

Towards preparation of scattering wave packets

of hadrons on a quantum computer

A NISQ Algorithm for Lattice Gauge Theories

arXiv: 2402.00840

Saurabh Kadam¹

with

Zohreh Davoudi² and Chung-Chun Hsieh²

Zohreh Davoudi 1. InQubator for Quantum Simulation, The Contract of Lines Chung-Chun Hsieh University of Washington 2. University of Maryland

Gauge theories

Standard Model

$SU(3)_C \times SU(2)_L \times U(1)_Y$

2

- \triangleright Forces are described by gauge symmetries
- ➢ Weak and strong forces are described by non-Abelian gauge theories

Strong force: Quantum chromodynamics (QCD)

- ➢ Nuclear force: Theory of interacting quarks mediated by gluons
- ➢ Becomes strongly interacting at low energies
- \triangleright Requires non-perturbative methods for calculating observables

Non-perturbative method of solving QCD

Lattice QCD

- ➢ QCD Lagrangian on a discrete spacetime grid and Wick rotate to Euclidean time
- \triangleright Observables are calculated using the path integral formalism
- ➢ Monte Carlo methods for probability distribution of gauge configurations

$$
\langle \hat{\mathcal{O}} \rangle = \frac{1}{Z_0} \int \mathcal{D}[\bar{\psi}, \psi] \mathcal{D}[A] e^{-\int d^4x_E \mathcal{L}_E} \mathcal{O} \qquad \longrightarrow \qquad \sum_{\substack{\vec{a} \text{ odd} \\ \text{Gauge configuration}}} \sum_{\substack{\vec{b} \text{ square configuration} \\ \text{Gauge configuration}}} \frac{\sum_{\substack{\vec{b} \text{ odd} \\ \vec{b} \text{ horizontal}}}}{\sum_{\vec{b} \text{ odd}}}
$$

Non-perturbative method of solving QCD

Eur. Phys. J. C 82 (2022) 10, 869

$$
\langle \hat{\mathcal{O}} \rangle = \frac{1}{Z_0} \int \mathcal{D}[\bar{\psi}, \psi] \mathcal{D}[A] e^{-\int d^4 x_E \mathcal{L}_E} \mathcal{O}
$$

Successes

- Hadron spectrum and exotic states
- \checkmark Hadron form factors
- \checkmark Values of quark masses and the strong coupling constant
- \checkmark Decay rates and low energy constants
- \checkmark Two- and three-body scattering amplitudes

Shortcomings

❖ QCD phase diagram:

Sign problem:

Loss of probability distribution interpretation

❖ Euclidean time:

Real time evolution of system

❖ Many-body processes are harder to obtain

Non-perturbative method of solving QCD

$$
\langle \hat{\mathcal{O}} \rangle = \frac{1}{Z_0} \int \mathcal{D}[\bar{\psi}, \psi] \mathcal{D}[A] e^{-\int d^4 x_E \mathcal{L}_E} \mathcal{O}
$$

Hamiltonian Formulation

$$
\langle \hat{\mathcal{O}(t)} \rangle = \langle 0 | e^{iHt} \hat{\mathcal{O}}(0) e^{-iHt} | 0 \rangle
$$

- No sign problem
- 2. Both real- and imaginary-time evolution
- 3. Many-body processes and scattering
- 4. Hilbert space scales exponentially with the

system size

Quantum simulation

Shortcomings

❖ QCD phase diagram:

Sign problem:

Loss of probability distribution interpretation

❖ Euclidean time:

Real time evolution of system

❖ Many-body processes are harder to obtain

Encoding DOFs $+$ Known state

- $|\psi\rangle = \cos(\theta/2)|0\rangle + e^{i\phi}\sin(\theta/2)|1\rangle$
- ❖ Schematic protocol for scattering

$|\psi\rangle_1 \otimes |\psi\rangle_2 \otimes \cdots \otimes |\psi\rangle_N \sim 2^N$

❖ Qubits:

- $|\psi\rangle = \cos(\theta/2)|0\rangle + e^{i\phi}\sin(\theta/2)|1\rangle$
- ❖ Schematic protocol for scattering

 $|\psi\rangle_1 \otimes |\psi\rangle_2 \otimes \cdots \otimes |\psi\rangle_N \sim 2^N$

The Pioneering work

Other methods

Our approach

Rigobello, Notarnicola, Magnifico, and Montangero Phys. Rev. D 104, 114501 (2021)

- ❖ Start with the interacting ground state
- ❖ Use an ansatz to build the interacting

creation operators

❖ Act the wave packet creation operator

on the interacting ground state

Outline

Preparation of scattering wave packets

Model: *Z² (and U(1)) lattice gauge theory in 1+1D with matter*

Model

 Z_2 Lattice Gauge Theory (LGT) in 1+1D with dynamical matter

Z_2 LGT in 1+1D

Bosonic DOFs

Fermionic + bosonic DOFs

$$
H_I = \sum_n \psi_n^{\dagger} \tilde{\sigma}_n^X \psi_{n+1} + \text{H.c.}
$$

Z_2 LGT in 1+1D

Fermionic + bosonic DOFs

Are all 2^{2N} states physical states? No!!

 Z_2 LGT Hamiltonian $H_E = \epsilon \sum \tilde{\sigma}_n^Z$ $H_I = \sum_n \psi_n^\dagger \tilde{\sigma}_n^X \psi_{n+1} + \text{H.c.}$ $H_M = m_f \sum (-1)^n \psi_n^\dagger \psi_n$ $H_{Z_2} = H_E + H_I + H_M$

Physical Hilbert space

Gauge invariance \rightarrow Gauss's law

 $G_n|\psi\rangle_{\text{Phys}} = |\psi\rangle_{\text{Phys}} \quad \forall n$

$$
G_n = \tilde{\sigma}_{n-1}^Z \tilde{\sigma}_n^Z e^{i\pi \left(\psi_n^\dagger \psi_n - \frac{1 - (-1)^n}{2}\right)}
$$

Particle Excitation

Anti-particle Excitation

Z_2 LGT in 1+1D

Periodic boundary condition with charge 0 sector

$$
Z_2 \text{ LGT Hamiltonian}
$$
\n
$$
H_E = \epsilon \sum_n \tilde{\sigma}_n^Z
$$
\n
$$
H_I = \sum_n \psi_n^{\dagger} \tilde{\sigma}_n^X \psi_{n+1} + \text{H.c.}
$$
\n
$$
H_M = m_f \sum_n (-1)^n \psi_n^{\dagger} \psi_n
$$
\n
$$
H_{Z_2} = H_E + H_I + H_M
$$

Consequences

 \triangleright Physical Hilbert space is a tiny fraction of the full Hilbert space

 \triangleright Only mesonic excitations

$$
-0 - 0 - 0 - 0 - \longrightarrow -0 - 0 - 0 - 0 - \longrightarrow 0
$$

No fermionic excitation Low-energy boson configuration Strong Coupling Vacuum (SCV) Example of a length-3 meson

Starts at particle site Ends at anti-particle site

Method

Building creation operators in the interacting theory

Building creation operators in interacting theory

Building creation operators in interacting theory

Building creation operators in interacting theory

Wave packet constructions

Rigobello, Notarnicola, Magnifico, and Montangero Phys. Rev. D 104, 114501 (2021)

Interacting theory

Interacting wave packet

Interacting ground state

$$
\Psi \rangle = b^{\dagger}_{\psi}|\Omega\rangle = \textstyle \sum_k \bm{\psi}(\bm{k})b^{\dagger}_k(\bm{\mu_k^A}, \bm{\sigma_k^A})|\Omega\rangle
$$

Mapping

Algorithm and circuit

Prepare the interacting ground state S₂

Lumia, Torta, Mbeng, Santoro, Ercolessi, Burrello and Wauters Phys. Rev. X Quantum 3, 020320 (2022)

Variational Quantum Eigensolver (VQE) for the GS preparation:

- ❖ Parameterized circuit with 2 parameters
	- Inspired from the Hamiltonian
	- \checkmark Gauge invariant by construction
- ❖ Calculate energy with the Quantum circuit
- **❖** Optimize the parameters classically

Prepare the interacting ground state $|12\rangle$

 b_k^{\dagger} Optimize the momentum creation operators

$$
\eta_{pq} = N_{\eta} \exp\left(\frac{i(p-q)\mu_k^A}{2}\right) \exp\left(\frac{-(p-q)^2}{4\sigma_k^{A^2}}\right)
$$

 b_k^{\dagger} Optimize the momentum creation operators

$$
\mathcal{F}=|\langle k_{\text{Exact}}|k_{\text{Optimized}}\rangle|^2
$$

 b_k^{\dagger} Optimize the momentum creation operators

$$
\mathcal{F}=|\langle k_{\text{Exact}}|k_{\text{Optimized}}\rangle|^2
$$

$|\Psi\rangle$ Circuit for the wave packet

Issues

❖ Needs efficient circuit design

 Ψ Circuit for the wave packet

 \triangleright Ancilla encoding:

Jordan, Lee, and Preskill (JLP) Quantum Info. and Comp. 14, 1014-80

Embed the state into a larger Hilbert space using an ancilla qubit

$$
\text{If} \qquad b_{\psi}|\Omega\rangle = 0 \qquad \qquad [b_{\psi},b^{\dagger}_{\psi}]=\hat{1} \qquad \qquad
$$

Then
$$
\Theta = b_{\psi}^{\dagger} \otimes |1\rangle\langle 0|_{a} + b_{\psi} \otimes |0\rangle\langle 1|_{a}
$$

$$
e^{-i\frac{\pi}{2}\Theta}|\Omega\rangle \otimes |0\rangle_{a} = -i b_{\psi}^{\dagger}|\Omega\rangle \otimes |1\rangle_{a}
$$

 \triangleright Applicable for $\Theta = \sum \Theta_{m,n}$ upon Trotterization $\{m,n\}$

$$
b_{\psi}^{\dagger} = \sum_{m,n} C_{m,n} \sigma_n^-\prod_{n < j < m} \sigma_j^Z \prod_{n \le i \le m} \tilde{\sigma}_i^X \sigma_m^+
$$

◆ Non-Unitary operator $\begin{vmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{vmatrix}$ → Needs efficient circuit design

➢ Singular Value Decomposition (SVD)

Find a basis that diagonalizes $\Theta_{m,n}$

Davoudi, Shaw and Stryker Quantum 7, 1213 (2023)

If
$$
b_{m,n}^{\dagger 2} = b_{m,n}^2 = 0
$$
 & $b_{m,n} = VSW^{\dagger}$

Then
\n
$$
e^{-i\frac{\pi}{2}\Theta_{m,n}} = \mathcal{U}_{m,n}^{\dagger}e^{-i\frac{\pi}{2}\mathcal{D}_{m,n}}\mathcal{U}_{m,n}
$$
\n
$$
\mathcal{U}_{m,n} = \text{Had}_{a}(V^{\dagger}\otimes|0\rangle\langle0|_{a} + W^{\dagger}\otimes|1\rangle\langle1|_{a})
$$

$$
\mathcal{D}_{m,n}=S_{m,n}\otimes Z_a
$$

Measurements

Hardware results

The ideal quantum circuit

6-site, $m_f = 1$, $\epsilon = -0.3$ with WP details: $\sigma = \frac{\pi}{6}$, $\mu = 3$, and $k_0 = 0$

Ideal quantum circuit

- ❖ Circuit statevector method & many Trotter steps
- ❖ Systematic error from:

 $|b_{\psi}|\Omega\rangle \simeq 0$ $[b_{\psi}, b^{\dagger}_{\psi}] \simeq \hat{1}$

Truncated quantum circuit

6-site, $m_f = 1$, $\epsilon = -0.3$ with WP details: $\sigma = \frac{\pi}{6}$, $\mu = 3$, and $k_0 = 0$

Ideal quantum circuit

- ❖ Circuit statevector method & many Trotter steps
- ❖ Systematic error from:

 $|b_{\psi}|\Omega\rangle \simeq 0$ $[b_{\psi}, b^{\dagger}_{\psi}] \simeq \hat{1}$

Truncated quantum circuit

❖ Resource limitation:

Only $|C_{m,n}| \ge 0.1$ terms were implemented

❖ 2nd order Trotter with 1 Trotter step

Quantinuum Hardware results

6-site, $m_f = 1$, $\epsilon = -0.3$ with WP details: $\sigma = \frac{\pi}{6}$, $\mu = 3$, and $k_0 = 0$

QUANTINUUM

H1-1

- Trapped ion with 20 qubits
- all-to-all connectivity
- \sim 10⁻⁵ single-qubit gate infidelity
- \sim 10⁻³ two-qubit gate infidelity

Ideal quantum circuit

- ❖ Circuit statevector method & many Trotter steps
- ❖ Systematic error from:

 $|b_{\psi}|\Omega\rangle \simeq 0$ $[b_{\psi}, b^{\dagger}_{\psi}] \simeq \hat{1}$

Truncated quantum circuit

Resource limitation:

Only $|C_{m,n}| \ge 0.1$ terms were implemented

❖ 2nd order Trotter with 1 Trotter step

Quantinuum H1-1

- $\cdot \cdot \cdot$ ~300 (350) two- (single-) qubit gates with 500 shots
- ❖ Error mitigation using the gauge invariant nature of

our method

Staggered number density

$$
\chi(n) = \begin{cases} \langle \psi^{\dagger}(n)\psi(n) \rangle & n \text{ even} \\ 1 - \langle \psi^{\dagger}(n)\psi(n) \rangle & n \text{ odd} \end{cases}
$$

6-site, $m_f = 1$, $\epsilon = -0.3$ with WP details: $\sigma = \frac{\pi}{6}$, $\mu = 3$, and $k_0 = 0$

Different WP widths

 $0.8\,$ $\hbox{\bf O}$ Exact optimized \bigstar Ideal circuit 0.3 $0.6\,$ \bigstar Truncated circuit X $\begin{array}{c}\n\text{Probability} \\
\text{probability} \\
\text{1}\n\end{array}$ \bullet Quantinuum $H1-1$ $\stackrel{\text{e}}{\sim} 0.4$ € ŵ \degree 0.1 ᆊ 0.2 **SP** $0.0 0.0$ 10 20 30 θ 40 $\sqrt{2}$ $\overline{0}$ $\sqrt{3}$ $\overline{5}$ $\mathbf{1}$ $\overline{4}$ Physical-configuration label \boldsymbol{n} 6-site, $m_f = 1$, $\epsilon = -0.3$ with WP details: $\sigma = \frac{\pi}{10}$, $\mu = 3$, and $k_0 = 0$ 0.8 $0.20\,$ 0.6 $\begin{array}{l} \underline{\Sigma} \\[-4.8ex] \underline{\Sigma} \\[-4.$ 六白 $\stackrel{\mathtt{e}}{\mathtt{\times}} 0.4$ 형 ¥ Ŵ 0.05 0.2 毒心 0.00 0.0 10 20 30 40 θ $\sqrt{2}$ $\overline{0}$ $\overline{3}$ $\sqrt{5}$ $\overline{4}$

 \boldsymbol{n}

Physical-configuration label

6-site, $m_f = 1$, $\epsilon = -0.3$ with WP details: $\sigma = \frac{\pi}{6}$, $\mu = 3$, and $k_0 = 0$

Moreover

Summary and outlook

Summary

Outlook

Thank You !

000

❖ What's more?

- \triangleright More observables for measuring the wave packet fidelity
- ➢ Analytical bounds on systematic errors
- \triangleright Advanced noise mitigation techniques
- ❖ What's next?
	- ➢ Prepare two wave packets and perform scattering
	- \triangleright Wave packet in the U(1) LGT on larger devices
	- \triangleright Ansatz for non-Abelian theories

GS on 100+ qubits:, arXiv:2308.04481(2023) **Farrell, Illa, Ciavarella, and Savage**

*

