QuantHEP2024, September 3

Quantum simulation of string breaking dynamics

Federica Surace

Credits: Derek Leinweber

Ising chain: confinement

$$H = -\sum_{i < j} J_{ij} \sigma_i^z \sigma_j^z - g \sum_j \sigma_j^x - h \sum_j \sigma_j^z$$

$$g \text{ small}$$

$$E(\ell) \approx 4J + 2h\ell$$

$$string \text{ tension}$$

Ising chain: confinement

$$H = -\sum_{i < j} J_{ij} \sigma_i^z \sigma_j^z - g \sum_j \sigma_j^x - h \sum_j \sigma_j^z$$
Quantum simulation
with trapped ions
Long range
$$u_{0} = \frac{1}{E_1}$$
Quantum simulation
with trapped ions

$$u_{0} = \frac{1}{E_2}$$

$$u_{0} = \frac{1}{E_1}$$
Quantum simulation

$$u_{0} = \frac{1}{E_1}$$
Quantum simulation

$$u_{0} = \frac{1}{E_2}$$
Quantum simulation

$$u_{0} = \frac{1}{E_1}$$
Quantum simulation

$$u_{0} = \frac{1$$

Position x

Real-time dynamics in a confined system

 $|C_{i,6}^{x}|$

Tan, Becker, Liu, Pagano, Collins, De, Feng, Kaplan, Kyprianidis, Lundgren, Morong, Whitsitt, Gorshkov, Monroe, Nat. Phys. 2021

Confinement demonstrated in trapped ions

... can one observe string breaking?

$$H = -\sum_{1 \le i < j \le \ell} J_{ij} \sigma_i^z \sigma_j^z - g \sum_{j=1}^{\ell} \sigma_j^x + \sum_{j=1}^{\ell} (h_j^{\text{eff}} - h) \sigma_j^z$$

Challenging for longer strings:

- narrow peak
- long times needed

Quench $h = 0 \rightarrow h = h_c$

Oscillations between

For long strings: the gap is too small The evolution is always diabatic

Can the string break in this case?

slower = breaks at smaller *h*

Size of largest **†** domain (bubble)

slower = larger bubbles

String breaking as a false vacuum decay

Theory

Alessio Lerose Oxford

Elizabeth Bennewitz UMD

Alex Schuckert UMD

Brayden Ware UMD

Alexey Gorshkov UMD

Zohreh Davoudi UMD

Experiment

(Henry) De Luo Duke

Arinjoy De JQI

Or Katz Duke Chris Monroe JQI, Duke

Kate Collins, William Morong

Meson scattering in trapped ion simulator

(a)

0

1

6

 $12 \ 18 \ 24$

6

1

 $12 \ 18 \ 24$

arxiv:2403.07061

Elizabeth Bennewitz, UMD

E. Bennewitz, B. Ware, A. Schuckert, A. Lerose, FMS, R. Belyansky, W. Morong, D. Luo, A. De, K. Collins, O. Katz, C. Monroe, Z. Davoudi, A. Gorshkov

 $\langle \hat{\sigma}_i^x \rangle$

-1.0

-0.9

-0.8

-0.7

-0.6

6 12 18 24

 $12 \ 18 \ 24$

Position i

 $h^{z} = 1.2 J_{0}$

1

6

1

 E_{a}^{f}

Energy

1

Quantum simulation of scattering

U(1) LGT with ultra cold atoms

PRX Quantum 4, 020330 (2023)

N. Darkwah Oppong

M. Dalmonte

M. Aidelsburger

SU(N)xU(1) LGT with ultra cold atoms

Thank you for your attention!

Experimental setup

$$J_{ij} = \sum_{k=1}^{N} \frac{\eta_i \eta_j \Omega_i \Omega_j}{\omega_N + \mu - \omega_k}$$

Quench

 $J_0 = 2\pi \times 0.68 \text{ kHz}$

