

Near-Optimal Simulation of Quantum Field Theory

Michael Kreshchuk, Physics Division,

Lawrence Berkeley National Laboratory

QuantHEP, September 2, 2024

Collaboration

Outline

- 1. Motivation
- 2. Introduction to algorithms
- 3. Applications & Developments

1. Motivation

Quantum Simulation of Light-Front Quantum Field Theory | BERKELEY LAB

Focus of this talk

Nearly-optimal simulation of Quantum Field Theory | BERKELEY LAB

What makes QSim of HEP hard?

- Highly non-trivial model development.
- Large number of Degrees of Freedom (DOFs), both fermions and bosons:
 → requires a lot of qubits & long circuits.

 Naïve approaches lead to circuits with ~10⁴⁰⁻⁵⁰ gates for realistic theories and problem sizes.

[🛑] QUARKS 🔵 LEPTONS 🛑 BOSONS 🛑 HIGGS BOSON

What makes QSim of HEP nice?

- Fundamental interactions are local
 → Problems are often well-structured.
- Algorithms for Relativisitic QFTs can be readily utilized in other settings, e.g., for low-energy NP EFTs.

0

7

2. Algorithms

Why "near-optimal"

Complexity of Trotter time evolution (<u>1901.00564</u>, <u>1912.08854</u>):
Upper bound:

#gates ~
$$\tilde{\alpha} t^{1+1/p} \epsilon^{-1/p}$$
,

p = 1, 2, ... — Trotter order, $\tilde{\alpha}$ — commutator norm (^(a)). – Lower bound:

#gates ~ $(||H|| t)^{1+1/p} e^{-1/p}$, (||H|| t) because $e^{-iHt} = e^{-i(H/\alpha)(\alpha t)}$. - Starting with $H_{qubit} = \sum^{N} c_{\alpha} P_{\alpha}$ implies #gates > O(N).

Questions to ask when developing algorithms for complex systems

- How far can the asymptotic dependence on ||H||, t, ϵ be improved?
- How to improve the constant factors?
 - Bottleneck of many algorithms: *Block Encoding (BE)* subroutine.
 - Improve BE or consider alternative approaches.
 - Carefully study dependence on **all** model parameters.
- How do such methods compare to each other?
 - Depends on model, observables, and regime (||H||, t, ϵ ,...).

Block encoding

• The Block Encoding (BE) construction allows one to implement arbitrary linear transformations of quantum states:

 $|\psi\rangle\mapsto A|\psi\rangle$

• The idea is to embed *A* into a unitary matrix of larger size:

$$U_{A} = \begin{pmatrix} A/\alpha & * \\ * & * \end{pmatrix}$$
$$\begin{pmatrix} A/\alpha & * \\ * & * \end{pmatrix} \begin{pmatrix} \psi \\ 0 \end{pmatrix} = \frac{1}{\alpha} \begin{pmatrix} A\psi \\ * \end{pmatrix} = \frac{1}{\alpha} \begin{pmatrix} A\psi \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ * \end{pmatrix}$$

• $1/\alpha$ is necessary because entries of U_A have to be < 1.

Nearly-optimal simulation of High-Energy Physics | BERKELEY LAB

Block encoding circuit

• In a QC, extra dimensions come from adding more qubits:

- The extra ("ancillary") qubits have to be measured upon applying U_A , and the desired outcome is probabilistic.
- Constructing BEs is art/science, and is highly problem-dependent.

• $(1 \otimes \langle 0 |)$ PREPARE[†] · SELECT · PREPARE $(1 \otimes |0\rangle) \sim H$

Near-optimal Simulation of High Energy Physics

LCU

Sparse Oracle Access

Near-optimal Simulation of High Energy Physics

14

QSP-based algorithms: <u>QSVT</u>, <u>QETU</u>, etc.

• <u>QSVT</u> (<u>1806.01838</u>): Implements $U_{P(A)}$ provided access to U_A

• <u>QETU</u> (2204.05955): Implements $U_{P(\cos(A/2))}$ provided access to e^{iA}

- P(x) approximates the desired function, e.g., e^{ix} , e^{-x} , sgn x, etc.
- The angles of rotation gates are determined by the coefficients of P(x). Near-optimal Simulation of High Energy Physics

Part 3. Applications

3.1 Near-optimal simulation of Kogut-Susskind LGT 2405.10416

• Kogut-Susskind formulation of LGT:

- Can be used to simulate
 - U(1) gauge theory
 "Quantum Electrodynamics": Electromagnetic interactions between electrons and photons.
 - $SU(n_c)$ gauge theory "Quantum Chromodynamics":

Strong interactions between quarks and gluons

• Kogut-Susskind formulation of SU(2) in 2+1D:

$$H = g_M H_M + g_{GM} H_{GM} + g_E H_E + g_B H_B$$

$$H_M = \sum_x (-1)^x \psi^{\dagger}(x) \cdot \psi(x)$$

$$H_{GM} = \sum_x \sum_{i=1}^d \psi^{\dagger}(x) \cdot U(x, n_i) \cdot \psi(x + n_i) + \text{h.c.}$$

$$H_E = \sum_x \sum_{i=1}^d E(x, n_i)^2 \qquad E(\vec{n}, \hat{l}) |k\rangle = k |k\rangle$$

$$U(\vec{n}, \hat{l}) |k\rangle = |k - 1\rangle$$

$$H_B = \sum_x \sum_{\substack{i,j=1\\i \neq j}}^d \text{tr} [U(x, n_i) \cdot U(x + n_i, n_j) \cdot U(x + n_j, n_i)^{\dagger} \cdot U(x, n_j)^{\dagger}] + \text{h.c.}$$
Near-optimal Simulation of Hab Energy Physics

19

Vertices Fermions

Edges Bosons

- Prior work: Algorithms for simulating LGTs using Trotterization:
 - Kan&Nam (<u>2107.12769</u>);
 - Davoudi et. al. (<u>2212.14030</u>).
- Our work: Algorithms for near-optimal simulation of LGT, taking advantage of the Hamiltonian structure.

• <u>General plan</u>: Tong et. al. (<u>2110.06942</u>): $\tilde{O}(N^2; T^3; \log 1/\epsilon) \rightarrow \tilde{O}(N; T; \log 1/\epsilon)$

via HHKL (1801.03922) and Interaction picture (1805.00675)

$$H_I^{\mathcal{B}}(t) = e^{itH_E^{\mathcal{B}}}(H_M^{\mathcal{B}} + H_{GM}^{\mathcal{B}} + H_B^{\mathcal{B}})e^{-itH_E^{\mathcal{B}}}$$

- Block encoding is required for all the terms.
- <u>Devil in the details</u>: Work out qubit mappings; Implement BEs using Linear Combination of Unitaries and Sparse Oracle approaches.

Local fermionic encodings

- VC (<u>cond-mat/0508353</u>) for U(1) in 2 dim: One auxiliary fermion per lattice site.
- GSE (<u>1810.05274</u>) for SU(3) in *d* dim: $d + n_c - 1$ qubits for a site of degree 2*d*.
- For U(1) in 2+1D they the costs are same, GSE wins in more complex scenarios.

LCU

• Unlike in quantum chemistry, in lattice systems

Cost SELECT \gg Cost PREPARE.

Sparse oracles

T-gate counts for U(1) **LGT** (Quantum Electrodynamics)

• T-counts for various terms in the Hamiltonian,

 $T = 1; \Lambda_0 = 5; \epsilon = 10^{-3}$:

• Total T-counts and qubit counts:

Near-optimal Simulation of High Energy Physics

Improvements for SU($n_c = 2$) and SU($n_c = 3$) (Strong forces)

- Better scaling than PF in *time & error*;
 better scaling in *size* for large lattices
- It outperforms conventional techniques for non-Abelian gauge theories:
 - Trotterization: $O(2^{8(n_c^2-1)})$
 - BE-based simulation: $O(n_c^4)$

$$\begin{split} U_{ab}|j,m^L,m^R\rangle &= \sum_{J=|j-1/2|}^{j+1/2} \sqrt{\frac{2j+1}{2J+1}} \langle J,M_L|j,m^L;1/2,a'\rangle \langle J,M_R|j,m^R;1/2,b'\rangle \\ &\times \left|J,M_L=m^L+a',M_R=m^R+b'\right\rangle. \end{split}$$
Near-optimal Simulation of High Energy Physics

	10	$^{-3}$ 1	0^3 10	$)^0$ 1.2 × 1	10^{36}	1.7×10^{-1}	$)^{26}$ 10 ¹¹	2.4×10^{1}	2.9×10^{10}
			10	$^{-1}$ 3.9 × 1	10^{37}	2.5×10	10^{26} 10 ¹¹	2.4×10^{10}	6.0×10^{11}
			10	$^{-2}$ 1.2 × 1	10^{39}	1.1×10^{-1}	$)^{27}$ 10 ¹¹	2.4×10^{1}	4.4×10^{12}
		1	0^2 10	$)^0 3.9 \times 1$	10^{31}	1.2×10^{-1}	10^{20} 10 ⁸	2.4×10^{7}	1.2×10^{12}
			10	$^{-1}$ 1.2 × 1	10^{33}	1.8×10^{-1}	10^{20} 10 ⁸	2.4×10^{-1}	2.6×10^{13}
			10	$^{-2}$ 3.9 × 1	10^{34}	8.2×10^{-10}	10^{20} 10 ⁸	2.4×10^{7}	1.9×10^{14}
	· 10 ⁻	$^{-1}$ 1	0^3 10	$)^{0}$ 1.2 × 1	10^{35}	7.8×10^{-10}	10^{25} 10 ¹¹	2.4×10^{10}	6.4×10^{9}
			10	$^{-1}$ 3.9 × 1	10^{36}	1.1×10^{-1}	10^{26} 10 ¹¹	2.4×10^{1}	1.3×10^{11}
			10	$^{-2}$ 1.2 × 1	10^{39}	5.0×10^{-10}	$)^{26}$ 10 ¹¹	2.4×10^{1}	9.9×10^{12}
		1	0^2 10	$)^0 3.9 \times 1$	10^{30}	5.5×10^{-10}	1^{19} 10 ⁸	2.4×10^{7}	2.8×10^{11}
			10	$^{-1}$ 1.2 × 1	10^{32}	8.3×10^{-10}	$)^{19}$ 10 ⁸	2.4×10^{7}	5.9×10^{12}
			10	$^{-2}$ 3.9 × 1	10^{33}	3.6×10^{-10}	10^{20} 10^{8}	2.4×10^{7}	4.3×10^{13}
								·	
ſ	ϵ	N	a	T_{Trotter}		T _{Qubit.}	Q_{Trotter}	$Q_{ m Qubit.}$	Improvement
	$\frac{\epsilon}{10^{-3}}$	$\frac{N}{10^3}$	$\frac{a}{10^0}$	$\frac{T_{\rm Trotter}}{1.0 \times 10^5}$	i0 2.0	$T_{\text{Qubit.}}$ 0×10^{27}	$\frac{Q_{\text{Trotter}}}{2.6 \times 10^{11}}$	$Q_{\text{Qubit.}}$ 6.0×10^1	$\frac{\text{Improvement}}{2.1 \times 10^{23}}$
	$\frac{\epsilon}{10^{-3}}$	$\frac{N}{10^3}$	$a \\ 10^0 \\ 10^{-1}$	T_{Trotter} 1.0×10^{5} 3.2×10^{5}	⁵⁰ 2.0 ⁵¹ 2.9	$ \frac{T_{\text{Qubit.}}}{0 \times 10^{27}} \\ \frac{10^{27}}{0 \times 10^{27}} $	$\begin{array}{c} Q_{\text{Trotter}} \\ 2.6 \times 10^{11} \\ 2.6 \times 10^{11} \end{array}$	$Q_{\text{Qubit.}}$ 6.0 × 10 ¹ 6.0 × 10 ¹⁰	$\frac{\text{Improvement}}{2.1 \times 10^{23}}$ 4.6×10^{24}
	$\frac{\epsilon}{10^{-3}}$	$\frac{N}{10^3}$	$ \begin{array}{c} a \\ 10^{0} \\ 10^{-1} \\ 10^{-2} \end{array} $	T_{Trotter} 1.0×10^{5} 3.2×10^{5} 1.0×10^{5}	$ \begin{array}{c c} $	$ \frac{T_{\text{Qubit.}}}{0 \times 10^{27}} \\ \frac{1}{0 \times 10^{27}} \\ \frac{1}{0 \times 10^{28}} $	$\begin{array}{c} Q_{\text{Trotter}} \\ 2.6 \times 10^{11} \\ 2.6 \times 10^{11} \\ 2.6 \times 10^{11} \end{array}$	$\begin{array}{c} Q_{\rm Qubit.} \\ 6.0 \times 10^{1} \\ 6.0 \times 10^{10} \\ 6.0 \times 10^{10} \end{array}$	$\begin{array}{c} \text{Improvement} \\ \hline 2.1 \times 10^{23} \\ 4.6 \times 10^{24} \\ 3.5 \times 10^{25} \end{array}$
	$\frac{\epsilon}{10^{-3}}$	$\frac{N}{10^3}$	$ \begin{array}{c} a \\ 10^{0} \\ 10^{-1} \\ 10^{-2} \\ 10^{0} \end{array} $	$\begin{array}{c} T_{\rm Trotter} \\ 1.0 \times 10^5 \\ 3.2 \times 10^5 \\ 1.0 \times 10^5 \\ 3.2 \times 10^4 \end{array}$	$\begin{array}{c} & 2 \\ 10 \\ 2.0 \\ 11 \\ 2.9 \\ 1.3 \\ 1.5 \\ 1.6 \end{array}$	$T_{\text{Qubit.}}$ 0×10^{27} 0×10^{27} 2×10^{28} 2×10^{28} 3×10^{21}	$ \frac{Q_{\text{Trotter}}}{2.6 \times 10^{11}} \\ 2.6 \times 10^{11} \\ 2.6 \times 10^{11} \\ 2.6 \times 10^{8} $	$\begin{array}{c} Q_{\text{Qubit.}} \\ 6.0 \times 10^{1} \\ 6.0 \times 10^{10} \\ 6.0 \times 10^{1} \\ 6.0 \times 10^{10} \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
	$\frac{\epsilon}{10^{-3}}$	$\frac{N}{10^3}$ 10^2	$ \begin{array}{c} a \\ 10^{0} \\ 10^{-1} \\ 10^{-2} \\ 10^{0} \\ 10^{-1} \end{array} $	$\begin{array}{c} T_{\rm Trotter} \\ 1.0 \times 10^5 \\ 3.2 \times 10^5 \\ 1.0 \times 10^5 \\ 3.2 \times 10^4 \\ 1.0 \times 10^4 \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \frac{T_{\text{Qubit.}}}{0 \times 10^{27}} \\ \frac{1}{2} \times 10^{27} \\ \frac{1}{2} \times 10^{28} \\ \frac{1}{2} \times 10^{28} \\ \frac{1}{2} \times 10^{21} \\ \frac{1}{4} \times 10^{21} $	$\begin{array}{c} Q_{\text{Trotter}} \\ 2.6 \times 10^{11} \\ 2.6 \times 10^{11} \\ 2.6 \times 10^{11} \\ 2.6 \times 10^{8} \\ 2.6 \times 10^{8} \end{array}$	$\begin{array}{c} Q_{\text{Qubit.}} \\ 6.0 \times 10^{1} \\ 6.0 \times 10^{10} \\ 6.0 \times 10^{1} \\ 6.0 \times 10^{10} \\ 6.0 \times 10^{10} \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
	$\frac{\epsilon}{10^{-3}}$	$\frac{N}{10^3}$ 10^2	$ \begin{array}{c} a \\ 10^{0} \\ 10^{-1} \\ 10^{-2} \\ 10^{0} \\ 10^{-1} \\ 10^{-2} \end{array} $	$\begin{array}{c} T_{\rm Trotter} \\ 1.0 \times 10^5 \\ 3.2 \times 10^5 \\ 1.0 \times 10^5 \\ 3.2 \times 10^4 \\ 1.0 \times 10^4 \\ 3.2 \times 10^4 \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \frac{T_{\text{Qubit.}}}{0 \times 10^{27}} \\ \frac{1}{2} \times 10^{27} \\ \frac{1}{2} \times 10^{28} \\ \frac{1}{3} \times 10^{21} \\ \frac{1}{4} \times 10^{21} \\ \frac{1}{2} \times 10^{22} $	$\begin{array}{c} Q_{\text{Trotter}} \\ 2.6 \times 10^{11} \\ 2.6 \times 10^{11} \\ 2.6 \times 10^{11} \\ 2.6 \times 10^{8} \\ 2.6 \times 10^{8} \\ 2.6 \times 10^{8} \end{array}$	$\begin{array}{c} Q_{\text{Qubit.}} \\ 6.0 \times 10^{1} \\ 6.0 \times 10^{10} \\ 6.0 \times 10^{10} \\ 6.0 \times 10^{7} \\ 6.0 \times 10^{7} \\ 6.0 \times 10^{7} \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
	$\frac{\epsilon}{10^{-3}}$ 10^{-1}	$\frac{N}{10^3}$ 10^2 10^3	$\begin{array}{c} a \\ 10^{0} \\ 10^{-1} \\ 10^{-2} \\ 10^{0} \\ 10^{-1} \\ 10^{-2} \\ 10^{0} \end{array}$	$\begin{array}{c} T_{\rm Trotter} \\ 1.0 \times 10^5 \\ 3.2 \times 10^5 \\ 1.0 \times 10^5 \\ 3.2 \times 10^4 \\ 1.0 \times 10^4 \\ 3.2 \times 10^4 \\ 1.0 \times 10^4 \end{array}$	$\begin{array}{c c} & & & \\ \hline 0 & 2.0 \\ \hline 0 & 2.0 \\ \hline 0 & 2.0 \\ \hline 0 & 1.2 \\ \hline 0 & 1.7 \\ \hline 0 & 1.7 \\ \hline 0 & 1.7 \\ \hline \end{array}$	$ \frac{T_{\text{Qubit.}}}{0 \times 10^{27}} \\ \frac{1}{2 \times 10^{28}} \\ \frac{1}{2 \times 10^{28}} \\ \frac{1}{3 \times 10^{21}} \\ \frac{1}{4 \times 10^{21}} \\ \frac{1}{2 \times 10^{22}} \\ \frac{1}{7 \times 10^{27}} $	$\begin{array}{c} Q_{\rm Trotter} \\ 2.6 \times 10^{11} \\ 2.6 \times 10^{11} \\ 2.6 \times 10^{11} \\ 2.6 \times 10^8 \\ 2.6 \times 10^8 \\ 2.6 \times 10^8 \\ 2.6 \times 10^{11} \end{array}$	$\begin{array}{c} Q_{\rm Qubit.} \\ 6.0 \times 10^1 \end{array}$	$\begin{array}{ l l l l l l l l l l l l l l l l l l l$
	$\frac{\epsilon}{10^{-3}}$ 10^{-1}	$\frac{N}{10^3}$ 10^2 10^3	$\begin{array}{c} a \\ 10^{0} \\ 10^{-1} \\ 10^{-2} \\ 10^{0} \\ 10^{-1} \\ 10^{-2} \\ 10^{0} \\ 10^{-1} \end{array}$	$\begin{array}{c} T_{\rm Trotter} \\ 1.0 \times 10^5 \\ 3.2 \times 10^5 \\ 3.2 \times 10^4 \\ 1.0 \times 10^4 \\ 3.2 \times 10^4 \\ 1.0 \times 10^4 \\ 3.2 \times 10^4 \\ 3.2 \times 10^5 \end{array}$	$\begin{array}{c} & 2 \\ \hline 0 & 2.0 \\ \hline 1 & 2.9 \\ \hline 3 & 1.2 \\ \hline 5 & 1.0 \\ \hline 7 & 2.4 \\ \hline 8 & 1.0 \\ \hline 9 & 1.7 \\ \hline 6 & 2.5 \end{array}$	$ \frac{T_{\text{Qubit.}}}{0 \times 10^{27}} \\ \frac{1}{2 \times 10^{28}} \\ \frac{1}{2 \times 10^{28}} \\ \frac{1}{3 \times 10^{21}} \\ \frac{1}{4 \times 10^{21}} \\ \frac{1}{2 \times 10^{27}} \\ \frac{1}{5 \times 10^{27}} \\ \frac{1}{5 \times 10^{27}} \\ \frac{1}{2 \times 10$	$\begin{array}{c} Q_{\rm Trotter} \\ 2.6 \times 10^{11} \\ 2.6 \times 10^{11} \\ 2.6 \times 10^{11} \\ 2.6 \times 10^{8} \\ 2.6 \times 10^{8} \\ 2.6 \times 10^{8} \\ 2.6 \times 10^{11} \\ 2.6 \times 10^{11} \end{array}$	$\begin{array}{c} Q_{\rm Qubit.} \\ 6.0 \times 10^1 \\ 6.0 \times 10^{10} \\ 6.0 \times 10^1 \end{array}$	$\begin{array}{c} \text{Improvement} \\ 2.1 \times 10^{23} \\ 4.6 \times 10^{24} \\ 3.5 \times 10^{25} \\ 8.2 \times 10^{24} \\ 1.7 \times 10^{26} \\ 1.3 \times 10^{27} \\ 2.5 \times 10^{22} \\ 5.4 \times 10^{23} \end{array}$
	$\frac{\epsilon}{10^{-3}}$ 10^{-1}	$\frac{N}{10^3}$ 10^2 10^3	$\begin{array}{c} a \\ 10^{0} \\ 10^{-1} \\ 10^{-2} \\ 10^{0} \\ 10^{-1} \\ 10^{-2} \\ 10^{0} \\ 10^{-1} \\ 10^{-2} \end{array}$	$\begin{array}{c} T_{\rm Trotter} \\ 1.0 \times 10^5 \\ 3.2 \times 10^5 \\ 3.2 \times 10^4 \\ 1.0 \times 10^4 \\ 3.2 \times 10^4 \\ 1.0 \times 10^4 \\ 3.2 \times 10^5 \\ 1.0 \times 10^5 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} T_{\text{Qubit.}} \\ 0 \times 10^{27} \\ 0 \times 10^{27} \\ 2 \times 10^{28} \\ 5 \times 10^{21} \\ 4 \times 10^{21} \\ 0 \times 10^{22} \\ 7 \times 10^{27} \\ 5 \times 10^{27} \\ 0 \times 10^{28} \end{array}$	$\begin{array}{c} Q_{\rm Trotter} \\ 2.6 \times 10^{11} \\ 2.6 \times 10^{11} \\ 2.6 \times 10^{11} \\ 2.6 \times 10^{8} \\ 2.6 \times 10^{8} \\ 2.6 \times 10^{11} \\ 2.6 \times 10^{11} \\ 2.6 \times 10^{11} \\ 2.6 \times 10^{11} \end{array}$	$\begin{array}{c} Q_{\rm Qubit.} \\ 6.0 \times 10^1 \\ 6.0 \times 10^1 \\ 6.0 \times 10^1 \\ 6.0 \times 10^7 \\ 6.0 \times 10^7 \\ 6.0 \times 10^1 \\ 6.0 \times 10^1 \\ 6.0 \times 10^1 \\ 6.0 \times 10^1 \end{array}$	$\begin{array}{c} \text{Improvement} \\ \hline 2.1 \times 10^{23} \\ 4.6 \times 10^{24} \\ 3.5 \times 10^{25} \\ 8.2 \times 10^{24} \\ 1.7 \times 10^{26} \\ 1.3 \times 10^{27} \\ 2.5 \times 10^{22} \\ 5.4 \times 10^{23} \\ 4.1 \times 10^{24} \end{array}$
	$\frac{\epsilon}{10^{-3}}$ 10^{-1}	$\frac{N}{10^3}$ 10^2 10^3 10^2	$\begin{array}{c} a \\ 10^{0} \\ 10^{-1} \\ 10^{-2} \\ 10^{0} \\ 10^{-1} \\ 10^{-2} \\ 10^{0} \\ 10^{-1} \\ 10^{-2} \\ 10^{0} \end{array}$	$\begin{array}{c} T_{\rm Trotter} \\ 1.0 \times 10^5 \\ 3.2 \times 10^5 \\ 1.0 \times 10^5 \\ 3.2 \times 10^4 \\ 1.0 \times 10^4 \\ 3.2 \times 10^4 \\ 1.0 \times 10^4 \\ 3.2 \times 10^5 \\ 1.0 \times 10^5 \\ 3.2 \times 10^4 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} T_{\text{Qubit.}} \\ \hline T_{\text{Qubit.}} \\ 0 \times 10^{27} \\ 2 \times 10^{28} \\ 5 \times 10^{21} \\ 4 \times 10^{21} \\ 0 \times 10^{22} \\ 7 \times 10^{27} \\ 5 \times 10^{27} \\ 0 \times 10^{28} \\ 3 \times 10^{21} \end{array}$	$\begin{array}{c} Q_{\rm Trotter} \\ 2.6 \times 10^{11} \\ 2.6 \times 10^{11} \\ 2.6 \times 10^{8} \\ 2.6 \times 10^{8} \\ 2.6 \times 10^{8} \\ 2.6 \times 10^{11} \\ 2.6 \times 10^{11} \\ 2.6 \times 10^{11} \\ 2.6 \times 10^{11} \end{array}$	$\begin{array}{c} Q_{\rm Qubit.} \\ 6.0 \times 10^1 \\ 6.0 \times 10^{10} \\ 6.0 \times 10^{10} \\ 6.0 \times 10^{7} \\ 6.0 \times 10^{7} \\ 6.0 \times 10^{10} \\ 6.0 \times 10^{11} \\ 6.0 \times 10^{11} \\ 6.0 \times 10^{7} \end{array}$	$\begin{array}{ l l l l l l l l l l l l l l l l l l l$
	$\frac{\epsilon}{10^{-3}}$ 10^{-1}	$\frac{N}{10^3}$ 10^2 10^3 10^2	$\begin{array}{c} a \\ 10^{0} \\ 10^{-1} \\ 10^{-2} \\ 10^{0} \\ 10^{-1} \\ 10^{-2} \\ 10^{0} \\ 10^{-1} \\ 10^{-2} \\ 10^{0} \\ 10^{-1} \end{array}$	$\begin{array}{c} T_{\rm Trotter} \\ 1.0 \times 10^5 \\ 3.2 \times 10^5 \\ 3.2 \times 10^4 \\ 1.0 \times 10^4 \\ 3.2 \times 10^4 \\ 1.0 \times 10^4 \\ 3.2 \times 10^5 \\ 1.0 \times 10^5 \\ 3.2 \times 10^4 \\ 1.0 \times 10^4 \end{array}$	1 2.0 3 1.2 3 1.2 5 1.6 7 2.4 8 1.0 9 1.7 2.2 1.6 4 1.5 1.5 1.6	$\begin{array}{c} T_{\text{Qubit.}} \\ \hline V = 10^{27} \\ \hline V = 10^{27} \\ \hline V = 10^{27} \\ \hline V = 10^{28} \\ \hline V = 10^{21} \\ \hline V = 10^{21} \\ \hline V = 10^{27} \\ \hline V = 10^{27} \\ \hline V = 10^{28} \\ \hline V = 10^{21} \\ \hline V = 1$	$\begin{array}{c} Q_{\rm Trotter} \\ 2.6 \times 10^{11} \\ 2.6 \times 10^{11} \\ 2.6 \times 10^8 \\ 2.6 \times 10^8 \\ 2.6 \times 10^8 \\ 2.6 \times 10^{11} \\ 2.6 \times 10^{11} \\ 2.6 \times 10^{11} \\ 2.6 \times 10^{18} \\ 2.6 \times 10^8 \\ 2.6 \times 10^8 \end{array}$	$\begin{array}{c} Q_{\rm Qubit.} \\ 6.0 \times 10^1 \\ 6.0 \times 10^1 \\ 6.0 \times 10^1 \\ 6.0 \times 10^7 \\ 6.0 \times 10^7 \\ 6.0 \times 10^1 \\ 6.0 \times 10^1 \\ 6.0 \times 10^1 \\ 6.0 \times 10^7 \\ 6.0 \times 10^7 \\ 6.0 \times 10^7 \\ 6.0 \times 10^7 \end{array}$	$\begin{array}{ l l l l l l l l l l l l l l l l l l l$

3.2 QETU for ground state preparation and beyond 2310.13757

QETU: Ground state preparation for LGT 2310.13757

• QETU algorithm improvements and GS preparation in U(1) LGT:

- Preparing Gaussian states with QETU:
- What else is QETU good for?

3.3 Block encodings for ϕ^4 **2312.11637**, **2408.16824**

Block encodings for lattice ϕ^4 theory 2312.11637, 2408.16824

Lessons

- Algorithms for simulating complex systems may rely on principles different from those upon which near-term simulations are based.
- Near-optimal algorithms may compete with those based on Product Formulae (Trotterization) in physically interesting regimes.
- This requires using state-of-the-art techniques. (qubit mappings, block encoding, interaction picture, HHKL, etc.)

Thank You!

#backup

- Tong et. al. <u>2110.06942</u>:
 - Naïve approach (BE entire H + QSP) leads to $\tilde{O}(N^2; T^3; \log 1/\epsilon)$.
 - $\tilde{O}(N^2)$ which comes from:

(BE cost)×(||H|| in the query cost) = $\tilde{O}(N^2)$.

 $- \tilde{O}(T^3)$ which comes from

 $||H|| \times T$ in the query cost = $\tilde{O}(T^3)$

in the $H_E = \sum_{\vec{A}, \hat{l}=\Lambda_0} [E_b(\vec{n}, \hat{l})]^2$ term, since $||H_E|| \sim \Lambda^2 \sim T^2$:

LCU vs Sparse: Takeaways from U(1)

• SELECT $\approx O_F$ (applying *H*) and PREPARE $\approx O_H$ (H_{xy}).

• LCU: T $[U_H] = T[$ SELECT] + 2 T[PREPARE].

• Sparse:

 $T[U_H] = 2 T[O_F] + 2 T[O_H].$

• LCU is cheaper than Sparse.

Interaction picture via Truncated Dyson Series

 Cost of implementing an elementary building block, the time-dependent block encoding:

$$T[HAM-T^{\mathcal{B}}] = T[e^{-iH_{E}^{\mathcal{B}}}] \log_{2} \frac{16(\alpha + \alpha_{E})}{\epsilon} + T[H_{M+GM+B}^{\mathcal{B}}]$$

• Cost of simulating a single block in HHKL:

$$\mathbf{T}[e^{iH^{\mathcal{B}}}] = \alpha \Big(\mathbf{T}[e^{iH^{\mathcal{B}}_{E}}] + \left[-1 + \frac{2\ln(2\alpha/\epsilon)}{\ln\ln(2\alpha/\epsilon) + 1} \right] \mathbf{T}[\mathrm{HAM-T}^{\mathcal{B}}] \Big)$$

• Cost of the entire simulation:

$$T_{Qubitization} = \frac{N^d T}{N_{\mathcal{B}}^d} \mathbf{T}[e^{iH^{\mathcal{B}}}]$$

Interaction picture via Truncated Dyson Series

 Cost of implementing an elementary building block, the time-dependent block encoding:

$$T[HAM-T^{\mathcal{B}}] = T[e^{-iH_{E}^{\mathcal{B}}}] \log_{2} \frac{16(\alpha + \alpha_{E})}{\epsilon} + T[H_{M+GM+B}^{\mathcal{B}}]$$

• Which terms in the Hamiltonian determine the simulation cost?

	$T[e^{-iH_E^B}]$	$\log_2 \frac{16(\alpha + \alpha_E)}{\epsilon} T[e^{-iH_E^B}]$	$T[H^B_{M+GM+B}]$
<i>U</i> (1)			
<i>SU</i> (2)			
<i>SU</i> (3)			

QETU: a compromise between Nearly-optimal & Trotter

- Since BEs are so expensive, can one use alternative input models?
- What if we sacrifice *some* asymptotic properties?
- e^{-iHt} is a 0-ancilla BE of itself and $\approx e^{-iHt}$ for $t \ll 1$ is cheap.
- Dong et. al. (2204.05955): If $U_H \rightarrow e^{-iHt}$, QSVT turns into "QETU":

 While the QET circuit was implementing P(H), the QETU circuit implements P(cos H/2)*.

Ground State Preparation via Projection (Filtering) Lin & Tong (2002.12508)

• Consider $H = \sum_{j} \lambda_j |\psi_j\rangle \langle \psi_j|$ and assume access to:

- Initial state $|\psi_{\text{init}}\rangle$; $|\langle \psi_{\text{init}} | \psi_0 \rangle| = \gamma > 0$.

- GS projector $P_{<\mu} = |\psi_0\rangle\langle\psi_0|$,

- Then $P_{<\mu}|\psi_{init}\rangle = |\psi_0\rangle$.
- Approximate implementation of $P_{<\mu}$:

 $f(x) \approx \operatorname{sign}(x)$.

• Query complexity: $\tilde{O}(\gamma^{-1}\Delta^{-1}\log 1/(\gamma\epsilon))$ calls to U_H , where $\Delta = \lambda_1 - \lambda_0$.

• Trotterized $e^{iH} \rightarrow$ error saturates at $\epsilon \sim 1/N_{steps}^2$.

QETU: what else is it good for?

- Can QETU implement arbitrary functions of $A = A^{\dagger}$?
- Since QETU implements $P\left(\cos\left(\frac{x}{2}\right)\right)$, for a given f(x), the polynomial P(x) should approximate

 $P(x) \approx f(2 \arccos(x)).$

- But arccos(x) is not-so-nice at the interval ends: Its Chebyshev expansion has polynomial convergence. (vs. exp convergence for decent functions.)
- If $P\left(\cos\left(\frac{x}{2}\right)\right)$ doesn't have definite parity, LCU is required.

QETU for Gaussians

- I. $\tau = 1$ and $\eta = 0$.
- II. $\tau = 1$ and optimize η .
- III. Optimize τ and η .
- IV. $\tau = 2$, even F(x), optimize η . (No LCU is required.)
- V. Same as IV, but requiring $P(x) \approx \sum_{k=0}^{d/2} c_{2k} T_{2k}(x)$ only at $x = x_j$.

 $n_q = 5$

QETU for Gaussians

- Best known results (<u>2109.10918</u>):
 - For ≤ 16 qubits: Use direct state preparation.
 - For > 16 qubits:
 Use Kitaev-Webb.
- Improved QETU: wins over direct state preparation for $n_q > 2 5$ qubits for $\epsilon \sim 10^{-3}$.

QETU ground state preparation Push it to the limit

- The original algorithm uses e^{iH} .
- We generalized this to $e^{i\tau H}$ and derived

$$\tau_{max} = \frac{2\pi}{\pi - \eta + \mu + \Delta/2}$$

for exact implementation of $e^{i\tau H}$, where
spec $H \subset [\eta, \pi - \eta]$ and $\mu = (\lambda_1 - \lambda_0)/2$.

- Precision improves by $\sim O(\exp(d\Delta(\tau_{max} 1)))$.
- Also generalized the derivation to the case of Trotterization. (Minimized the number of elementary calls $N_{tot} = d \times N_{steps}$).

for

 $1 - \langle \psi_{\text{prepared}} | \psi_0 \rangle$

Bonuses

- Fewer gates;
- Better precision.
- Showed that, for a fixed ϵ , the $\delta \tau$ in Trotter $U = e^{i\delta \tau H}$ does not scale with the problem size (as one would expect from the ||H|| growth...):

$$H\frac{\delta\tau}{E_{max}} = \delta\tau\frac{H}{E_{max}}.$$

Scalar and Abelian bosons on the lattice

- Scalar and Abelian fields on lattice coupled anharmonic oscillators: $H = H_{\phi} + H_{\pi}$, $H_{\phi} \supset \{\phi_i^g; \cos \phi_i; \phi_i \phi_i; ...\}$, $H_{\pi} \supset \{\pi_i^2; \pi_i \pi_i; ...\}$.
- Computation-wise, a good toy model for non-Abelian gauge theories.
- "JLP digitization" = (eigenbases of ϕ and π) & (binary qubit mapping):

$$\phi \sim \sum_{m=0}^{n_q-1} 2^m Z_m$$
, $\pi^{(\pi)} \sim \sum_{m=0}^{n_q-1} 2^m Z_m$.

• Since $H = H_{\phi} + FT^{\dagger}H_{\pi}^{(\pi)}FT$, the product formula is:

$$e^{i\tau H} \approx \left(e^{i\delta\tau H_{\phi}} \operatorname{FT}^{\dagger} e^{i\delta\tau H_{\pi}^{(\pi)}} \operatorname{FT} \right)^{N_{steps}}$$
, $\delta\tau = \tau/N_{steps}$.

QETU for Gaussians Disclaimer

- Described approach is not directly applicable to preparing wavepackets in QFT: Since f(H) is not unitary, the success probability cannot be made O(1).
- But it proves an important point
- And raises the question whether QETU can be utilized in simulating time evolution.

Block encodings for lattice ϕ^4 **theory**

• Improving the naïve LCU using the Quantum Fourier Transform:

QETU for Gaussians

• Work in the digitized eigenbasis of \hat{x} :

$$\hat{x}|x_j\rangle = x_j|x_j\rangle$$

- QETU circuits calls $U = e^{i\tau \hat{x}_{sh}}$, where spec $\hat{x}_{sh} \subset [\eta, \pi \eta]$.
- The initial state:

$$\frac{1}{\sqrt{2^{n_q}}}\sum_{j=0}^{2^{n_q}-1} |x_j\rangle$$

• QETU implements Gaussian filter:

$$f(x) \sim \exp\left(-\frac{1}{\sigma^2}\left(\frac{2}{\tau}\arccos(x) - x_0\right)^2\right)$$

Quantum Simulation: Algorithms Zoo 🍌

- Variational real- & imaginary-time evolution.
- (Block encoding OR Time evolution access) to get E_{min} without $|\psi\rangle \mapsto f(H)|\psi\rangle$.
- (Subspace + Block Encoding) or (Subspace + Hamiltonian Time Evolution).

Nearly-optimal simulation of Quantum Field Theory | BERKELEY LAB