+µ,�µ = Û†

x,µ.
The Hamiltonian of Eq. (1) consists of four terms: the

parallel transporter (1a) describes creation and annihi-
lation of a particle-antiparticle pair, shifting the gauge
field in-between to preserve local gauge symmetries. The
staggered mass and the electric energy density (1b) are
completely local. Finally, the plaquette terms (1c) cap-
ture the magnetic energy density, and are related to the
smallest Wilson loops along the closed plaquettes along
the three planes x � y, x � z, y � z of the lattice. In
dimensionless units (~ = c = 1), the couplings in Eq. (1)
are not independent: They can be expressed as t = 1/a,
m = m0, g2

e = g2/a, g2
m = 8/(g2a), where a is the lattice

spacing, g is the coupling constant of QED and m0 is
the bare mass of particles/antiparticles. The numerical
setup allows us to consider the couplings (t, m, ge, gm)
as mutually independent. We then recover the physical
regime of QED by enforcing gegm = 2

p
2t. We also fix

the energy scale by setting t = 1.
The local U(1) gauge symmetry of the theory is en-

coded in Gauss’s law, whose generators

Ĝx =  ̂†
x ̂x �

1 � (�1)x

2
�

X

µ

Êx,µ, (3)

are defined around each lattice site x. The sum in Eq. (3)
involves the six electric field operators on the links iden-
tified by ±µx, ±µy, ±µz. Each Ĝx commutes with the
Hamiltonian Ĥ and the gauge invariant Hilbert space
consists of physical many-body quantum states |�i sat-
isfying Ĝx |�i = 0 at every site x.

As stressed in the standard Wilson’s formulation of
lattice QED [11], faithful representations of the (Ê, Û)
algebra are infinite-dimensional. A truncation to a fi-
nite dimension becomes therefore necessary for numeri-
cal simulations with TN methods, which require a finite
effective Hilbert dimension at each lattice site. We use
the quantum link model (QLM) approach in which the
gauge field algebra is replaced by SU(2) spin algebra, i.e.
Êx,µ ⌘ Ŝz

x,µ and Ûx,µ ⌘ Ŝ+
x,µ/s for a spin-s representa-

tion. This substitution keeps the electric field operator
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theory, are convex-roof extensions of pure-state entangle-
ment measures [7]. Estimating these monotones is a hard
non-linear minimization problem over pure-state decom-
positions of the global density matrix [20–26], severely
limited to small system sizes.

The key point of the strategy we propose is the intro-
duction of a new TN structure to represent a density ma-
trix ⇢, the Tree Tensor Operator (TTO) (Fig. 1). This
TN ansatz guarantees positivity of ⇢, and being loop-
less it is e�ciently contractible. Moreover, it is a natural
TN geometry for estimating bipartite entanglement mea-
sures: as discussed below, the information about bipar-
tite entanglement is compressed into a single tensor, ul-
timately simplifying the complexity of the minimization
problem. We demonstrate this method e↵ectiveness com-
puting the EoF of thermal many-body quantum states of
the 1D transverse-field Ising and XXZ models.

Tree Tensor Operator ansatz � As positive operators,
density matrices ⇢ =

P
j
pj | jih j | can be written as ⇢ =

XX
†, where the rectangular matrix X =

P
j

p
pj | jihj|

has a number of columns equal to the rank of ⇢, also
known as the the Kraus dimension K0. For many-body
quantum states at low temperatures, probabilities pj de-
cay su�ciently fast that it is possible to approximate ⇢
using a K0 that scales at most polynomially with the
system size N . Therefore, from a numerical viewpoint,
it is meaningful represent X with a Tree Tensor net-
work as shown in Fig. 1: the lower open links (‘leaves’,
each of dimension d) represent the physical sites, while
the upper open link (‘root’, of dimension K0) represents
the Kraus space of the global purification. As for other
Tensor Network ansätze, this representation becomes ef-
ficient when the connecting links, or ‘branches’, carry an
e↵ective dimension M that also scales polynomially with
N [16, 27, 28].

By construction, the TTO ansatz guarantees positiv-
ity of ⇢, in contrast to the Matrix Product Density Op-
erator ansatz [29, 30], whose positivity can be checked
only as an NP-hard problem [31]. Locally Purified Ten-
sor Networks [32] also preserve positivity, but the pres-
ence of loops in their network geometry leads to numer-
ical limitations when implementing optimization strate-
gies [33, 34]. The TTO is instead positive and loopless
thus encompassing the best of the two words without
any drawbacks. When the TTO is properly isometrized
to the root tensor, via (e�cient) TN gauge transforma-
tions [16], all the information about the mixing prob-
abilities pj ends up stored within that tensor. Thus,
also information about global entropies (Von Neumann
S = �

P
pj log pj and Rényi S↵ = (1 � ↵)�1 log

P
j
p
↵

j
,

including the purity). Moreover, all the information on
bipartite entanglement (for a half-half system biparti-
tion) is contained only in the root tensor. Indeed, the
action of the isometrized branches is actually an invert-
ible LOCC (operation achievable via Local Operations
and Classical Communication), and entanglement mono-

tones cannot increase under such transformations [8]. In
conclusion, compressing the relevant information into a
tensor with polynomially-scaling dimension, it is possible
to e�ciently estimate entanglement monotones by pro-
cessing only the root tensor, even for complex measures
that rely on convex-roof extensions. Below, we specialize
this procedure to the specific case of the EoF.
EoF estimation � The EoF of a mixed quantum state

⇢, defined as [7]

EF (⇢) = inf
{pj , j}

nX

j

pjS(| ji) : ⇢ =
X

j

pj | jih j |
o

,

quantifies the number of Bell pairs needed to construct
a certain number of copies of ⇢ via LOCC. The mini-
mization runs over all possible decompositions of ⇢ as
a convex mixture of pure states | ni, with probabilities
pn. It is straightforward to recast the previous expres-
sion in terms of the matrix X, whose columns

p
pj | ji

represent one possible pure-state decomposition of ⇢. Via
the Schrödinger-HJW theorem [35, 36], it is possible to
obtain the whole set of X

0 matrices representing ⇢, and
thus all possible pure-state decompositions. This is done
by multiplying X

0 = XU , where U is any right-isometry
(a semi-unitary matrix satisfying UU† = 1) of dimension
K0 ⇥ K, with K � K0. The minimization problem then
becomes a minimization over the space of right isometries
U , precisely

EF (⇢) = min
K�K0

inf
U

n KX

j=1

pjS(| 0
j
i) : X

0 = XU
o

, (1)

where the columns of X
0 represent the new pure-

state decomposition of ⇢, with wavefunctions | 0
j
i =

X
0|ji(p0

j
)�1/2 and probabilities p

0
j

= hj|X 0†
X

0|ji.
As depicted in Fig. 1(a), the X matrix composing the

isometrized TTO can be written as X = (VL ⌦ VR)R,
where R is the root tensor, and the branches V? are left-
isometries (V†

?V? = 1). It follows that the columns of
R must have the same entanglement entropy S of the
columns of X, and clearly the same probabilities p

0
j
.

Thus, Eq. (1) can be more e�ciently computed by re-
placing X with the smaller root tensor R.
Numerical Simulation � Hereafter, we estimate the

EoF of low-temperature many-body states of 1D quan-
tum lattice models H via TTO. We first obtain
X = 1p

Z

P
K0

j
e
�Ej/2T | jihj| from exact diagonalization

(ED), where Ej is the energy of eigenstate | ji, and the
partition function Z ensures normalization Tr

�
XX

† =
1. Afterwards, we compress X into the TTO using stan-
dard linear algebra routines, as detailed in the Supple-
mentary Material (SM). Although this is not the most
e�icient strategy (it is possible to develop algorithms
that directly compute the TTO for finite-temperature
quantum states, capture Markovian real-time evolution
[37], or transform other TN states into TTOs [38]), we

For mixed states:

Entanglement of formation
C.H. Bennet et al. PRA 1996

For pure states:

Von Neumann Entropy 

S / �
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temperatures T ⇠ �). For PBC, this behaviour can be
expressed as EF = log(N c/3

f(TN
z)), or

EF (T, N) =
c

3
log N + g(TN

z) (4)

in analogy to Ref. [42], where c is the critical exponent
that connects lengthscales to entanglement, while z is
the critical exponent that connects lengthscales to en-
ergyscales (� / N

�z). The functions f(·) and g(·) =
log f(·) are non-universal and depend on the microscopi-
cal details of the model. This behaviour actually extends,
to finite T , the known scaling law for the entanglement
entropy with size, valid for critical ground states [40, 41].
We validate this argument in the inset of Fig. 3, where
the EF (T, N) data sets are appropriately rescaled, ac-
cording to N . As we expect, the curves collapse when
the appropriate critical exponents of the corresponding
model are used (c = 1

2 , z = 1 for critical Ising; c = 1,
z = 1 for Luttinger liquid XXZ).

As a final remark, we stress that the EoF analy-
sis enabled by the TTO method is not limited to low-
temperature many-body states of lattice models. We
have employed the same diagnostic tool on other classes
of mixed many-body states, including on sets where the
EoF is known, as reported in the SM.

Conclusions In this letter, we have presented a new
tensor network approach that enables the numerical anal-
ysis of bipartite entanglement for many-body quantum
systems, even for those entanglement monotones that
are considered hard since they require convex-roof opti-
mization. We employed a Tree Tensor Operator (TTO)
to well-approximate the global density matrix at low
temperatures. Such a tensor network architecture com-
presses information of the bipartite entanglement into
a single tensor, whose dimensions in many cases scale
polinomially with the system size. As a result, evaluat-
ing entanglement monotones is numerically e�cient, as
illustrated for 1D interacting lattice models. Our analy-
sis observed a scaling law for the Entanglement of For-
mation, compatible with a logarithmic conformal scal-
ing law. We successfully tested this argument for a free
fermion (Ising) and an interacting fermion (XXZ) criti-
cal models, where it is satisfied in a temperature range
commensurate with the finite-size energy gap (T ⇠ �).

While the TTOs we constructed were generated start-
ing from ED, alternative strategies to directly construct-
ing the thermal TTO which require polynomial time and
computer memory in N can be developed. Similarly, we
envision the possibility of replacing the TTN branches
of the ansatz with Matrix Product State branches: an
alternative TN design that is still e�cient toward EoF
estimation. Finally, we expect that TTO may be
capable to accurately capture some features of open-
system quantum dynamics. This will actually extend
the bipartite-entanglement analysis, presented here, from
finite-temperature states to a larger set of open-system

FIG. 3. Scale-invariance of the EoF EF at temperatures T (in
units of J/kB) in the range kBT  0.5�, where � / N

�z, for
the critical Ising model in Eq. (2) (top) and the XXZ model in
Eq. (3) in the critical phase at ⇠ = 0.5 (bottom). Main figures
show data for N = 8, 12, 16, 20, which are respectively blue
pentagons, orange squares, green diamonds and red circles.
Inset: curves in the main figures after rescaling according
to Eq. (4). The agreement is stunning, using c = 1/2 and
z = 1.02±0.02 (top) and c = 1 and z = 0.98±0.02 (bottom).
The grey area highlights the temperature range T  0.2�(N).

physically relevant states, i.e. the stationary states of a
Lindblad master equation [43–45]. The Time-Dependent
Variational Principle [46, 47] is surely a good candidate
strategy towards this goal. This will likely be the focus
of our research in the near future, aiming to enable the
EoF analysis presented here onto even larger system sizes
of the order of hundreds of sites.
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ing discussions. Authors kindly acknowledge support
from the Italian PRIN2017 and Fondazione CARIPARO,
the Horizon 2020 re-search and innovation programme
under grant agreementNo 817482 (Quantum Flagship
- PASQuanS), the Quan-tERA projects QTFLAG and
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show that the improvement introduced by our approach
already enables the investigation of relevant scaling prop-
erties of critical systems not achievable before.

Once the TTO is built, we proceed to calculate the
optimization from Eq. (1) on the top tensor R. To build
sets of U matrices, we fix a value for K � K0 and pa-
rameterize a Hermitian matrix A = A

† of dimensions
K ⇥ K. Then, we get the corresponding unitary from
U = exp{iA}, and finally we take K0 random rows of U

to build U . For every column of R
0 = RU , its entangle-

ment entropy is calculated via S = �
P

i
s
2
i
log s

2
i
, where

the singular values si are obtained by a singular value de-
composition (SVD). In the results section, entropies are
expressed in basis of log2, so that a Bell pair defines the
unit of entanglement. For a given K � K0, minimization
in the space of the U is carried out via direct search meth-
ods, but other choices are possible. Extensive proofs of
the stability of this method, as well as some results on
many-body random density matrices, are provided in the
SM. Convergence of the minima is rapidly reached when
increasing K � K0. For all practical purposes, choosing
K ⇡ K0 is often su�cient to achieve close convergence
(see SM). We stress that, even in case of incomplete or
failed convergence, our method still provides an upper
bound to the actual EoF of the quantum state. In par-
ticular, in every case we could check, the results provided
tight bounds.

Results � We consider two well-known prototype quan-
tum critical spin- 12 models as benchmarks [39]: specifi-
cally, the Ising model

ĤIsing = J

NX

i=1

�
�̂

x

j
�̂

x

j+1 + h�̂
z

j

�
(2)

in a transverse field h, and the XXZ model

ĤXXZ = J

NX

j=1

�
�̂

x

j
�̂

x

j+1 + �̂
y

j
�̂

y

j+1 + ⇠ �̂
z

j
�̂

z

j+1

�
(3)

with anisotropy ⇠, both models considered in periodic
boundary conditions (PBC) and �̂

↵

j
s (↵ = x, y, z) are the

Pauli matrices. The temperature T , defining the thermal
state ⇢ = 1

Z
e
�Ĥ/T , is expressed in units of the Hamilto-

nian energyscale (J = kB = 1). To appropriately choose
a suitable number K0 we start from K0 = 2. We then
evaluate the resulting EoF, gradually increasing K0 until
convergence of the estimated EoF is reached. We employ
a similar strategy to choose the best M .

Fig. 2 shows a typical benchmark comparison of the
total computational time required to estimate the EoF:
(i) using the full description (X matrix, orange data)
(ii) using the TTO method (R matrix, blue data). The
time needed to solve the full optimization increases as
O(dim{H}3/2), since the bottleneck of our algorithm is
the SVD to calculate S for each of the K pure states. By

FIG. 2. Scaling of computational times versus N , for thermal
states of ĤIsing in Eq. (2) at h = 1 and with kBT = 0.1J .
Green diamonds correspond to optimizations done on density
matrices with no approximations. Orange squares refer in-
stead to states where K0 has been truncated, but still pure
states are not compressed (see Fig. 1(c)): the exponential fit
of the last five data points shows that the complexity scales as
O((2N )1.503), in agreement with the theoretical expectation.
Blue circles report the optimization times needed using the
root tensor R of the TTO with a maximal bond dimension M

and truncated K0 (see Fig. 1(b)). Inset: Smallest M needed
to achieve convergence of the EoF within 1% of its exact value.
Red pentagons and purple diamonds refer respectively to the
critical Ising model at kBT = 0.1J and to the XXZ model
with ⇠ = 0.5 (critical) at kBT = 0.5J .

contrast, this runtime scales like O(M3) for a TTO rep-
resentation, with M ⌧

p
dim{H}. In fact, we studied

the M needed to achieve 99% of the exact EoF value as
a function of the size N , for both Ising and XXZ models
in the gapless phase. The growth is linear and smooth,
as shown in the inset.

Equipped with our diagnostic tool, we perform inter-
esting investigations of bipartite entanglement properties
of intermediate-size quantum systems at finite T . The
two panels in Fig. 3 focus on critical phases of the two
models, the quantum phase transition point of the Ising
model (h = 1, top), and the Luttinger liquid phase of the
XXZ model (⇠ = 0.5, bottom) respectively. While the
system is strongly-correlated at zero temperature, entan-
glement seems to survive roughly unaltered up to T of the
order of 0.2�(N), with �(N) the finite-size energy gap,
and smoothly drop at higher T . This phenomenon is to
be contrasted with the Von Neumann entropy S (global,
or of either subsystem), which instead grows with T , and
can not capture alone the entanglement decrease [40, 41].
More importantly, we observe an emergent scaling behav-
ior when plotting EF (T, N). In fact, the EoF appears to
follow the logarithm of a conformal scaling function, in
proximity of the quantum critical point (i.e., for small

1D critical systems:

S / N (D�1)
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We present a numerical strategy to e�ciently estimate bipartite entanglement measures, and
in particular the Entanglement of Formation, for many-body quantum systems on a lattice. Our
approach introduces a novel tensor network ansatz � the Tree Tensor Operator � a positive, loopless
representation for density matrices which e�ciently encodes information on bipartite entanglement,
enabling the up-scaling of entanglement estimation. Employing this technique, we observe a finite-
size scaling law for the entanglement of formation in 1D critical lattice models at finite temperature,
extending to mixed states the Calabrese-Cardy scaling law for the entanglement entropy.

Quantum entanglement, correlations uniquely present
in quantum systems [1], lies at the heart of the second
quantum revolution. It is a fundamental resource in the
development of present and future quantum technolo-
gies [2], and it drives the collective physics of many-body
quantum systems at low temperatures [3, 4]. The abil-
ity to characterize and quantify entanglement in a quan-
tum state is thus crucial. However, even the simplest
entanglement characterization, bipartite entanglement �
quantifying the mutual quantum correlations between
two subsystems � is well-understood only when the state
of the joint subsystems is a pure quantum state. This is
mostly due to the fact that the estimation strategies for
entanglement of mixed states call for minimizations in
spaces that scales exponentially with the number of con-
stituents of the system, and thus are e↵ectively limited
to small-sized systems [5, 6]. In this letter, we show how
tensor network (TN) techniques can tackle this challenge,
and e�ciently estimate the Entanglement of Formation
(EoF) [7] � the convex-roof extension of the Von Neu-
mann entropy � of many-body quantum states. As first
application of this approach, we show that for critical
one-dimensional systems the EoF obeys a (logarithmic)
finite-size conformal scaling-law, for temperatures com-
mensurate with the energy gap.

For pure states, the connection between bipartite en-
tanglement and the e↵ective entropy of either subsystem
has been largely established, and is typically expressed
in terms of Von Neumann (S) or Rényi entropies [7–10].
While challenging to measure in an experiment [11], these
estimators are often accessible in numerical simulations of
many-body quantum systems, and especially in loopless
tensor network ansatz states, where the calculation com-
plexity scales polinomially with the system size [12–16].
Conversely, for mixed global quantum states, the problem
of characterizing and quantifying bipartite entanglement
is much more involved, both conceptually and technically.
It is nevertheless a fundamental goal, since any realistic
quantum platform faces imperfections, statistical errors,
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FIG. 1. (a) The Tree Tensor Operator (TTO) representing a
density matrix ⇢ = XX

†. K0 is the number of pure states in
the representation used, while M is the maximal dimension
for all bonds. The gray dashed square highlights the root
tensor R, containing all the information about entanglement
between the red and green bipartitions of the physical space.
(b) Change of representation for the EoF minimization using
R, after having compressed the state with some maximal bond
dimension M . (c) Same as (b), but without compression, so
that M = d

N/2. Optimizations are possible for any system
size and state that can be e�ciently represented as TTOs.

and/or imperfect isolation leading to finite temperatures.
From a conceptual standpoint, a major focus is to assess
which of the entanglement monotones proposed over the
years satisfy the desired properties of entanglement mea-
sures [8]. At a technical level, the core problem is to
e�ciently estimate these entanglement quantifiers. Even
those that can be evaluated by linear algebra operations,
such as negativity [17] and quantitative witnesses [18, 19],
are exponentially expensive in the system size. Addi-
tionally, many important monotones with a clear phys-
ical significance, in terms of resource and information
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theory, are convex-roof extensions of pure-state entangle-
ment measures [7]. Estimating these monotones is a hard
non-linear minimization problem over pure-state decom-
positions of the global density matrix [20–26], severely
limited to small system sizes.

The key point of the strategy we propose is the intro-
duction of a new TN structure to represent a density ma-
trix ⇢, the Tree Tensor Operator (TTO) (Fig. 1). This
TN ansatz guarantees positivity of ⇢, and being loop-
less it is e�ciently contractible. Moreover, it is a natural
TN geometry for estimating bipartite entanglement mea-
sures: as discussed below, the information about bipar-
tite entanglement is compressed into a single tensor, ul-
timately simplifying the complexity of the minimization
problem. We demonstrate this method e↵ectiveness com-
puting the EoF of thermal many-body quantum states of
the 1D transverse-field Ising and XXZ models.

Tree Tensor Operator ansatz � As positive operators,
density matrices ⇢ =

P
j
pj | jih j | can be written as ⇢ =

XX
†, where the rectangular matrix X =

P
j

p
pj | jihj|

has a number of columns equal to the rank of ⇢, also
known as the the Kraus dimension K0. For many-body
quantum states at low temperatures, probabilities pj de-
cay su�ciently fast that it is possible to approximate ⇢
using a K0 that scales at most polynomially with the
system size N . Therefore, from a numerical viewpoint,
it is meaningful represent X with a Tree Tensor net-
work as shown in Fig. 1: the lower open links (‘leaves’,
each of dimension d) represent the physical sites, while
the upper open link (‘root’, of dimension K0) represents
the Kraus space of the global purification. As for other
Tensor Network ansätze, this representation becomes ef-
ficient when the connecting links, or ‘branches’, carry an
e↵ective dimension M that also scales polynomially with
N [16, 27, 28].

By construction, the TTO ansatz guarantees positiv-
ity of ⇢, in contrast to the Matrix Product Density Op-
erator ansatz [29, 30], whose positivity can be checked
only as an NP-hard problem [31]. Locally Purified Ten-
sor Networks [32] also preserve positivity, but the pres-
ence of loops in their network geometry leads to numer-
ical limitations when implementing optimization strate-
gies [33, 34]. The TTO is instead positive and loopless
thus encompassing the best of the two words without
any drawbacks. When the TTO is properly isometrized
to the root tensor, via (e�cient) TN gauge transforma-
tions [16], all the information about the mixing prob-
abilities pj ends up stored within that tensor. Thus,
also information about global entropies (Von Neumann
S = �

P
pj log pj and Rényi S↵ = (1 � ↵)�1 log

P
j
p
↵

j
,

including the purity). Moreover, all the information on
bipartite entanglement (for a half-half system biparti-
tion) is contained only in the root tensor. Indeed, the
action of the isometrized branches is actually an invert-
ible LOCC (operation achievable via Local Operations
and Classical Communication), and entanglement mono-

tones cannot increase under such transformations [8]. In
conclusion, compressing the relevant information into a
tensor with polynomially-scaling dimension, it is possible
to e�ciently estimate entanglement monotones by pro-
cessing only the root tensor, even for complex measures
that rely on convex-roof extensions. Below, we specialize
this procedure to the specific case of the EoF.
EoF estimation � The EoF of a mixed quantum state

⇢, defined as [7]

EF (⇢) = inf
{pj , j}

nX

j

pjS(| ji) : ⇢ =
X

j

pj | jih j |
o

,

quantifies the number of Bell pairs needed to construct
a certain number of copies of ⇢ via LOCC. The mini-
mization runs over all possible decompositions of ⇢ as
a convex mixture of pure states | ni, with probabilities
pn. It is straightforward to recast the previous expres-
sion in terms of the matrix X, whose columns

p
pj | ji

represent one possible pure-state decomposition of ⇢. Via
the Schrödinger-HJW theorem [35, 36], it is possible to
obtain the whole set of X

0 matrices representing ⇢, and
thus all possible pure-state decompositions. This is done
by multiplying X

0 = XU , where U is any right-isometry
(a semi-unitary matrix satisfying UU† = 1) of dimension
K0 ⇥ K, with K � K0. The minimization problem then
becomes a minimization over the space of right isometries
U , precisely

EF (⇢) = min
K�K0

inf
U

n KX

j=1

pjS(| 0
j
i) : X

0 = XU
o

, (1)

where the columns of X
0 represent the new pure-

state decomposition of ⇢, with wavefunctions | 0
j
i =

X
0|ji(p0

j
)�1/2 and probabilities p

0
j

= hj|X 0†
X

0|ji.
As depicted in Fig. 1(a), the X matrix composing the

isometrized TTO can be written as X = (VL ⌦ VR)R,
where R is the root tensor, and the branches V? are left-
isometries (V†

?V? = 1). It follows that the columns of
R must have the same entanglement entropy S of the
columns of X, and clearly the same probabilities p

0
j
.

Thus, Eq. (1) can be more e�ciently computed by re-
placing X with the smaller root tensor R.
Numerical Simulation � Hereafter, we estimate the

EoF of low-temperature many-body states of 1D quan-
tum lattice models H via TTO. We first obtain
X = 1p

Z

P
K0

j
e
�Ej/2T | jihj| from exact diagonalization

(ED), where Ej is the energy of eigenstate | ji, and the
partition function Z ensures normalization Tr

�
XX

† =
1. Afterwards, we compress X into the TTO using stan-
dard linear algebra routines, as detailed in the Supple-
mentary Material (SM). Although this is not the most
e�icient strategy (it is possible to develop algorithms
that directly compute the TTO for finite-temperature
quantum states, capture Markovian real-time evolution
[37], or transform other TN states into TTOs [38]), we
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show that the improvement introduced by our approach
already enables the investigation of relevant scaling prop-
erties of critical systems not achievable before.

Once the TTO is built, we proceed to calculate the
optimization from Eq. (1) on the top tensor R. To build
sets of U matrices, we fix a value for K � K0 and pa-
rameterize a Hermitian matrix A = A

† of dimensions
K ⇥ K. Then, we get the corresponding unitary from
U = exp{iA}, and finally we take K0 random rows of U

to build U . For every column of R
0 = RU , its entangle-

ment entropy is calculated via S = �
P

i
s
2
i
log s

2
i
, where

the singular values si are obtained by a singular value de-
composition (SVD). In the results section, entropies are
expressed in basis of log2, so that a Bell pair defines the
unit of entanglement. For a given K � K0, minimization
in the space of the U is carried out via direct search meth-
ods, but other choices are possible. Extensive proofs of
the stability of this method, as well as some results on
many-body random density matrices, are provided in the
SM. Convergence of the minima is rapidly reached when
increasing K � K0. For all practical purposes, choosing
K ⇡ K0 is often su�cient to achieve close convergence
(see SM). We stress that, even in case of incomplete or
failed convergence, our method still provides an upper
bound to the actual EoF of the quantum state. In par-
ticular, in every case we could check, the results provided
tight bounds.

Results � We consider two well-known prototype quan-
tum critical spin- 12 models as benchmarks [39]: specifi-
cally, the Ising model

ĤIsing = J

NX

i=1

�
�̂

x

j
�̂

x

j+1 + h�̂
z

j

�
(2)

in a transverse field h, and the XXZ model

ĤXXZ = J

NX

j=1

�
�̂
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j
�̂

x

j+1 + �̂
y

j
�̂

y

j+1 + ⇠ �̂
z

j
�̂

z

j+1

�
(3)

with anisotropy ⇠, both models considered in periodic
boundary conditions (PBC) and �̂

↵

j
s (↵ = x, y, z) are the

Pauli matrices. The temperature T , defining the thermal
state ⇢ = 1

Z
e
�Ĥ/T , is expressed in units of the Hamilto-

nian energyscale (J = kB = 1). To appropriately choose
a suitable number K0 we start from K0 = 2. We then
evaluate the resulting EoF, gradually increasing K0 until
convergence of the estimated EoF is reached. We employ
a similar strategy to choose the best M .

Fig. 2 shows a typical benchmark comparison of the
total computational time required to estimate the EoF:
(i) using the full description (X matrix, orange data)
(ii) using the TTO method (R matrix, blue data). The
time needed to solve the full optimization increases as
O(dim{H}3/2), since the bottleneck of our algorithm is
the SVD to calculate S for each of the K pure states. By

FIG. 2. Scaling of computational times versus N , for thermal
states of ĤIsing in Eq. (2) at h = 1 and with kBT = 0.1J .
Green diamonds correspond to optimizations done on density
matrices with no approximations. Orange squares refer in-
stead to states where K0 has been truncated, but still pure
states are not compressed (see Fig. 1(c)): the exponential fit
of the last five data points shows that the complexity scales as
O((2N )1.503), in agreement with the theoretical expectation.
Blue circles report the optimization times needed using the
root tensor R of the TTO with a maximal bond dimension M

and truncated K0 (see Fig. 1(b)). Inset: Smallest M needed
to achieve convergence of the EoF within 1% of its exact value.
Red pentagons and purple diamonds refer respectively to the
critical Ising model at kBT = 0.1J and to the XXZ model
with ⇠ = 0.5 (critical) at kBT = 0.5J .

contrast, this runtime scales like O(M3) for a TTO rep-
resentation, with M ⌧

p
dim{H}. In fact, we studied

the M needed to achieve 99% of the exact EoF value as
a function of the size N , for both Ising and XXZ models
in the gapless phase. The growth is linear and smooth,
as shown in the inset.

Equipped with our diagnostic tool, we perform inter-
esting investigations of bipartite entanglement properties
of intermediate-size quantum systems at finite T . The
two panels in Fig. 3 focus on critical phases of the two
models, the quantum phase transition point of the Ising
model (h = 1, top), and the Luttinger liquid phase of the
XXZ model (⇠ = 0.5, bottom) respectively. While the
system is strongly-correlated at zero temperature, entan-
glement seems to survive roughly unaltered up to T of the
order of 0.2�(N), with �(N) the finite-size energy gap,
and smoothly drop at higher T . This phenomenon is to
be contrasted with the Von Neumann entropy S (global,
or of either subsystem), which instead grows with T , and
can not capture alone the entanglement decrease [40, 41].
More importantly, we observe an emergent scaling behav-
ior when plotting EF (T, N). In fact, the EoF appears to
follow the logarithm of a conformal scaling function, in
proximity of the quantum critical point (i.e., for small
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glement seems to survive roughly unaltered up to T of the
order of 0.2�(N), with �(N) the finite-size energy gap,
and smoothly drop at higher T . This phenomenon is to
be contrasted with the Von Neumann entropy S (global,
or of either subsystem), which instead grows with T , and
can not capture alone the entanglement decrease [40, 41].
More importantly, we observe an emergent scaling behav-
ior when plotting EF (T, N). In fact, the EoF appears to
follow the logarithm of a conformal scaling function, in
proximity of the quantum critical point (i.e., for small
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Quantum entanglement, correlations uniquely present
in quantum systems [1], lies at the heart of the second
quantum revolution. It is a fundamental resource in the
development of present and future quantum technolo-
gies [2], and it drives the collective physics of many-body
quantum systems at low temperatures [3, 4]. The abil-
ity to characterize and quantify entanglement in a quan-
tum state is thus crucial. However, even the simplest
entanglement characterization, bipartite entanglement �
quantifying the mutual quantum correlations between
two subsystems � is well-understood only when the state
of the joint subsystems is a pure quantum state. This is
mostly due to the fact that the estimation strategies for
entanglement of mixed states call for minimizations in
spaces that scales exponentially with the number of con-
stituents of the system, and thus are e↵ectively limited
to small-sized systems [5, 6]. In this letter, we show how
tensor network (TN) techniques can tackle this challenge,
and e�ciently estimate the Entanglement of Formation
(EoF) [7] � the convex-roof extension of the Von Neu-
mann entropy � of many-body quantum states. As first
application of this approach, we show that for critical
one-dimensional systems the EoF obeys a (logarithmic)
finite-size conformal scaling-law, for temperatures com-
mensurate with the energy gap.

For pure states, the connection between bipartite en-
tanglement and the e↵ective entropy of either subsystem
has been largely established, and is typically expressed
in terms of Von Neumann (S) or Rényi entropies [7–10].
While challenging to measure in an experiment [11], these
estimators are often accessible in numerical simulations of
many-body quantum systems, and especially in loopless
tensor network ansatz states, where the calculation com-
plexity scales polinomially with the system size [12–16].
Conversely, for mixed global quantum states, the problem
of characterizing and quantifying bipartite entanglement
is much more involved, both conceptually and technically.
It is nevertheless a fundamental goal, since any realistic
quantum platform faces imperfections, statistical errors,
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FIG. 1. (a) The Tree Tensor Operator (TTO) representing a
density matrix ⇢ = XX

†. K0 is the number of pure states in
the representation used, while M is the maximal dimension
for all bonds. The gray dashed square highlights the root
tensor R, containing all the information about entanglement
between the red and green bipartitions of the physical space.
(b) Change of representation for the EoF minimization using
R, after having compressed the state with some maximal bond
dimension M . (c) Same as (b), but without compression, so
that M = d

N/2. Optimizations are possible for any system
size and state that can be e�ciently represented as TTOs.

and/or imperfect isolation leading to finite temperatures.
From a conceptual standpoint, a major focus is to assess
which of the entanglement monotones proposed over the
years satisfy the desired properties of entanglement mea-
sures [8]. At a technical level, the core problem is to
e�ciently estimate these entanglement quantifiers. Even
those that can be evaluated by linear algebra operations,
such as negativity [17] and quantitative witnesses [18, 19],
are exponentially expensive in the system size. Addi-
tionally, many important monotones with a clear phys-
ical significance, in terms of resource and information
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and/or imperfect isolation leading to finite temperatures.
From a conceptual standpoint, a major focus is to assess
which of the entanglement monotones proposed over the
years satisfy the desired properties of entanglement mea-
sures [8]. At a technical level, the core problem is to
e�ciently estimate these entanglement quantifiers. Even
those that can be evaluated by linear algebra operations,
such as negativity [17] and quantitative witnesses [18, 19],
are exponentially expensive in the system size. Addi-
tionally, many important monotones with a clear phys-
ical significance, in terms of resource and information
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theory, are convex-roof extensions of pure-state entangle-
ment measures [7]. Estimating these monotones is a hard
non-linear minimization problem over pure-state decom-
positions of the global density matrix [20–26], severely
limited to small system sizes.

The key point of the strategy we propose is the intro-
duction of a new TN structure to represent a density ma-
trix ⇢, the Tree Tensor Operator (TTO) (Fig. 1). This
TN ansatz guarantees positivity of ⇢, and being loop-
less it is e�ciently contractible. Moreover, it is a natural
TN geometry for estimating bipartite entanglement mea-
sures: as discussed below, the information about bipar-
tite entanglement is compressed into a single tensor, ul-
timately simplifying the complexity of the minimization
problem. We demonstrate this method e↵ectiveness com-
puting the EoF of thermal many-body quantum states of
the 1D transverse-field Ising and XXZ models.

Tree Tensor Operator ansatz � As positive operators,
density matrices ⇢ =

P
j
pj | jih j | can be written as ⇢ =

XX
†, where the rectangular matrix X =

P
j

p
pj | jihj|

has a number of columns equal to the rank of ⇢, also
known as the the Kraus dimension K0. For many-body
quantum states at low temperatures, probabilities pj de-
cay su�ciently fast that it is possible to approximate ⇢
using a K0 that scales at most polynomially with the
system size N . Therefore, from a numerical viewpoint,
it is meaningful represent X with a Tree Tensor net-
work as shown in Fig. 1: the lower open links (‘leaves’,
each of dimension d) represent the physical sites, while
the upper open link (‘root’, of dimension K0) represents
the Kraus space of the global purification. As for other
Tensor Network ansätze, this representation becomes ef-
ficient when the connecting links, or ‘branches’, carry an
e↵ective dimension M that also scales polynomially with
N [16, 27, 28].

By construction, the TTO ansatz guarantees positiv-
ity of ⇢, in contrast to the Matrix Product Density Op-
erator ansatz [29, 30], whose positivity can be checked
only as an NP-hard problem [31]. Locally Purified Ten-
sor Networks [32] also preserve positivity, but the pres-
ence of loops in their network geometry leads to numer-
ical limitations when implementing optimization strate-
gies [33, 34]. The TTO is instead positive and loopless
thus encompassing the best of the two words without
any drawbacks. When the TTO is properly isometrized
to the root tensor, via (e�cient) TN gauge transforma-
tions [16], all the information about the mixing prob-
abilities pj ends up stored within that tensor. Thus,
also information about global entropies (Von Neumann
S = �

P
pj log pj and Rényi S↵ = (1 � ↵)�1 log

P
j
p
↵

j
,

including the purity). Moreover, all the information on
bipartite entanglement (for a half-half system biparti-
tion) is contained only in the root tensor. Indeed, the
action of the isometrized branches is actually an invert-
ible LOCC (operation achievable via Local Operations
and Classical Communication), and entanglement mono-

tones cannot increase under such transformations [8]. In
conclusion, compressing the relevant information into a
tensor with polynomially-scaling dimension, it is possible
to e�ciently estimate entanglement monotones by pro-
cessing only the root tensor, even for complex measures
that rely on convex-roof extensions. Below, we specialize
this procedure to the specific case of the EoF.
EoF estimation � The EoF of a mixed quantum state

⇢, defined as [7]

EF (⇢) = inf
{pj , j}

nX

j

pjS(| ji) : ⇢ =
X

j

pj | jih j |
o

,

quantifies the number of Bell pairs needed to construct
a certain number of copies of ⇢ via LOCC. The mini-
mization runs over all possible decompositions of ⇢ as
a convex mixture of pure states | ni, with probabilities
pn. It is straightforward to recast the previous expres-
sion in terms of the matrix X, whose columns

p
pj | ji

represent one possible pure-state decomposition of ⇢. Via
the Schrödinger-HJW theorem [35, 36], it is possible to
obtain the whole set of X

0 matrices representing ⇢, and
thus all possible pure-state decompositions. This is done
by multiplying X

0 = XU , where U is any right-isometry
(a semi-unitary matrix satisfying UU† = 1) of dimension
K0 ⇥ K, with K � K0. The minimization problem then
becomes a minimization over the space of right isometries
U , precisely

EF (⇢) = min
K�K0

inf
U

n KX

j=1

pjS(| 0
j
i) : X

0 = XU
o

, (1)

where the columns of X
0 represent the new pure-

state decomposition of ⇢, with wavefunctions | 0
j
i =

X
0|ji(p0

j
)�1/2 and probabilities p

0
j

= hj|X 0†
X

0|ji.
As depicted in Fig. 1(a), the X matrix composing the

isometrized TTO can be written as X = (VL ⌦ VR)R,
where R is the root tensor, and the branches V? are left-
isometries (V†

?V? = 1). It follows that the columns of
R must have the same entanglement entropy S of the
columns of X, and clearly the same probabilities p

0
j
.

Thus, Eq. (1) can be more e�ciently computed by re-
placing X with the smaller root tensor R.
Numerical Simulation � Hereafter, we estimate the

EoF of low-temperature many-body states of 1D quan-
tum lattice models H via TTO. We first obtain
X = 1p

Z

P
K0

j
e
�Ej/2T | jihj| from exact diagonalization

(ED), where Ej is the energy of eigenstate | ji, and the
partition function Z ensures normalization Tr

�
XX

† =
1. Afterwards, we compress X into the TTO using stan-
dard linear algebra routines, as detailed in the Supple-
mentary Material (SM). Although this is not the most
e�icient strategy (it is possible to develop algorithms
that directly compute the TTO for finite-temperature
quantum states, capture Markovian real-time evolution
[37], or transform other TN states into TTOs [38]), we

K0
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ρ = ∑ pj |ψj⟩⟨ψj |
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temperatures T ⇠ �). For PBC, this behaviour can be
expressed as EF = log(N c/3

f(TN
z)), or

EF (T, N) =
c

3
log N + g(TN

z) (4)

in analogy to Ref. [42], where c is the critical exponent
that connects lengthscales to entanglement, while z is
the critical exponent that connects lengthscales to en-
ergyscales (� / N

�z). The functions f(·) and g(·) =
log f(·) are non-universal and depend on the microscopi-
cal details of the model. This behaviour actually extends,
to finite T , the known scaling law for the entanglement
entropy with size, valid for critical ground states [40, 41].
We validate this argument in the inset of Fig. 3, where
the EF (T, N) data sets are appropriately rescaled, ac-
cording to N . As we expect, the curves collapse when
the appropriate critical exponents of the corresponding
model are used (c = 1

2 , z = 1 for critical Ising; c = 1,
z = 1 for Luttinger liquid XXZ).

As a final remark, we stress that the EoF analy-
sis enabled by the TTO method is not limited to low-
temperature many-body states of lattice models. We
have employed the same diagnostic tool on other classes
of mixed many-body states, including on sets where the
EoF is known, as reported in the SM.

Conclusions In this letter, we have presented a new
tensor network approach that enables the numerical anal-
ysis of bipartite entanglement for many-body quantum
systems, even for those entanglement monotones that
are considered hard since they require convex-roof opti-
mization. We employed a Tree Tensor Operator (TTO)
to well-approximate the global density matrix at low
temperatures. Such a tensor network architecture com-
presses information of the bipartite entanglement into
a single tensor, whose dimensions in many cases scale
polinomially with the system size. As a result, evaluat-
ing entanglement monotones is numerically e�cient, as
illustrated for 1D interacting lattice models. Our analy-
sis observed a scaling law for the Entanglement of For-
mation, compatible with a logarithmic conformal scal-
ing law. We successfully tested this argument for a free
fermion (Ising) and an interacting fermion (XXZ) criti-
cal models, where it is satisfied in a temperature range
commensurate with the finite-size energy gap (T ⇠ �).

While the TTOs we constructed were generated start-
ing from ED, alternative strategies to directly construct-
ing the thermal TTO which require polynomial time and
computer memory in N can be developed. Similarly, we
envision the possibility of replacing the TTN branches
of the ansatz with Matrix Product State branches: an
alternative TN design that is still e�cient toward EoF
estimation. Finally, we expect that TTO may be
capable to accurately capture some features of open-
system quantum dynamics. This will actually extend
the bipartite-entanglement analysis, presented here, from
finite-temperature states to a larger set of open-system

FIG. 3. Scale-invariance of the EoF EF at temperatures T (in
units of J/kB) in the range kBT  0.5�, where � / N

�z, for
the critical Ising model in Eq. (2) (top) and the XXZ model in
Eq. (3) in the critical phase at ⇠ = 0.5 (bottom). Main figures
show data for N = 8, 12, 16, 20, which are respectively blue
pentagons, orange squares, green diamonds and red circles.
Inset: curves in the main figures after rescaling according
to Eq. (4). The agreement is stunning, using c = 1/2 and
z = 1.02±0.02 (top) and c = 1 and z = 0.98±0.02 (bottom).
The grey area highlights the temperature range T  0.2�(N).

physically relevant states, i.e. the stationary states of a
Lindblad master equation [43–45]. The Time-Dependent
Variational Principle [46, 47] is surely a good candidate
strategy towards this goal. This will likely be the focus
of our research in the near future, aiming to enable the
EoF analysis presented here onto even larger system sizes
of the order of hundreds of sites.
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ing discussions. Authors kindly acknowledge support
from the Italian PRIN2017 and Fondazione CARIPARO,
the Horizon 2020 re-search and innovation programme
under grant agreementNo 817482 (Quantum Flagship
- PASQuanS), the Quan-tERA projects QTFLAG and
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FIG. 5. Scaling of EF for thermal states of the critical Ising
model in transverse field (N = 16) at di↵erent temperatures
versus the number of states K0 kept in the thermal ensem-
ble. Temperatures in the key are expressed in units of J/kB .
Circles correspond to data for K = K0, while crosses are for
K = K0 + 2. From the results, it is clear that K = K0 is
already enough to achieve a very good estimate for the EoF .

while crosses correspond to K = K0 + 2. We observe
that there is no need to enlarge the parameter space for
this class of problems, since each circle is superimposed
or very close to its corresponding cross.

One might be tempted to pinpoint the best K0 by look-
ing at other quantities, possibly easier to calculate. How-
ever, we find this can be deceptive: we support this state-
ment by looking at the Von-Neumann entropy of the den-
sity matrix, S(⇢), instead of its EoF EF (⇢). Fig. 6 shows
how the two quantities both converge for thermal states
of the critical Ising model with N = 16 spins and at dif-
ferent temperatures. At temperatures kBT = 0.2, 0.3J ,
S(⇢) needs a higher number K0 of states to represent
the correct result with respect to EF (⇢). Therefore, we
preferred to look at the EoF scaling rather than other
observables, although the computational e↵ort is much
greater.

On the choice of M

Due to its structure, the TTO is exact whenever M =p
dim{H}. Therefore, to find the smallest maximal bond

dimension M to represent the state correctly, we plot the
EoF EF for increasing M starting from very low values
and looking at when it reaches the M ! 1 converged
value within 1%. This is shown in Fig. 7 for two low-
temperature thermal states of N = 16 spins. Brown
circles refer to the critical Ising model at temperature
kBT = 0.1J , while purple diamonds correspond to the
critical XXZ model with ⇠ = 0.5 at kBT = 0.5J . The
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FIG. 6. Convergence of the Von-Neumann entropy S(⇢)
(top) and of the EoF EF (⇢) (bottom) in the number K0

of states considered in the thermal ensemble. Data refer to
the critical Ising model with N = 16 spins at temperatures
kBT = 0.1, 0.2, 0.3J (blue circles, orange diamonds and green
squares, respectively). We observe that EF (⇢) estimation re-
quires less states with respect to S(⇢).

FIG. 7. Scaling of EF for thermal states represented as TTO
with di↵erent maximal bond dimensions M . Brown circles
and purple diamonds refer to the N = 16 critical Ising model
(kBT = 0.1J) and XXZ model (⇠ = 0.5, kBT = 0.5J), respec-
tively. The two black dashed lines show 99% of the EF value
at convergence. The insets zoom in the main plot, to help lo-
cating the smallest maximal bond dimension that represents
the states well enough.

black dashed lines point at 99% of the converged M ! 1
values: the first point for which all the subsequent ones
are above this line corresponds to the smallest maximal
bond dimension M . Notice that this is the criterion used
to determine each data point in the inset of Fig. 2 in the
main text.
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the correct result with respect to EF (⇢). Therefore, we
preferred to look at the EoF scaling rather than other
observables, although the computational e↵ort is much
greater.

On the choice of M

Due to its structure, the TTO is exact whenever M =p
dim{H}. Therefore, to find the smallest maximal bond

dimension M to represent the state correctly, we plot the
EoF EF for increasing M starting from very low values
and looking at when it reaches the M ! 1 converged
value within 1%. This is shown in Fig. 7 for two low-
temperature thermal states of N = 16 spins. Brown
circles refer to the critical Ising model at temperature
kBT = 0.1J , while purple diamonds correspond to the
critical XXZ model with ⇠ = 0.5 at kBT = 0.5J . The

FIG. 6. Convergence of the Von-Neumann entropy S(⇢)
(top) and of the EoF EF (⇢) (bottom) in the number K0

of states considered in the thermal ensemble. Data refer to
the critical Ising model with N = 16 spins at temperatures
kBT = 0.1, 0.2, 0.3J (blue circles, orange diamonds and green
squares, respectively). We observe that EF (⇢) estimation re-
quires less states with respect to S(⇢).

FIG. 7. Scaling of EF for thermal states represented as TTO
with di↵erent maximal bond dimensions M . Brown circles
and purple diamonds refer to the N = 16 critical Ising model
(kBT = 0.1J) and XXZ model (⇠ = 0.5, kBT = 0.5J), respec-
tively. The two black dashed lines show 99% of the EF value
at convergence. The insets zoom in the main plot, to help lo-
cating the smallest maximal bond dimension that represents
the states well enough.

black dashed lines point at 99% of the converged M ! 1
values: the first point for which all the subsequent ones
are above this line corresponds to the smallest maximal
bond dimension M . Notice that this is the criterion used
to determine each data point in the inset of Fig. 2 in the
main text.
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Numerical complexity depends  

on entropy, not entanglement! 

L. Arceci, P. Silvi, and S. Montangero PRL (2022)



RYDBERG ARRAYS AT FINITE TEMPERATURE 

N. Reinic et al. arxiv: 2405.18477



ROADMAP FOR LGT QUANTUM SIMULATION

G. Magnifico et al. arxiv:2407.03058



TAKE HOME MESSAGES

➤ Tensor network algorithms will benchmark, verify, support 
and guide quantum simulations/computations development  

➤ High-dimensional tensor network simulations are becoming 
more and more available (PEPS, aTTN,…) 

➤ Entanglement of mixed many-body states can be quantified   

➤ Scalability to full HPC will be necessary to produce 
quantitative results 

➤ Interaction with HEP is becoming more and more relevant  

➤ Interesting developments also in other directions (classical 
optimisers/annealers, machine learning)
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