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1. Motivation
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Focus of this talk

Nearly-optimal simulation of Quantum Field Theory | BERKELEY LAB 5

QIS for HEP

Hardware Formulations
Algorithms 

and 
applications

Near-term:

What problems can we 
solve with existing devices?

Fault-tolerant:

What is the smallest device needed to solve a given problem?
What problems can we solve with a FT device of given size?



What makes QSim of HEP hard?

• Highly non-trivial model development.

• Large number of Degrees of Freedom (DOFs),
both fermions and bosons:
→ requires a lot of qubits & long circuits.

• Various types of interactions, depending on the formulation.

• Naïve approaches lead to circuits with ~1040–50 gates for realistic 
theories and problem sizes.
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What makes QSim of HEP nice?

• Fundamental interactions are local
→ Problems are often well-structured.

• Algorithms for Relativisitic QFTs can be 
readily utilized in other settings,
e.g., for low-energy NP EFTs.
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2. Algorithms

Near-optimal Simulation of High Energy Physics 8



Why “near-optimal”

• Complexity of Trotter time evolution (1901.00564, 1912.08854):
– Upper bound:

#gates	~ )𝛼	𝑡!"!/$𝜖%!/$,
 𝑝 = 1,2, … — Trotter order, )𝛼 — commutator norm (😩).

– Lower bound:
#gates	~	( 𝐻 	𝑡)!"!/$𝜖%!/$,

𝐻 	𝑡 	because 𝑒%&'( = 𝑒%&('/*)(*().
– Starting with 𝐻,-.&( = ∑/𝑐*𝑃* implies #gates	>	𝑂(𝑁).
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Questions to ask when developing algorithms
for complex systems
• How far can the asymptotic dependence on 𝐻 , 𝑡, 𝜖 be improved?

• How to improve the constant factors?
– Bottleneck of many algorithms: Block Encoding (BE) subroutine.
– Improve BE or consider alternative approaches.
– Carefully study dependence on all model parameters.

• How do such methods compare to each other?
– Depends on model, observables, and regime ( 𝐻 , 𝑡, 𝜖,…).
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Block encoding

• The Block Encoding (BE) construction allows one to implement 
arbitrary linear transformations of quantum states:

𝜓 ↦ 𝐴 𝜓
• The idea is to embed 𝐴 into a unitary matrix of larger size:

𝑈0 =
𝐴/𝛼 ∗
∗ ∗

𝐴/𝛼 ∗
∗ ∗

𝜓
0 =

1
𝛼
𝐴𝜓
∗ =

1
𝛼
𝐴𝜓
0 + 0

∗
• 1/𝛼 is necessary because entries of 𝑈0 have to be < 1.
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Block encoding circuit

• In a QC, extra dimensions come from adding more qubits:

• The extra (“ancillary”) qubits have to be measured upon applying 𝑈0, 
and the desired outcome is probabilistic.

• Constructing BEs is art/science, and is highly problem-dependent.
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• Selectively apply 𝑈1 in 𝐻 = ∑1 𝛼1 𝑈1
based on the index state value:

    SELECT 𝑙 𝜓 = 𝑙 𝑈1 𝜓  
• Coefficients �⃗� ≡ {𝛼1} are

encoded in the index state:

    PREPARE 0 = ∑1
*!

|||*|"
|𝑙⟩ 

• 1⊗ 0 	PREPARE3 ⋅ SELECT ⋅ PREPARE	(1 ⊗ |0⟩)	~	𝐻

LCU
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Sparse Oracle Access

• Sparse oracle access, 𝑂4&𝑂' ↦ 𝑈':
𝑂4 𝑥 𝑙 = 𝑥 𝑦1 	,

𝑂' 𝑥 𝑦 𝑧 = 𝑥 𝑦 𝑧 ⊕ 𝐻56 .

	 𝑦 	

		𝐻 =
𝑥

⋱ ⋯ ⋱
⋮ ⋱ ⋮

𝐻56 ⋯ ⋱
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• 1⊗ 0 𝑂4 ⋅ 𝑂' ⋅ … ⋅ 𝑂'
3 ⋅ … ⋅ 𝑂4

3(1 ⊗ |0⟩)	~	𝐻
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QSP-based algorithms: QSVT, QETU, etc.

• QSVT (1806.01838): Implements 𝑼𝑷(𝑨) provided access to 𝑼𝑨

• QETU (2204.05955): Implements 𝑼𝑷(𝐜𝐨𝐬(𝑨/𝟐)) provided access to 𝒆𝒊𝑨

• 𝑃 𝑥  approximates the desired function, e.g., 𝑒&5, 𝑒%5, sgn 𝑥, etc.
• The angles of rotation gates are determined by the coefficients of 𝑃 𝑥 .
Near-optimal Simulation of High Energy Physics 15
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Part 3. Applications

Near-optimal Simulation of High Energy Physics 16



3.1 Near-optimal simulation of 
Kogut-Susskind LGT

2405.10416

Near-optimal Simulation of High Energy Physics 17
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Nearly-optimal simulation
of a local Lattice Gauge Theory
• Kogut-Susskind formulation of LGT:

• Can be used to simulate
– U(𝟏) gauge theory

 “Quantum Electrodynamics”:
 Electromagnetic interactions
 between electrons and photons.

– SU(𝒏𝒄) gauge theory
 “Quantum Chromodynamics”:
 Strong interactions between quarks and gluons

Near-optimal Simulation of High Energy Physics

Vertices Fermions

Edges Bosons
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Nearly-optimal simulation
of a local Lattice Gauge Theory
• Kogut-Susskind formulation of SU(2) in 2+1D:

Near-optimal Simulation of High Energy Physics

<latexit sha1_base64="Pf8UP1hI+Wnzu6bExO6gXTqQEUM=">AAACGHicbVBJSwMxGM3Urdat6tFLsAgVpM6UUr0UClLosYJdoNMOmTTThmYyQ5KRlmF+hhf/ihcPinjtzX9juhy0+iDk8d63JM8NGZXKNL+M1Mbm1vZOejezt39weJQ9PmnJIBKYNHHAAtFxkSSMctJUVDHSCQVBvstI2x3fzf32IxGSBvxBTUPS89GQU49ipLTkZK/rTq1iy8h34kmyvGnFSvoDaC+Gxy6LSFLLT664Qy/7RSebMwvmAvAvsVYkB1ZoONmZPQhw5BOuMENSdi0zVL0YCUUxI0nGjiQJER6jIelqypFPZC9e7E7ghVYG0AuEPlzBhfqzI0a+lFPf1ZU+UiO57s3F/7xupLzbXkx5GCnC8XKRFzGoAjhPCQ6oIFixqSYIC6rfCvEICYSVzjKjQ7DWv/yXtIoFq1wo35dy1dIqjjQ4A+cgDyxwA6qgDhqgCTB4Ai/gDbwbz8ar8WF8LktTxqrnFPyCMfsGgXKgAw==</latexit>

HE =
X

x

dX

i=1

E(x, ni)
2

<latexit sha1_base64="9cw3DYI0SkH9DY1zGnQ3zescYd8="></latexit>

HGM =
X

x

dX

i=1

 
†(x) · U(x, ni) ·  (x+ ni) + h.c.

<latexit sha1_base64="//NdPrpF94LrtIEe0Qdokqececs="></latexit>

HM =
X

x

(�1)x †(x) ·  (x)

<latexit sha1_base64="cF1zjY/T3sxE9xdkOP+WeWZBVvo="></latexit>

HB =
X

x

dX

i,j=1
i 6=j

tr
⇥
U(x, ni) · U(x+ ni, nj) · U(x+ nj , ni)

† · U(x, nj)
†⇤+ h.c.

Vertices Fermions

Edges Bosons
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Nearly-optimal simulation
of a local Lattice Gauge Theory
• Prior work: Algorithms for simulating LGTs using Trotterization:

– Kan&Nam (2107.12769);
– Davoudi et. al. (2212.14030).

• Our work: Algorithms for near-optimal simulation of LGT,
    taking advantage of the Hamiltonian structure.

Near-optimal Simulation of High Energy Physics 20
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Nearly-optimal simulation
of a local Lattice Gauge Theory
• General plan: Tong et. al. (2110.06942): 

f𝑂 𝑁?; 𝑇@; log 1/ 𝜖 → f𝑂 𝑁; 𝑇; log 1/𝜖
   via HHKL (1801.03922) and Interaction picture (1805.00675)

• Block encoding is required for all the terms.
• Devil in the details: Work out qubit mappings; Implement BEs using 

Linear Combination of Unitaries and Sparse Oracle approaches.

Near-optimal Simulation of High Energy Physics 21
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Local fermionic encodings

• VC (cond-mat/0508353) for U(1) in 2 dim:
One auxiliary fermion per lattice site.

• GSE (1810.05274) for SU(3) in 𝑑 dim:
𝑑 + 𝑛A − 1 qubits for a site of degree 2𝑑.

• For U(1) in 2+1D they the costs are same,
GSE wins in more complex scenarios.

Near-optimal Simulation of High Energy Physics 22
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• SELECT'# • SELECT'$# 

• SELECT'% ≈ 𝑂4% 

LCU

Near-optimal Simulation of High Energy Physics

• Unlike in quantum chemistry, in lattice systems
Cost	SELECT ≫ Cost	PREPARE.
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• 𝑂4# <trivial>

• 𝑂'# 

where

• 𝑂4$# 

• 𝑂'$# 

• 𝑂4% 

• 𝑂'% <trivial>

Sparse oracles

Near-optimal Simulation of High Energy Physics 24



T-gate counts for U(𝟏) LGT
(Quantum Electrodynamics)
• T-counts for various terms in the 

Hamiltonian,
𝑇 = 1; ΛB = 5; 𝜖 = 10%@:

• Total T-counts and qubit counts:

Near-optimal Simulation of High Energy Physics 25



Improvements for SU(𝒏𝒄 = 𝟐) and SU(𝒏𝒄 = 𝟑)
(Strong forces)
• Better scaling than PF in time & error; 

better scaling in size — for large lattices.
• It outperforms conventional techniques

for non-Abelian gauge theories:
– Trotterization: 𝑂 2" #!"$%

– BE-based simulation: 𝑂 𝑛&'

Near-optimal Simulation of High Energy Physics 26



3.2 QETU for ground state 
preparation and beyond

2310.13757

Near-optimal Simulation of High Energy Physics 27
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QETU: Ground state preparation for LGT
2310.13757
• QETU algorithm improvements and GS preparation in U(1) LGT:

• Preparing Gaussian states with QETU:
• What else is QETU good for?

Near-optimal Simulation of High Energy Physics 28

P!" ≈ |𝜓#⟩⟨𝜓#|
P!"|𝜓init⟩ ≈ |𝜓#⟩
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3.3 Block encodings for 𝜙𝟒
2312.11637, 2408.16824
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Block encodings for lattice 𝜙' theory
2312.11637, 2408.16824

• Building blocks for local terms; using 𝜙~∑CDB
E&%! 2C 𝑍C digitization.

Near-optimal Simulation of High Energy Physics 30
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Lessons

• Algorithms for simulating complex systems may rely on principles 
different from those upon which near-term simulations are based.

• Near-optimal algorithms may compete with those based on 
Product Formulae (Trotterization) in physically interesting regimes.

• This requires using state-of-the-art techniques.
(qubit mappings, block encoding, interaction picture, HHKL, etc.)
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Thank You!
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#backup
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Nearly-optimal simulation
of a local Lattice Gauge Theory
• Tong et. al. 2110.06942:

– Naïve approach (BE entire 𝐻 + QSP) leads to f𝑂 𝑁?; 𝑇@; log 1/ 𝜖 .
– f𝑂 𝑁?  which comes from:

(BE	cost)× ||H||	in	the	query	cost = f𝑂 𝑁? .
– f𝑂 𝑇@  which comes from

||H||×𝑇	in	the	query	cost	=	 f𝑂 𝑇@

   in the                                  term, since ||𝐻F||~	Λ?	~	𝑇?:                                 

Λ = ΛB + 𝑂 𝜒𝑇 + 1 polylog 𝑁𝜖%! .

Near-optimal Simulation of High Energy Physics 34
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• “Exact Trotter” implementation of 𝑒&GH'.

– �𝒌~∑𝒋D𝟎
𝒏𝒒%𝟏𝒁𝒋,

 𝑒&GH'~∏M 𝑒N) ∏M1 𝑒N)N!,
T = 𝑂 𝑛,? log(1/𝜖) .

• 𝑈H 𝑘 𝑧 = |𝑘⟩|𝑧 ⊕ 𝑘?⟩ + Phase kickback.
– 𝑈H 	using arithmetic (1706.03419),

 T = 𝑂 𝑛,?+𝑛,log	1/𝜖 .
– 𝑈H 	using QROM (i.e., LCU), T = 𝑂 2E& .

Fast-forwarding 

Near-optimal Simulation of High Energy Physics

Mike
&Ike

, P
roblem, 4.1;

Childs T
hesis

, R
ule 1.6
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LCU vs Sparse: Takeaways from U(1)

• SELECT ≈ 𝑶𝑭 (applying 𝑯) and PREPARE ≈ 𝑂' (𝐻56).

• LCU:
T	[𝑈']	=	T[	SELECT	]	+	2	T[	PREPARE ].

• Sparse:
T[	𝑈' 	]	=	2	T[	𝑂4 	]	+	2	T[	𝑂' 	].

• LCU is cheaper than Sparse.
Near-optimal Simulation of High Energy Physics 36



Interaction picture via Truncated Dyson Series

• Cost of implementing an elementary building block,
the time-dependent block encoding:

• Cost of simulating a single block in HHKL: 

• Cost of the entire simulation:

Near-optimal Simulation of High Energy Physics 37



Interaction picture via Truncated Dyson Series

• Cost of implementing an elementary building block,
the time-dependent block encoding:

• Which terms in the Hamiltonian determine the simulation cost?

Near-optimal Simulation of High Energy Physics

𝑇[𝑒$%&!
"
] log'

16(𝛼 + 𝛼()
𝜖

𝑇[𝑒$%&!
"
] 𝑇[𝐻)*+)*,, ]

𝑈(1) | ||||||||||||| |||
𝑆𝑈(2) || ||||||||||||||||||||||| |||||||
𝑆𝑈(3) ||| |||||||||||||||||||||||||||||| |||||||||||||||||||||||||||||||||||||||||||||||||
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QETU: a compromise between Nearly-optimal & Trotter 

• Since BEs are so expensive, can one use alternative input models?
• What if we sacrifice some asymptotic properties?
• 𝑒%&'( is a 0-ancilla BE of itself and ≈ 𝑒%&'( for 𝑡 ≪ 1 is cheap.
• Dong et. al. (2204.05955): If 𝑈' → 𝑒%&'(, QSVT turns into “QETU”:

• While the QET circuit was implementing 𝑃 𝐻 , the QETU circuit 
implements 𝑃 cos𝐻/2 *.

Near-optimal Simulation of High Energy Physics 39
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Ground State Preparation via Projection (Filtering)
Lin & Tong (2002.12508)
• Consider 𝐻 = ∑M 𝜆M |𝜓M⟩⟨𝜓M| and assume access to:

– Initial state |𝜓init⟩; | 𝜓init ψB |	=	γ > 0.
– GS projector PPQ = |𝜓B⟩⟨𝜓B|,

• Then PPQ|𝜓init⟩ = |𝜓B⟩.

• Approximate implementation of PPQ:
                   𝑓 𝑥 ≈ sign 𝑥 	.
• Query complexity: f𝑂 𝛾%!Δ%! log 1/(𝛾𝜖)	

calls to 𝑈', where Δ = 𝜆! − 𝜆B.
Near-optimal Simulation of High Energy Physics 40
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QETU ground state preparation
in compact U(1) 2310.13757

Near-optimal Simulation of High Energy Physics

• Exact 𝑒&' → exponential convergence.

• Trotterized 𝑒&' 	→ error saturates at 𝜖 ∼ 1/𝑁R(S$R? .
41
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QETU: what else is it good for?

• Can QETU implement arbitrary functions of 𝐴 = 𝐴3?

• Since QETU implements 𝑃 cos 5
?

, for a given 𝑓(𝑥),
the polynomial 𝑃(𝑥) should approximate

𝑃 𝑥 ≈ 𝑓(2 arccos(𝑥)).
• But arccos(𝑥) is not-so-nice at the interval ends:

Its Chebyshev expansion has polynomial convergence.
(vs. exp convergence for decent functions.)

• If 𝑃 cos 5
?

 doesn’t have definite parity, LCU is required.
Near-optimal Simulation of High Energy Physics 42



QETU for Gaussians

I. 𝜏 = 1 and 𝜂 = 0.
II. 𝜏 = 1 and optimize 𝜂.
III. Optimize 𝜏 and 𝜂.
IV.  𝜏 = 2, even 𝐹(𝑥), optimize 𝜂.

(No LCU is required.)
V. Same as IV, but requiring

𝑃 𝑥 ≈ ∑HDB
T/? 𝑐?H𝑇?H(𝑥) 

only at 𝑥 = 𝑥M.                                                       𝑛, = 5
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QETU for Gaussians

• Best known results (2109.10918):
– For ≤ 16 qubits:

 Use direct state preparation.
– For > 16	qubits:

 Use Kitaev-Webb.
• Improved QETU: wins over direct state 

preparation for 𝑛, > 2 − 5 qubits for 𝜖~10%@.

Near-optimal Simulation of High Energy Physics 44
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QETU ground state preparation
Push it to the limit
• The original algorithm uses 𝑒&'.
• We generalized this to 𝑒&G' and derived

                      𝜏CU5 =
?V

V%W"Q"X/?
for exact implementation of 𝑒&G', where
spec	𝐻 ⊂ 𝜂, 𝜋 − 𝜂  and 𝜇 = (𝜆! − 𝜆B)/2.
• Precision improves by ~𝑂(exp(𝑑Δ(𝜏CU5 − 1))).
• Also generalized the derivation to the case of Trotterization.

(Minimized the number of elementary calls 𝑁(Y( = 𝑑×𝑁R(S$R).
Near-optimal Simulation of High Energy Physics 45



Bonuses

• Control-free QETU for bosons:

– Fewer gates;
– Better precision.

• Showed that, for a fixed 𝜖, the 𝛿𝜏 in Trotter 𝑈 = 𝑒&ZG' does not scale 
with the problem size (as one would expect from the ||𝐻|| growth…):

𝐻
𝛿𝜏
𝐸CU5

= 𝛿𝜏
𝐻

𝐸CU5
.
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Scalar and Abelian bosons on the lattice

• Scalar and Abelian fields on lattice — coupled anharmonic oscillators:

𝐻 = 𝐻[ + 𝐻V	, 	 𝐻[ ⊃ {𝜙&
\; cos 𝜙& ; 𝜙&𝜙M; … } , 𝐻V ⊃ 𝜋&?; 𝜋&𝜋M; … 	.

• Computation-wise, a good toy model for non-Abelian gauge theories.
• “JLP digitization” = (eigenbases of 𝜙 and 𝜋) & (binary qubit mapping):

𝜙~∑CDB
E&%! 2C 𝑍C ,     𝜋(V)~∑CDB

E&%! 2C 𝑍C .

• Since 𝐻 = 𝐻[ + FT3𝐻V
(V)FT, the product formula is:

𝑒&G' ≈ 𝑒&ZG'* 	FT3𝑒&ZG'+
(+) FT 

/./01.
, 	 𝛿𝜏 = 𝜏/𝑁R(S$R.
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QETU for Gaussians
Disclaimer
• Described approach is not directly applicable 

to preparing wavepackets in QFT:
Since 𝑓(𝐻) is not unitary, the success 
probability cannot be made 𝑂(1).

• But it proves an important point 🏽
• And raises the question whether 

QETU can be utilized in simulating
time evolution.
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Block encodings for lattice 𝜙' theory

• Improving the naïve LCU using the Quantum Fourier Transform:

• “LOVE LCU” 

Near-optimal Simulation of High Energy Physics 49



QETU for Gaussians

• Work in the digitized eigenbasis of  𝑥:
 𝑥 𝑥M = 𝑥M 𝑥M

• QETU circuits calls 𝑈 = 𝑒&G ]5.2, where spec	  𝑥R^ ⊂ 𝜂, 𝜋 − 𝜂 .	
• The initial state:

!

?3&
∑MDB?3&%! 𝑥M

• QETU implements Gaussian filter:

𝑓 𝑥 ~ exp −
1
𝜎?

2
𝜏
arccos(𝑥) − 𝑥B

?
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Quantum Simulation: Algorithms Zoo 🦕

These approaches can be combined:
• Variational real- & imaginary-time evolution.
• (Block encoding OR Time evolution access) to get 𝐸!"# without 𝜓 ↦ 𝑓(𝐻)|𝜓⟩.
• (Subspace + Block Encoding) or (Subspace + Hamiltonian Time Evolution).

Nearly-optimal simulation of Quantum Field Theory | BERKELEY LAB 51

Product 
Formulæ

Near-term

Variational
#vqe, #adapt-vqe, #qaoa

Subspace
#krylov,

#generalized-subspace

Fault-tolerant
#nearly-optimal

Block Encoding
#qsp, #qsvt, #gqsp, #dyson

Time Evolution Access
#qetu

ect.
#hhkl

Time evolution: a) Discretize time 𝑒!"#$ = 𝑒!"
#
$ $

%
; b) Each step 𝑒&'(')'⋯ ≈ 𝑒

%
&𝑒

"
&𝑒

'
&…𝑒

'
&𝑒

"
&𝑒

%
&

Adiabatic state preparation: 𝜓 → 	𝑒!"+(-./-+	+)$ 	𝑒'"+(.()$ 	 𝑒!"+(-./-+	+)$ 	𝑒'"+(.&)$ …	 |𝜓⟩

𝐸2"3 = min
4
	⟨𝜓(�⃗�) 𝐻 𝜓(�⃗�)⟩,

where |𝜓(�⃗�)⟩ = 𝑈(�⃗�).

G𝐻𝑐 = 𝜆 J𝑆𝑐2"3,
where	 G𝐻"5 = 𝜓" 𝐻 𝜓5
and J𝑆"5 = ⟨𝜓"|𝜓5⟩.

Given the ability to implement
𝜓 ↦ 𝐻 𝜓 , construct 𝜓 ↦ 𝑓(𝐻)|𝜓⟩.

Given the ability to implement   
𝑈 = 𝑒!"6$, construct 𝜓 ↦ 𝑓(𝐻)|𝜓⟩.
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