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Gauge theories

Strong force: Quantum chromodynamics (QCD)

Standard Model

➢ Forces are described by gauge symmetries

➢ Weak and strong forces are described by non-Abelian gauge theories

➢ Nuclear force: Theory of interacting quarks mediated by gluons

➢ Becomes strongly interacting at low energies

➢ Requires non-perturbative methods for calculating observables 

Image Credit: Atlas
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Lattice QCD

➢ QCD Lagrangian on a discrete spacetime grid and Wick rotate to Euclidean time

➢ Observables are calculated using the path integral formalism

➢ Monte Carlo methods for probability distribution of gauge configurations

Non-perturbative method of solving QCD
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Non-perturbative method of solving QCD

Shortcomings

❖ QCD phase diagram: 

Sign problem:

Loss of probability distribution interpretation

❖ Euclidean time:

Real time evolution of system 

❖ Many-body processes are harder to obtain

Successes

✓ Hadron spectrum and exotic states

✓ Hadron form factors

✓ Values of quark masses and the strong coupling 

constant

✓ Decay rates and low energy constants

✓ Two- and three-body scattering amplitudes

FLAG Review 2021

Eur. Phys. J. C 82 (2022) 10, 869
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Hamiltonian Formulation

Quantum simulation

1. No sign problem

2. Both real- and imaginary-time evolution

3. Many-body processes and scattering

4. Hilbert space scales exponentially with the 

system size

Non-perturbative method of solving QCD

Shortcomings

❖ QCD phase diagram: 

Sign problem:

Loss of probability distribution interpretation

❖ Euclidean time:

Real time evolution of system 

❖ Many-body processes are harder to obtain



Digital Quantum simulation

❖ Qubits:

❖ Schematic protocol for scattering

Encoding DOFs 

+

Known state
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The Pioneering work

Non-interacting theory

Adiabatic evolution

Interacting theory

Known operators

Non-interacting ground state

Non-interacting wave packet Interacting wave packet

Jordan, Lee, and Preskill (JLP)

Science 336, 1130-1133 (2012)

Quantum Info. and Comp. 14, 1014-80 (2014)

Shortcomings

❖ Resource cost: expensive for the NISQ era devices

❖ Phase transition: long-range modes 

❖ Confinement: interacting dofs are different
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Other methods 

Adiabatic
➢ Jordan, Lee and Preskill (JLP)

arXiv:1404.7115 [hep-th] (2014)
➢ Barata, Mueller, Tarasov and Venugopalan

Phys. Rev. A, 103, 042410 (2021)
➢ Farrell, Illa, Ciavarella and Savage

arXiv: 2401.08044

Non-Adiabatic
➢ Turco,Quinta, Seixas, and Omar

arXiv: 2305.07692 (2023)
➢ Kreshchuk, Vary, and Love

arXiv: 2310.13742 (2023)
➢ Chai, Crippa, Jansen et al.

arXiv:2312.02272 (2023)
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Adiabatic
➢ Ciavarella, Caspar, Illa, Savage 

arXiv:2210.04965 (2022)

Non-Adiabatic
➢ Belyansky, Whitsitt, Mueller et al

arXiv:2307.02522 (2023)
➢ Surace and Lerose

New J. Phys. 23 062001 (2021)

A
n
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Non-interacting theory

Shortcomings

❖ Resource cost: expensive for the NISQ era devices

❖ Phase transition: long-range modes 

❖ Confinement: interacting dofs are different

Adiabatic evolution

Interacting theory

Known operators

Non-interacting ground state

Non-interacting wave packet Interacting wave packet

Jordan, Lee, and Preskill (JLP)

Science 336, 1130-1133 (2012)

Quantum Info. and Comp. 14, 1014-80 (2014)
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Interacting theory

Interacting ground state

Interacting wave packet

Our approach

Rigobello, Notarnicola, Magnifico, and Montangero

Phys. Rev. D 104, 114501 (2021)

Non-interacting theory

Known operators

Non-interacting ground state

Non-interacting wave packet

❖ Start with the interacting ground state

❖ Use an ansatz to build the interacting 

creation operators

❖ Act the wave packet creation operator 

on the interacting ground state

Ansatz for 𝑏𝑘
†



Model: Z2 (and U(1)) lattice gauge theory in 1+1D with matter

Method: Construction of creation operators

Mapping : Quantum algorithm and circuit

Measurements: Hardware results from Quantinuum H1-1 

Moreover: Conclusions and outlook
10

Preparation of scattering wave packets

Outline



Model
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Z2 Lattice Gauge Theory (LGT) in 1+1D with dynamical matter



From staggering
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Staggered Fermion

Matter → Even sites 

Discretized space

Z2 LGT in 1+1D

Anti-matter → Odd sites 

No particle Particle

Anti-

particle

No anti-

particle

Dirac sea interpretation

Motivation

❖ Confined Theory

❖  
Continuous time

Fermionic DOFs
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Bosonic DOFs

Fermionic + bosonic DOFs

Z2 LGT in 1+1D



Z2 LGT Hamiltonian
Physical Hilbert space

Particle Excitation

Anti-particle Excitation

Fermionic + bosonic DOFs

Are all 22𝑁 states physical states? No!!

Gauge invariance → Gauss’s law

17

Z2 LGT in 1+1D



Consequences

➢ Physical Hilbert space is a tiny fraction of the full Hilbert space

➢ Only mesonic excitations

Z2 LGT Hamiltonian

Hilbert Space

# Sites Possible Physical

4 256 12

6 4096 40

Periodic boundary condition

with charge 0 sector

No fermionic excitation

Low-energy boson configuration

Strong Coupling Vacuum (SCV) Example of a length-3 meson

Starts at particle site

Ends at anti-particle site

18

Z2 LGT in 1+1D



Method
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Building creation operators in the interacting theory 
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Rigobello, Notarnicola, Magnifico, and Montangero

Phys. Rev. D 104, 114501 (2021)

Interacting theory

Interacting ground state

Interacting wave packet

Ansatz for 𝑏𝑘
†

Build momentum creation operator 

from mesonic excitations

Action on the SCV

Building creation operators in interacting theory
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Rigobello, Notarnicola, Magnifico, and Montangero

Phys. Rev. D 104, 114501 (2021)

Interacting theory

Interacting ground state

Interacting wave packet

Ansatz for 𝑏𝑘
†

Build momentum creation operator 

from mesonic excitations

Building creation operators in interacting theory
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Rigobello, Notarnicola, Magnifico, and Montangero

Phys. Rev. D 104, 114501 (2021)

Interacting theory

Interacting ground state

Interacting wave packet

Ansatz for 𝑏𝑘
†

Build momentum creation operator 

from mesonic excitations

Optimize first excited energy eigenstates for each 𝑘

❖ Classical/Quantum: We did it classically, but we checked that VQE works

❖ Works for U(1) LGT in 1+1D as well: We were limited by computational resources

Building creation operators in interacting theory
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Rigobello, Notarnicola, Magnifico, and Montangero

Phys. Rev. D 104, 114501 (2021)

Interacting theory

Interacting ground state

Interacting wave packet

Ansatz for 𝑏𝑘
†

Wave packet constructions 

Inputs

Optimized



Mapping
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Algorithm and circuit
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Overview

Interacting theory

Interacting ground state

Interacting wave packet

Ansatz for 𝑏𝑘
†

Prepare the interacting ground state

Optimize the momentum creation operators

Map the fermionic + bosonic DOFs to qubits

Circuit for the wave packet

1

2

3

4
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27Inputs Optimized

❖ Bosonic links: as it is

❖ Fermions: Jordan-Wigner 

transformation

Inputs

Optimized

From here onwards:

✓ 6 staggered sites

✓ 3 momenta: 𝑘 =
𝜋

3
, 0, −

𝜋

3

✓ 12 qubits = 4096 states

✓ 40 Physical states

Jordan-Wigner

Map the fermionic + bosonic DOFs to qubits1
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Overview

Interacting theory

Interacting ground state

Interacting wave packet

Ansatz for 𝑏𝑘
†

Optimize the momentum creation operators

Map the fermionic + bosonic DOFs to qubits

Circuit for the wave packet

1

Prepare the interacting ground state
2

3

4

Briefly and only results
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Lumia, Torta, Mbeng, Santoro, Ercolessi, Burrello and Wauters

Phys. Rev. X Quantum 3, 020320 (2022)

Variational Quantum Eigensolver (VQE) for the GS preparation:

❖ Parameterized circuit with 2 parameters

✓ Inspired from the Hamiltonian

✓ Gauge invariant by construction

❖ Calculate energy with the Quantum circuit

❖ Optimize the parameters classically

Prepare the interacting ground state
2
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Prepare the interacting ground state
2
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Overview

Interacting theory

Interacting ground state

Interacting wave packet

Ansatz for 𝑏𝑘
†

Prepare the interacting ground state

Optimize the momentum creation operators

Map the fermionic + bosonic DOFs to qubits

Circuit for the wave packet

1

2

3

4



𝑘 = 0 0.98756 -2.45688 -2.46734

𝑘 = ±
𝜋

3
0.99977 -2.57561 -2.57613

32

Optimize the momentum creation operators
3



33

Optimize the momentum creation operators
3

How well does the ansatz work for 

different Hamiltonian parameters?

Z2 LGT
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Optimize the momentum creation operators
3

How well does the ansatz work for 

different Hamiltonian parameters?

U(1) LGT
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Overview

Interacting theory

Interacting ground state

Interacting wave packet

Ansatz for 𝑏𝑘
†

Prepare the interacting ground state

Optimize the momentum creation operators

Map the fermionic + bosonic DOFs to qubits

Circuit for the wave packet

1

2

3

4
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Inputs Optimized
❖ Non-Unitary operator

❖ Needs efficient circuit design

Issues

Circuit for the wave packet
4



➢ Singular Value Decomposition (SVD)

Find a basis that diagonalizes

➢ Ancilla encoding:

Embed the state into a larger Hilbert space 

using an ancilla qubit

➢ Applicable for                             upon 

Trotterization

37

❖ Non-Unitary operator ❖ Needs efficient circuit design

If

Then

If

Then

Davoudi, Shaw and Stryker

Quantum 7, 1213 (2023)

Jordan, Lee, and Preskill (JLP) 

Quantum Info. and Comp. 14, 1014-80

Circuit for the wave packet
4
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Circuit for the wave packet
4



Measurements
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Hardware results
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Results

The ideal quantum circuit

Ideal quantum circuit

❖ Circuit statevector method & many Trotter steps

❖ Systematic error from: 
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Results

Truncated quantum circuit

Ideal quantum circuit

❖ Circuit statevector method & many Trotter steps

❖ Systematic error from: 

Truncated quantum circuit

❖ Resource limitation:

Only |𝐶𝑚,𝑛| ≥ 0.1 terms were implemented

❖ 2nd order Trotter with 1 Trotter step
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Results

Quantinuum Hardware results

Ideal quantum circuit

❖ Circuit statevector method & many Trotter steps

❖ Systematic error from: 

Truncated quantum circuit

❖ Resource limitation:

Only |𝐶𝑚,𝑛| ≥ 0.1 terms were implemented

❖ 2nd order Trotter with 1 Trotter step

Quantinuum H1-1

❖ ~300 (350) two- (single-) qubit gates with 500 shots

❖ Error mitigation using the gauge invariant nature of 

our method

H1-1

• Trapped ion with 20 qubits

• all-to-all connectivity

•  ~10−5 single-qubit gate infidelity

•  ~10−3 two-qubit gate infidelity
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Results

Staggered number density
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Results

Different WP widths



Moreover
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Summary and outlook
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Summary

Prepare the interacting ground state

Optimize the momentum creation operators

Map the fermionic + bosonic DOFs to qubits

Circuit for the wave packet

1

2

3

4Interacting theory

Interacting ground state

Interacting wave packet

Ansatz for 𝑏𝑘
†

✓ Gauge invariant construction

✓ VQE based method

✓ Systematic error has been identified

✓ Works for the U(1) LGT in 1+1D

✓ Can be implemented on NISQ 

devices



❖ What’s next?

➢ Prepare two wave packets and perform scattering

➢ Wave packet in the U(1) LGT on larger devices

➢ Ansatz for non-Abelian theories

47

Outlook

❖ What’s more?

➢ More observables for measuring the wave packet fidelity 

➢ Analytical bounds on systematic errors

➢ Advanced noise mitigation techniques

Thank You !

GS on 100+ qubits:, arXiv:2308.04481(2023)

Farrell, Illa, Ciavarella, and Savage

*

Raychowdhury and Stryker

Phys. Rev. D 101, 114502 (2020)

Kadam, Raychowdhury and Stryker

Phys. Rev. D 107, 094513 (2023)
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