# Tensor Networks for real time: scattering in the Schwinger model

Mari-Carmen Bañuls

I. Papaestathiou (MPQ), J. Knolle (TUM)

arXiv:2402.18429









QuantHEP Munich 2.9.2024 TNS: entanglement-based ansatzes for quantum many-body states



### Tensor Network States (TNS)



Schuch et al., NJP 2008

volume law

new tools may allow us to access some of these regimes



Non-perturbative for Hamiltonian systems

Extremely practical (and successful) for ID systems (MPS)

Promising improvements for higher dimensions

ground states low-lying excitations thermal states time evolution



### real time evolution with MPS



TEBD, t-DMRG Vidal, PRL 2003, 2004 Verstraete, García-Ripoll, Cirac, PRL 2004 time evolved state approximated by MPS

### but entanglement grows



### yet many physical situations (in closed and open quantum systems) can be successfully studied!

short times, adiabatic, low energy can work well

García-Ripoll, NJP 2006 Wall, Carr NJP 2012 Paeckel et al arXiv:1901.05824

# Standard evolution algorithms for LGT

Reliable for moderate times, or in some setups

Useful for quantum simulation

S. Kühn et al., Phys. Rev. A 90, 042305 (2014) S. Kühn et al., JHEP 07 (2015) 130 Buyens et al., PRL 2014; PRX 2016 Rico et al., PRL 2014; NJP 2014; PRX 2016

No full continuum extrapolation yet, but results near the continuum limit

### string breaking



#### **Real-Time Dynamics in U(1) Lattice Gauge Theories with Tensor Networks**

T. Pichler,<sup>1</sup> M. Dalmonte,<sup>2,3</sup> E. Rico,<sup>4,5,6</sup> P. Zoller,<sup>2,3</sup> and S. Montangero<sup>1</sup>



### quench scenario



PHYSICAL REVIEW D 96, 114501 (2017)

Real-time simulation of the Schwinger effect with matrix product states

Boye Buyens,<sup>1</sup> Jutho Haegeman,<sup>1</sup> Florian Hebenstreit,<sup>2</sup> Frank Verstraete,<sup>1,3</sup> and Karel Van Acoleyen<sup>1</sup>

### scattering in the Schwinger model

with I. Papaefstathiou, J. Knolle, arXiv:2402.18429

Schwinger model Schwinger '62

simplest gauge theory with matter

QED in I+I dimensions electrons & photons

shows some of the features of *full* QCD

confinement → bound states (massive bosons) fermion condensate

testbench for lattice techniques

#### Schwinger model Schwinger '62

discrete Hamiltonian (staggered) formulation Jordan-Wigner → spin model <sup>Kogut, Susskind '75</sup>

$$H = \frac{1}{g^2 a^2} \sum_{n} \left( \sigma_n^+ e^{i\theta_n} \sigma_{n-1}^- + \sigma_{n+1}^+ e^{-i\theta_n} \sigma_n^- \right) + \frac{m}{ag^2} \sum_{n} \left( 1 + (-1)^n \sigma_n^3 \right) + \sum_{n} L_n^2$$

Gauss Law

$$L_n - L_{n-1} = \frac{1}{2} [\sigma_n^3 + (-1)^n]$$
$$\dots S_e \ \ell \ S_o \ \ell \ S_e \ \ell \ S_o \dots \rangle$$

spin-electric flux basis suitable for MPS works by Buyens et al., PRL 2014; arXiv:1509.00246 Rico et al., PRL 2014; NJP 2014 Schwinger model Schwinger '62 discrete Hamiltonian (staggered) formulation Jordan-Wigner → spin model Kogut, Susskind '75

$$\sum_{n} L_n^2 \to \sum_{n} \sum_{k < n} (N - n) \sigma_k^z \sigma_n^z$$

integrating out Gauss Law (OBC) Hamer'82

$$L_n = \ell_0 + \frac{1}{2} \sum_{k \le n} \sigma_k^z + \dots$$
$$|\ell_0 \dots S_e \ S_o \ S_e \ S_o \dots \rangle$$

physical spin basis

e.g. MCB, Cichy, Cirac, Jansen, JHEP11 (2013) 158



Spectrum of stable particles: bound states

distinguished by symmetries in the continuum

**vector** first excited state over GS different C, P charges from GS strong coupling: fermion-antifermion

$$|1_V\rangle = \frac{1}{\sqrt{N}} \sum_n \left(\sigma_n^+ \sigma_{n+1}^- - \sigma_{n+1}^+ \sigma_n^-\right)|0\rangle$$

scalar C, P sector of GS
~bound state: pair of vectors

Numerically explored with standard MPS methods precise continuum limit

review 1910.00257



#### Spectrum of stable particles: bound states



Numerically explored with standard MPS methods precise continuum limit

review 1910.00257

we are interested in simulation of (inelastic) scattering

scattering with MPS

uMPS formalism provides

ansatz for quasiparticles

## PHYSICAL REVIEW B 92, 125136 (2015)

Laurens Vanderstraeten,<sup>1</sup> Frank Verstraete,<sup>1,2</sup> and Jutho Haegeman<sup>1</sup>

PHYSICAL REVIEW RESEARCH 3, 013078 (2021)

Real-time scattering of interacting quasiparticles in quantum spin chains

Maarten Van Damme,\* Laurens Vanderstraeten, Jacopo De Nardis, Jutho Haegeman, and Frank Verstraete

#### PRX QUANTUM 3, 020316 (2022)

#### Collisions of False-Vacuum Bubble Walls in a Quantum Spin Chain

Ashley Milsted,<sup>1,2,3,4,\*,‡</sup> Junyu Liu,<sup>1,2,†</sup> John Preskill,<sup>1,2,4,‡</sup> and Guifre Vidal<sup>3,5</sup>



### scattering in LGT

PHYSICAL REVIEW X 6, 011023 (2016)



#### **Real-Time Dynamics in U(1) Lattice Gauge Theories with Tensor Networks**

T. Pichler,<sup>1</sup> M. Dalmonte,<sup>2,3</sup> E. Rico,<sup>4,5,6</sup> P. Zoller,<sup>2,3</sup> and S. Montangero<sup>1</sup>

PHYSICAL REVIEW D 104, 114501 (2021)

#### Entanglement generation in (1+1)D QED scattering processes

Marco Rigobello<sup>®</sup>, Simone Notarnicola<sup>®</sup>, Giuseppe Magnifico<sup>®</sup>, and Simone Montangero<sup>®</sup>

notice also: Surace, Lerose, New J. Phys. 23 (2021) 062001 Vovrosh et al. PRX Quantum 3, 040309 (2022) Su, Osborne, Halimeh arXiv:2401.05489



### inelastic scattering in the Schwinger model

collision of two vector mesons can produce two scalars



Gaussian wavepacket with momentum k

#### probe the inelastic threshold

strong coupling regime

Papaefstathiou, Knolle, MCB, arXiv:2402.18429

### inelastic scattering in the Schwinger model

collision of two vector mesons can produce two scalars

initial setup  $o_1$   $o_2$   $o_2$   $O_1$ 

inelastic threshold

continuum 
$$2\sqrt{p^2 + M_V^2} = 2\sqrt{M_S^2}$$
  
lattice  $k = p/(g\sqrt{x})$   
 $x = 1; N = 100; \mu = 2 \cdot 10^{-5} \Rightarrow k_{\text{thr}} = 1.12$ 

Papaefstathiou, Knolle, MCB, arXiv:2402.18429

### inelastic scattering in the Schwinger model

collision of two vector mesons can produce two scalars

initial setup



#### observables (mostly local)

entropy of two sites 4-fermion projector (strong coupling) electric flux correlator (not local)

Papaefstathiou, Knolle, MCB, arXiv:2402.18429

### below momentum threshold

#### entropy of two sites



### above momentum threshold





Thanks for your attention!





# TNS can be a suitable ansatz also for LGT/QFT

real time is more challenging than equilibrium

standard methods limited to short times

current results: inelastic scattering Papaefstathiou, arXiv:2402.18429 momentum threshold observed production detected through local observables

further directions

challenge: continuum limit