

Towards preparation of scattering wave packets

of hadrons on a quantum computer

A NISQ Algorithm for Lattice Gauge Theories

arXiv: 2402.00840

Saurabh Kadam¹

Zohreh Davoudi

with

Zohreh Davoudi² and Chung-Chun Hsieh²

1. InQubator for Quantum Simulation, University of Washington

2. University of Maryland

Chung-Chun Hsieh

Gauge theories

Standard Model

$SU(3)_C \times SU(2)_L \times U(1)_Y$

- Forces are described by gauge symmetries
- Weak and strong forces are described by non-Abelian gauge theories

Strong force: Quantum chromodynamics (QCD)

- > Nuclear force: Theory of interacting quarks mediated by gluons
- Becomes strongly interacting at low energies
- Requires non-perturbative methods for calculating observables

Non-perturbative method of solving QCD

Lattice QCD

- > QCD Lagrangian on a discrete spacetime grid and Wick rotate to Euclidean time
- Observables are calculated using the path integral formalism
- Monte Carlo methods for probability distribution of gauge configurations

Non-perturbative method of solving QCD

Eur. Phys. J. C 82 (2022) 10, 869

$$\langle \hat{\mathcal{O}} \rangle = \frac{1}{Z_0} \int \mathcal{D}[\bar{\psi}, \psi] \mathcal{D}[A] \ e^{-\int d^4 x_E \mathcal{L}_E} \mathcal{O}$$

Successes

- ✓ Hadron spectrum and exotic states
- ✓ Hadron form factors
- Values of quark masses and the strong coupling constant
- Decay rates and low energy constants
- ✓ Two- and three-body scattering amplitudes

Shortcomings

QCD phase diagram:

Sign problem:

Loss of probability distribution interpretation

Euclidean time:

Real time evolution of system

Many-body processes are harder to obtain

Non-perturbative method of solving QCD

$$\langle \hat{\mathcal{O}} \rangle = \frac{1}{Z_0} \int \mathcal{D}[\bar{\psi}, \psi] \mathcal{D}[A] \ e^{-\int d^4 x_E \mathcal{L}_E} \mathcal{O}$$

Hamiltonian Formulation

$$\langle \hat{\mathcal{O}(t)} \rangle = \langle 0 | e^{iHt} \hat{\mathcal{O}}(0) e^{-iHt} | 0 \rangle$$

- 1. No sign problem
- 2. Both real- and imaginary-time evolution
- 3. Many-body processes and scattering
- 4. Hilbert space scales exponentially with the

system size

Quantum simulation

Shortcomings

QCD phase diagram:

Sign problem:

Loss of probability distribution interpretation

Euclidean time:

Real time evolution of system

Many-body processes are harder to obtain

+ Known state

✤ Qubits:

- $|\psi\rangle = \cos\left(\theta/2\right)|0\rangle + e^{i\phi}\sin\left(\theta/2\right)|1\rangle$
- ✤ Schematic protocol for scattering

$|\psi\rangle_1 \otimes |\psi\rangle_2 \otimes \cdots \otimes |\psi\rangle_N \sim 2^N$

✤ Qubits:

- $|\psi\rangle = \cos{(\theta/2)}|0\rangle + e^{i\phi}\sin{(\theta/2)}|1\rangle$
- Schematic protocol for scattering

 $|\psi\rangle_1 \otimes |\psi\rangle_2 \otimes \cdots \otimes |\psi\rangle_N \sim 2^N$

The Pioneering work

Other methods

Our approach

Interacting theory
Interacting wave packet
\mathcal{N}
$ \Psi angle=b_{\psi}^{\dagger} \Omega angle$
Ansatz for b_k^{\dagger}
$b_{\psi}^{\dagger} = \sum_k \psi(k) b_k^{\dagger}$
$ \Omega angle$
Interacting ground state

Rigobello, Notarnicola, Magnifico, and Montangero Phys. Rev. D 104, 114501 (2021)

- Start with the interacting ground state
- Use an ansatz to build the interacting

creation operators

✤ Act the wave packet creation operator

on the interacting ground state

Outline

Preparation of scattering wave packets

Model: Z_2 (and U(1)) lattice gauge theory in 1+1D with matter

Model

Z_2 Lattice Gauge Theory (LGT) in 1+1D with dynamical matter

$Z_2 LGT in 1+1D$

Bosonic DOFs

$$H_I = \sum_n \frac{\psi_n^{\dagger} \tilde{\sigma}_n^X \psi_{n+1}}{\psi_{n+1}} + \text{H.c.}$$

Fermionic + bosonic DOFs

Are all 2^{2N} states physical states?

 $Z_2 \text{ LGT Hamiltonian}$ $H_E = \epsilon \sum_n \tilde{\sigma}_n^Z$ $H_I = \sum_n \psi_n^{\dagger} \tilde{\sigma}_n^X \psi_{n+1} + \text{H.c.}$ $H_M = m_f \sum_n (-1)^n \psi_n^{\dagger} \psi_n$ $H_{Z_2} = H_E + H_I + H_M$

Physical Hilbert space

Gauge invariance \rightarrow Gauss's law

 $G_n |\psi\rangle_{\text{Phys}} = |\psi\rangle_{\text{Phys}} \quad \forall n$

$$G_n = \tilde{\sigma}_{n-1}^Z \tilde{\sigma}_n^Z e^{i\pi \left(\psi_n^{\dagger} \psi_n - \frac{1 - (-1)^n}{2}\right)}$$

Particle Excitation

Anti-particle Excitation

$Z_2 LGT in 1+1D$

Periodic boundary condition with charge 0 sector

$$Z_2 \text{ LGT Hamiltonian}$$
$$H_E = \epsilon \sum_n \tilde{\sigma}_n^Z$$
$$H_I = \sum_n \psi_n^{\dagger} \tilde{\sigma}_n^X \psi_{n+1} + \text{H.c.}$$
$$H_M = m_f \sum_n (-1)^n \psi_n^{\dagger} \psi_n$$
$$H_{Z_2} = H_E + H_I + H_M$$

Consequences

> Physical Hilbert space is a tiny fraction of the full Hilbert space

	Hilbert Space		
# Sites	Possible	Physical	
4	256	12	
6	4096	40	

> Only mesonic excitations

$$-0-1-0-1- \longrightarrow -1-1-0-0-$$

Strong Coupling Vacuum (SCV) No fermionic excitation Low-energy boson configuration

Example of a length-3 meson Starts at particle site Ends at anti-particle site

Method

Building creation operators in the interacting theory

Building creation operators in interacting theory

Building creation operators in interacting theory

Building creation operators in interacting theory

Wave packet constructions

Rigobello, Notarnicola, Magnifico, and Montangero Phys. Rev. D 104, 114501 (2021)

Interacting theory

Interacting wave packet

Interacting ground state

$$|\Psi
angle = b_{\psi}^{\dagger}|\Omega
angle = \sum_{k} oldsymbol{\psi}(oldsymbol{k}) b_{k}^{\dagger}(oldsymbol{\mu_{k}}^{oldsymbol{A}},oldsymbol{\sigma_{k}}^{oldsymbol{A}})|\Omega
angle$$

Mapping

Algorithm and circuit

Ω Prepare the interacting ground state

Lumia, Torta, Mbeng, Santoro, Ercolessi, Burrello and Wauters Phys. Rev. X Quantum 3, 020320 (2022)

Variational Quantum Eigensolver (VQE) for the GS preparation:

- Parameterized circuit with 2 parameters
 - Inspired from the Hamiltonian
 - ✓ Gauge invariant by construction
- Calculate energy with the Quantum circuit
- Optimize the parameters classically

$|\Omega\rangle$ Prepare the interacting ground state

 b_k^{\dagger} Optimize the momentum creation operators

$$\eta_{pq} = N_{\eta} \exp\left(\frac{i(p-q)\mu_k^A}{2}\right) \exp\left(\frac{-(p-q)^2}{4\sigma_k^{A^2}}\right)$$

	$\mathcal{F} = \langle k_{\mathrm{Exact}} k_{\mathrm{Optimized}} \rangle ^2$	$E_k^{\text{Optimized}}$	E_k^{Exact}
k = 0	0.98756	-2.45688	-2.46734
$k = \pm \frac{\pi}{3}$	0.99977	-2.57561	-2.57613

 b_k^{\dagger} Optimize the momentum creation operators

$$\mathcal{F} = |\langle k_{\mathrm{Exact}} | k_{\mathrm{Optimized}} \rangle|^2$$

 b_k^{\dagger} Optimize the momentum creation operators

$$\mathcal{F} = |\langle k_{\mathrm{Exact}} | k_{\mathrm{Optimized}} \rangle|^2$$

$|\Psi angle$ Circuit for the wave packet

Issues

Non-Unitary operator

✤ Needs efficient circuit design

 $|\Psi\rangle$ Circuit for the wave packet

Non-Unitary operator

Ancilla encoding:

Jordan, Lee, and Preskill (JLP) Quantum Info. and Comp. 14, 1014-80

Embed the state into a larger Hilbert space using an ancilla qubit

If
$$b_{\psi}|\Omega
angle=0$$
 $[b_{\psi},b_{\psi}^{\dagger}]=\hat{1}$

Then
$$\begin{cases} \Theta = b_{\psi}^{\dagger} \otimes |1\rangle \langle 0|_{a} + b_{\psi} \otimes |0\rangle \langle 1|_{a} \\ e^{-i\frac{\pi}{2}\Theta} |\Omega\rangle \otimes |0\rangle_{a} = -i \, b_{\psi}^{\dagger} |\Omega\rangle \otimes |1\rangle_{a} \end{cases}$$

 $\blacktriangleright \text{ Applicable for } \Theta = \sum_{\{m,n\}} \Theta_{m,n} \text{ upon }$ Trotterization

$$b_{\psi}^{\dagger} = \sum_{m,n} C_{m,n} \ \sigma_n^{-} \prod_{n < j < m} \sigma_j^{Z} \prod_{n \le i \le m} \tilde{\sigma}_i^{X} \ \sigma_m^{+}$$

- Needs efficient circuit design
- Singular Value Decomposition (SVD)

Find a basis that diagonalizes $\Theta_{m,n}$

Davoudi, Shaw and Stryker Quantum 7, 1213 (2023)

If
$$b_{m,n}^{\dagger 2} = b_{m,n}^2 = 0$$
 & $b_{m,n} = VSW^{\dagger}$

Then
$$e^{-i\frac{\pi}{2}\Theta_{m,n}} = \mathcal{U}_{m,n}^{\dagger} e^{-i\frac{\pi}{2}\mathcal{D}_{m,n}} \mathcal{U}_{m,n}$$

$$\mathcal{U}_{m,n} = \operatorname{Had}_{a} \left(V^{\dagger} \otimes |0\rangle \langle 0|_{a} + W^{\dagger} \otimes |1\rangle \langle 1|_{a} \right)$$

Measurements

Hardware results

The ideal quantum circuit

6-site, $m_f = 1$, $\epsilon = -0.3$ with WP details: $\sigma = \frac{\pi}{6}$, $\mu = 3$, and $k_0 = 0$

☆ Ideal quantum circuit

- Circuit statevector method & many Trotter steps
- Systematic error from:

 $|b_{\psi}|$

$$\Omega \rangle \simeq 0 \qquad [b_{\psi}, b_{\psi}^{\dagger}] \simeq \hat{1}$$

Truncated quantum circuit

6-site, $m_f = 1$, $\epsilon = -0.3$ with WP details: $\sigma = \frac{\pi}{6}$, $\mu = 3$, and $k_0 = 0$

Ideal quantum circuit

- Circuit statevector method & many Trotter steps
- ✤ Systematic error from:

 $b_{\psi}|\Omega\rangle \simeq 0 \qquad [b_{\psi}, b_{\psi}^{\dagger}] \simeq \hat{1}$

Truncated quantum circuit

✤ Resource limitation:

Only $|C_{m,n}| \ge 0.1$ terms were implemented

✤ 2nd order Trotter with 1 Trotter step

Quantinuum Hardware results

6-site, $m_f = 1$, $\epsilon = -0.3$ with WP details: $\sigma = \frac{\pi}{6}$, $\mu = 3$, and $k_0 = 0$

H1-1

- Trapped ion with 20 qubits
- all-to-all connectivity
- $\sim 10^{-5}$ single-qubit gate infidelity
- $\sim 10^{-3}$ two-qubit gate infidelity

☆ Ideal quantum circuit

- Circuit statevector method & many Trotter steps
- ✤ Systematic error from:

 $b_{\psi}|\Omega\rangle \simeq 0 \qquad [b_{\psi}, b_{\psi}^{\dagger}] \simeq \hat{1}$

Truncated quantum circuit

Resource limitation:

Only $|C_{m,n}| \ge 0.1$ terms were implemented

✤ 2nd order Trotter with 1 Trotter step

Quantinuum H1-1

- \sim ~300 (350) two- (single-) qubit gates with 500 shots
- Error mitigation using the gauge invariant nature of

our method

Staggered number density

$$\chi(n) = \begin{cases} \langle \psi^{\dagger}(n)\psi(n) \rangle & n \text{ even} \\ \\ 1 - \langle \psi^{\dagger}(n)\psi(n) \rangle & n \text{ odd} \end{cases}$$

6-site, $m_f = 1$, $\epsilon = -0.3$ with WP details: $\sigma = \frac{\pi}{6}$, $\mu = 3$, and $k_0 = 0$

Different WP widths

0.8O Exact optimized \bigstar Ideal circuit 0.3 0.6 \star Truncated circuit Probability 7:0 ▲ Quantinuum H1-1 $\stackrel{\mathfrak{s}}{\succ} 0.4$ **;** Ø 0.1 0.2 * 생 0.0 NA. 0.0 10 20 30 0 40 2 0 3 51 4 Physical-configuration label n6-site, $m_f = 1$, $\epsilon = -0.3$ with WP details: $\sigma = \frac{\pi}{10}$, $\mu = 3$, and $k_0 = 0$ 0.80.20 0.6Probability 0.10 **☆** $\stackrel{\mathfrak{s}}{\succ} 0.4$ 2 ថ 0.050.2👃 🧿 0.00 0.0 10 20 30 40 0 20 3 54

n

Physical-configuration label

6-site, $m_f = 1$, $\epsilon = -0.3$ with WP details: $\sigma = \frac{\pi}{6}$, $\mu = 3$, and $k_0 = 0$

Moreover

Summary and outlook

Summary

Outlook

 $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

✤ What's more?

- More observables for measuring the wave packet fidelity
- Analytical bounds on systematic errors
- Advanced noise mitigation techniques
- ✤ What's next?
 - Prepare two wave packets and perform scattering
 - \blacktriangleright Wave packet in the U(1) LGT on larger devices
 - > Ansatz for non-Abelian theories

