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Gauge Theories are challenging:
• Local symmetry à many constraints
• Involve non-perturbative physics
• Confinement of quarks à hadronic spectrum
• Exotic phases of QCD (color superconductivity, 

quark-gluon plasma)
à Hard to treat experimentally (strong forces)
à Hard to treat analytically (non perturbative)
à Lattice Gauge Theory (Wilson, Kogut-Susskind…)

à Lattice regularization in a gauge invariant way



Conventional LGT techniques

• Discretization of both space and time
• Monte Carlo computations on a Wick-rotated, Euclidean 

lattice

• Very (very) successful for many applications,  e.g. the hadronic spectrum
• Problems:

– Real-Time evolution:
• Not available in Wick rotated, Euclidean spacetimes, used in conventional 

Monte-Carlo path integral LGT calculations
– Sign problem:

• Appears in several scenarios with fermions (finite density), represented by 
Grassman variables in a Wick-rotated, Euclidean spacetime

→New approaches: quantum simulation and computation, tensor 
networks.



Many-Body Area Law, Handwaving Formulation

“The ground state of a many-body Hamiltonian 
with local interactions ( + a few more 
assumptions) obeys an bipartite entanglement 
entropy area law.”

See, e.g., Eisert, Cramer, Plenio, RMP 2010
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Many-Body Area Law, Handwaving Formulation

“The ground state of a many-body Hamiltonian 
with local interactions ( + a few more 
assumptions) obeys an bipartite entanglement 
entropy area law.”

Physically relevant corner of the Hilbert space

See, e.g., Eisert, Cramer, Plenio, RMP 2010



Tensor Network States
• The number of variables needed to describe states of a many-

body system scales exponentially with the system size. This 
makes it hard to simulate large systems (classically).

• Tensor network states are ansatz states for many body 
systems, mostly on a lattice, for either analytical or numerical 
studies, based on contractions of local tensors that depend 
on few parameters.

• In spite of their simple description, tensor network states 
describe and approximate physically relevant states of many-
body systems.

Relevant reviews:
Schollwöck, Ann. Phys. 2011
Orus, Ann. Phys. 2014
Cirac, Perez-Garcia, Schuch, Verstraete, RMP 2021



Tensor Network Studies of LGTs

• Real-Time evolution:
– Not available in Wick rotated, Euclidean spacetimes, used in 

conventional Monte-Carlo path integral LGT calculations
– Calculations in quantum Hilbert spaces, where states evolve in real 

time, instead of in Wick-rotated statistical mechanics analogies.

• Sign problem:
– Appears in several scenarios with fermions (finite density), 

represented by Grassman variables in a Wick-rotated, Euclidean 
spacetime

– Calculations in quantum Hilbert spaces: fermions are fermions, no 
integration over time dimension. If the problem arises, it can be the 
result of using a particular method, nothing general.

See the review paper by Bañuls and Cichy, Rep. Prog. Phys. 83 024401 (2020)



MPS & LGT – Numerical Approach
• Mostly in 1+1d, combining MPS (Matrix Product States) with 

DMRG (Density Matrix Renormalization Group); have been 
widely and successfully used for various many body models, 
mostly from condensed matter.

• Very successfully applied to 1+1d lattice gauge theories, 
including finite chemical potential and real time evolution 
(string breaking) for Abelian and non-Abelian theories
– Bañuls, Cichy, Cirac, Kühn, Jansen, Saito…
– Dalmonte, Montangero, Pichler, Rico, Silvi, Tschirsich, Zoller…
– Buyens, Haegeman, Hebenstreit, van Acoleyen, Verschelde, Verstraete…
– Borla, Moroz, Grusdt, Verresen… (rather more CM-like)

• High dimensional generalizations: challenging and demanding 
scaling; works nicely for ladders, cylinders etc.

See the review paper by Bañuls and Cichy, Rep. Prog. Phys. 83 024401 (2020) and refs. thereinSee the review paper by Bañuls and Cichy, Rep. Prog. Phys. 83 024401 (2020)



Tensor Field Theory

A non-Hamiltonian, Euclidean (path integral) approach

See e.g. the review of Meurice, Sakai and Unmuth-
Yockey (Rev. Mod. Phys. 94, 025005)



Hamiltonian LGT TNs in 2+1d and more
• Tagliacozzo, Vidal, Entanglement renormalization and gauge symmetry, PRB 2011

– Pure gauge, Z2

• Tagliacozzo, Celi, Lewenstein, Tensor Networks for Lattice Gauge Theories with 
Continuous Groups, PRX 2014
– Pure gauge, continuous groups

Gauging globally invariant (“matter”) PEPS to locally invariant LGT PEPS – introducing 
gauge fields which lift the symmetry to a local one
• Haegeman, Van Acoleyen, Schuch, Cirac, Verstraete, Gauging Quantum States: 

From Global to Local Symmetries in Many-Body Systems, PRX 2015
– Gauge field Hilbert space = Matter Hilbert Space (Higgs-like theories)

• Zohar, Burrello, Building projected entangled pair states with a local gauge 
symmetry, NJP 2016
– Different Gauge Field Hilbert spaces, allowing for fermionic constructions (matching the standard 

model content)



iPEPS:
• Zapp and Orus, Tensor network simulation of QED on infinite lattices: learning from (1+1)d, and prospects 

for (2+1)d, PRD 2014
• Robaina, Bañuls, Cirac, Simulating 2+1d Z3 lattice gauge theory with iPEPS, PRL 2021

Tree tensor networks:
• Felser, Silvi, Collura, Montangero, Two-dimensional quantum-link lattice Quantum Electrodynamics at finite 

density, PRX 2020
• Magnifico, Felser, Silvi, Montangero, Lattice Quantum Electrodynamics in (3+1)-dimensions at finite density 

with Tensor Networks, Nat. Comm. 2021
• Montangero, Rico, Silvi, Loop-free tensor networks for high-energy physics, Phil. Trans. R. Soc. A, 2022
• Catataldi, Magnifico, Silvi, Montangero, (2+1)D SU(2) Yang-Mills Lattice Gauge Theory at finite density via 

tensor networks, Phys. Rev. Research 6, 033057 (2024)
• Magnifico, Catataldi, Rigobello, Majcen, Jaschke, Silvi, Montangero, Tensor Networks for Lattice Gauge 

Theories beyond one dimension: a Roadmap, arXiv:2407.03058(2024)

Gauged Gaussian Fermionic PEPS:
• Zohar, Burrello, Wahl, Cirac, Fermionic projected entangled pair states and local U(1) gauge theories, Ann. 

Phys. 2015
• Zohar, Wahl, Burrello, Cirac, Projected Entangled Pair States with non-Abelian gauge symmetries: an SU (2) 

study, Ann. Phys. 2016
• Zohar, Cirac, Combining tensor networks with Monte Carlo methods for lattice gauge theories, PRD 2018
• Emonts, Bañuls, Cirac, Zohar, Variational Monte Carlo simulation with tensor networks of a pure gauge Z3 

theory in 2+1d, PRD 2020
• Emonts, Kelman, Borla, Moroz, Gazit, Zohar, Finding the ground state of a lattice gauge theory with 

fermionic tensor networks: A 2+1-D Z2 demonstration, PRD 2023
• Kelman, Borla, Elyovich, Gomelski, Roose, Emonts, Zohar, Gauged Gaussian PEPS - A High Dimensional 

Tensor Network Formulation for Lattice Gauge Theories, arXiv:2404.13123, 2024 (accepted to PRD)

Hamiltonian LGT TNs in 2+1d and more



The LGT Hilbert Space

• The lattice is spatial: time is a continuous, real coordinate.

• Matter particles (fermions) – on the vertices.

• Gauge fields – on the lattice’s links

• Hamiltonian picture à Hilbert space
à Natural way to describe constraints



Gauge Transformations

• Act on both the matter and gauge degrees of freedom.

• Local : a unique transformation
(depending on a unique
element of the gauge group)
may be chosen for each site

• The states are invariant under
each local transformation separately.



Symmetry à Conserved Charge
– Transformation rules on the links

– Gauge Transformations:

– Generators à Gauss law , left and right E fields:



PEPS

• Projected Entangled Pair States: a particular tensor network 
construction, that
– Allows to encode and treat symmetries in a very natural 

way.
– Has, by construction, a bipartite entanglement area law, 

and therefore is suitable for describing “physically 
relevant” states.

– Offers new approaches for the study of phase diagrams 
and other properties of many body systems.

• In 1 space dimension – MPS (Matrix Product States)



PEPS

• Constructed out of local ingredients that include physical and 
auxiliary degrees of freedom.





• A physical only state is obtained out of projecting pairs of 
auxiliary degrees of freedom, on the two sides of a link, onto 
maximally entangled states.



• An entanglement area law is satisfied by construction.



• Demanding global symmetry:

– Acting with a group transformation on the physical degrees of 
freedom is equivalent to acting on the auxiliary ones.

– Projectors are invariant under group actions from both sides.

=

=



Global Transformation:
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Global Symmetry:



Virtual vs. Physical Gauge Invariance
Virtual - PEPS Physical – LGT states

=

Physical charge, but auxiliary electric 
fields: local symmetry exists, but it is 
auxiliary/virtual. The physical 
symmetry is global, after the bonds 
projection.

Fundamental analogy between PEPS and LGTs 
- making PEPS a suitable ansatz



Gauging the PEPS: minimal coupling of a state

• Lift the virtual symmetry to be physical:
Lift the global symmetry to a  local one.

E. Zohar and M. Burrello, New J. Phys. 18 043008 (2016)
E. Zohar, J.I. Cirac, Phys. Rev. D 97, 034510 (2018)



Gauging the PEPS: minimal coupling of a state

• Lift the virtual symmetry to be physical:
The global to local.

• Step 1: Introduce gauge field Hilbert spaces on the links. Add (by a tensor 
product) the gauge field singlet states:

E. Zohar and M. Burrello, New J. Phys. 18 043008 (2016)
E. Zohar, J.I. Cirac, Phys. Rev. D 97, 034510 (2018)



Gauging the PEPS: minimal coupling of a state

• Lift the virtual symmetry to be physical:
The global to local.

• Step 2: Entangle the auxiliary degrees on the outgoing links with the 
gauge fields, by a unitary gauging transformation (map the auxiliary 
electric field information to the physical one). 

E. Zohar and M. Burrello, New J. Phys. 18 043008 (2016)
E. Zohar, J.I. Cirac, Phys. Rev. D 97, 034510 (2018)



Gauging the PEPS: minimal coupling of a state

=

=

=

=

Building block of a globally 
invariant PEPS

Gauging
Transformation

Building block of a globally invariant PEPS
(gluing together the matter and gauge field 
tensors)

E. Zohar and M. Burrello, New J. Phys. 18 043008 (2016)
E. Zohar, J.I. Cirac, Phys. Rev. D 97, 034510 (2018)



Local Transformation:

E. Zohar and M. Burrello, New J. Phys. 18 043008 (2016)
E. Zohar, J.I. Cirac, Phys. Rev. D 97, 034510 (2018)
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E. Zohar and M. Burrello, New J. Phys. 18 043008 (2016)
E. Zohar, J.I. Cirac, Phys. Rev. D 97, 034510 (2018)



Local Symmetry:

E. Zohar and M. Burrello, New J. Phys. 18 043008 (2016)
E. Zohar, J.I. Cirac, Phys. Rev. D 97, 034510 (2018)



Locally gauge invariant fermionic PEPS
• We We wish to describe PEPS of fermionic matter coupled to dynamical 

gauge fields.

• Starting point – Gaussian fermionic PEPS with a global symmetry.
– Gaussian states – ground states of quadratic Hamiltonians, completely 

described by their covariance matrix. Very easy to handle analytically with the 
use of the Gaussian formalism.

– Fermionic PEPS – defined with fermionic creation operators acting on the Fock 
vacuum. Easy to parameterize if they are Gaussian (Kraus, Schuch, Verstraete, 
Cirac, PRA 2011)

E. Zohar, M. Burrello, T.B. Wahl, and J.I. Cirac, Ann. Phys. 363, 385-439 (2015)
E. Zohar, T.B. Wahl, M. Burrello, and J.I. Cirac, Ann. Phys. 374, 84-137 (2016)
E. Zohar, J.I. Cirac, Phys. Rev. D 97, 034510 (2018)
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Locally gauge invariant fermionic PEPS
• We We wish to describe PEPS of fermionic matter coupled to dynamical 

gauge fields.

• Starting point – Gaussian fermionic PEPS with a global symmetry.
– Gaussian states – ground states of quadratic Hamiltonians, completely 

described by their covariance matrix. Very easy to handle analytically with the 
use of the Gaussian formalism.

– Fermionic PEPS – defined with fermionic creation operators acting on the Fock 
vacuum. Easy to parameterize if they are Gaussian (Kraus, Schuch, Verstraete, 
Cirac, PRA 2011)

• Start with these, then make the symmetry local and add the gauge field. 
Similar to minimal coupling: Gauge a free matter state à obtain an 
interacting matter-gauge field state without introducing further 
parameters.

E. Zohar, M. Burrello, T.B. Wahl, and J.I. Cirac, Ann. Phys. 363, 385-439 (2015)
E. Zohar, T.B. Wahl, M. Burrello, and J.I. Cirac, Ann. Phys. 374, 84-137 (2016)
E. Zohar, J.I. Cirac, Phys. Rev. D 97, 034510 (2018)



The PEPS ingredients

• At each site –
–  Physical fermions

• For example, 
– 1 For U(1)
– 2 For SU(2), in the fundamental rep.

– Virtual fermions on the legs (e.g. 2 per leg,
8 in total)

• The local Gaussian state involving both
physical and virtual modes is created
from the Fock vacuum with

E. Zohar, M. Burrello, T.B. Wahl, and J.I. Cirac, Ann. Phys. 363, 385-439 (2015)
E. Zohar, T.B. Wahl, M. Burrello, and J.I. Cirac, Ann. Phys. 374, 84-137 (2016)



Magnetic Basis
• The physical Hilbert space:

• Gauge field configuration states:

• General gauge invariant state:

Where               represents matter coupled to an external (classical) gauge field .   .

• E.g. for U(1):



Monte Carlo with gauged Gaussian fPEPS
• Expressing our states in the magnetic basis that allows us to 

perform efficient Monte-Carlo calculations

-         is a fixed configuration state of the gauge field on the links.

-                  is a fermionic Gaussian state, representing fermions coupled 
to a static, background gauge field      .

E. Zohar, J.I. Cirac, Phys. Rev. D 97, 034510 (2018) 
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Monte Carlo with gauged Gaussian fPEPS
• Expressing our states in the magnetic basis that allows us to 

perform efficient Monte-Carlo calculations

- Gauge field configuration states are eigenstates of functions 
of group element operators:

E. Zohar, J.I. Cirac, Phys. Rev. D 97, 034510 (2018) 



Monte Carlo with gauged Gaussian fPEPS
• Wilson Loops:

a

• Expectation value for                                                                          :

E. Zohar, J.I. Cirac, Phys. Rev. D 97, 034510 (2018) 

Detecting confinement of static charges (Wilson, 1974) 



Monte Carlo with gauged Gaussian fPEPS
• Wilson Loops:

a

- exp. value for                                                    :

• The function

is a probability density.
E. Zohar, J.I. Cirac, Phys. Rev. D 97, 034510 (2018) 



Monte Carlo with gauged Gaussian fPEPS
• Wilson Loops:

a

- exp. value for                                                    :

• The fermionic calculation is easy, through the gaussian 
formalism: very efficient

• No sign problem: the probability density is obtained from a 
norm of a state, and thus is real and positive.

E. Zohar, J.I. Cirac, Phys. Rev. D 97, 034510 (2018) 

Monte Carlo integration!



Monte Carlo with gauged Gaussian fPEPS
• The method is extendable to further physical observables, always involving 

the probability density function

and possibly elements of the covariance matrix of the Gaussian state                                
,          ,  which could be calculated very efficiently.

– For example, mesonic operators

(given for U(1) for simplicity).

• It is possible to contract gauged Gaussian fPEPS beyond 1+1d, and 
without the sign problem of conventional LGT methods (it is not a 
Euclidean path integral).

E. Zohar, J.I. Cirac, Phys. Rev. D 97, 034510 (2018) 



First benchmark: pure gauge Z3 PEPS in 2+1d

P. Emonts, M.C. Bañuls, J. I. Cirac, E. Zohar, Phys. Rev. D 102, 074501 (2020)



Improved Algorithm + Benchmark: pure gauge Z2 PEPS in 2+1d

P. Emonts, A. Kelman, U. Borla, S. Moroz, S. Gazit, E. Zohar, Phys. Rev. D 107, 014505 (2023)

4x4

- Solved a numerical
bottleneck (Pfaffians)

- Improved the ansatz
states analytically



Non-published Preliminary Results – Numerics

• Z2 in 2+1-D with a single fermionic flavor
• Early results, exact contraction, 2x2

     Next steps: larger systems with Monte-Carlo; two flavors
     First expected breakthrough: introduction of a chemical     
     potential, into a sign-problem regime

gE

gB = 1/(4gE)
gint = 1
gM = 2

Energy

gE = 1/2
gint = 1
gM = -1

Energy

Energy

gE = 1/2
gint = 1
gM = 1

H = gE HE Electric
+ gB HB Magnetic
+ gint Hint Interaction
+ gM HM Mass

gB

57

gB

Soon:
• Kelman, Borla, Emonts, Zohar – Z2 with fermions



Analytics 1: 3+1-d: fermions ready for gauging

• The Gaussian fermionic PEPS formalism can be extended in a straight 
forward way to three space dimensions.

• As expected, “spin” emerges from demanding lattice rotation invariance; 
assuming very naively that the fermions are “spinless” leads to Kogut’s 
staggering.

• It is possible to formally express the ground states of lattice Dirac 
Hamiltonians exactly as such states.

• Gauging can be done exactly the same, as well as Monte-Carlo sampling; 
the dependence on the dimension is indirect, only through the number of 
links to be integrated.

• To be continued

P. Emonts, E. Zohar, Phys. Rev. D 108, 014514 (2023)



Analytics 2: Is this the way to gauge?
• We have shown that the current gauging mechanism produces LGT 

state with proper gauge invariance. But does this cover all the 
options for gauge invariant PEPS?

• YES!
– It was rigorously proven for MPS (PEPS in one space dimension) that once 

simple physical and mathematical properties (injectivity etc) are satisfied, 
gauge invariance implies the described PEPS structure.
• Kull, Molnar, Zohar, Cirac, Ann. Phys 386, 199-241 (2017)

– Recently completed a proof of the theorem for higher dimensions and 
arbitrary geometries.
• Blanik, Garre-Rubio, Molnar, Zohar – soon!



The next steps of this work will be funded by the European Union
through the ERC consolidator 2023 project OverSign.

The Gauged Gaussian Fermionic PEPS team:
At the Hebrew University of Jerusalem:

Main collaborator:
Patrick Emonts, 
Leiden University

Erez Zohar
PI

Umberto Borla
Postdoc

Gertian Roose
Postdoc

Ariel Kelman
PhD Student

Jonathan Elyovich
PhD Student

Itay Gomelski
PhD Student

Soon:
• Roose, Zohar – analytical study of the ansatz suitability
• Kelman, Borla, Emonts, Zohar – Z2 with fermions
• Blanik, Garre-Rubio, Molnar, Zohar – soon!



Quantum Information & Many Body Physics Group
Racah Institute of Physics, Hebrew University of Jerusalem, Israel 

Guy
Pardo
(Phd)

Ariel
Kelman
(Phd)

Erez 
Zohar

• Sign-problem free tensor network construction for 
studying LGTs with fermionic matter
• Emonts, Kelman, Borla, Moroz, Gazit, Zohar, PRD 2023
• Emonts, Zohar, PRD 2023
• Kelman, Borla, Gomelski, Elyovich, Emonts, Zohar, PRD 

2024
• Analytical and entanglement properties of LGT PEPS

• Zohar, PRR 2021
• Knaute, Feuerstein, Zohar, JHEP 2024
• Feldman, Knaute, Zohar, Goldstein, JHEP 2024
• Roose, Zohar – soon
• Blanik, Garre-Rubio, Molnar, Zohar – soon

• Physically implementing Duality Transformations 
using Local Unitaries and Measurements.
• Ashkenazi, Zohar, PRA 2022

• Continuous tensor networks for relativistic QFTs
• Shachar, Zohar, PRD 2023
• Rigobello, Shachar, Zohar – soon!

• Locally and unitarily mapping fermions to bosons in the 
presence of lattice gauge fields 
• Pardo, Greenberg, Fortinsky, Katz, Zohar, PRR 2023
• Popov, Meth, Lewenstein, Hauke, Zohar, Kasper, PRR 2024

• Photon-Mediated Quantum Simulation of LGT plaquette 
interactions.
• Armon, Ashkenazi, Garcia-Moreno, Gonzalez-Tudela, 

Zohar, PRL 2021
• Physically blocked U(1) LGTS with qubits

• Shir, Zohar, PRD 2024
• Building non-Abelian LGT quantum simulators using 

dynamical decoupling (“non-Abelian rotating wave 
approximation”).
• Kasper, Zache, Jendrzejewski, Lewenstein, Zohar, PRD 2023

Jonathan
Elyovich

(PhD)

Umberto
Borla

(Postdoc)

Gertian
Roose
(Postdoc)

Itay
Gomelski

(PhD)

Uri
Friedman
(Master)

ERC Consolidator Grant
Oversign 2024-2029

Personal
ISF Grants
2020-2024
2024-2028 Google Research Scholar award 2022


