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HOW TO REACH FULL QCD?

« Current quantum computers are too small and noisy to do full
lattice QCD

« Simulations on noisy hardware can inform the development of
techniques to reduce the effects of noise

« 3+1D calculations are limited by hardware connectivity
« Toy models lower dimensions are easier to map onto hardware

« Can be used to develop techniques that will carry over to
3+1D

* State preparation

* Constructing physical observables

« Some non-trivial physics can be studied
* Jet Fragmentation

e Hadronization




STATE PREPARATION

« Simulating physics requires preparing physically relevant states

Adiabatic Variational
* Theoretical guarantees * Heuristic method, depends on circuit ansatz
* Potentially deep circuit depths * Requires optimization of circuits
* Mostly restricted to theoretical * Lower circuit depth
studies

« Too many works studying these methods to list



PREPARING THE
SCHWINGER

MODEL VACUUM
PRX Quantum 5 (2), 020315

« QED in 1+1D
« Gapped and translationally invariant
« Confining, like QCD in 3+1D

« We looked at preparing the vacuum
state as a step towards studying QCD

Roland Farrell, Marc Illa, Anthony Ciavarella,
and Martin Savage
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THE LATTICE SCHWINGER MODEL
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Prepare some state [(6)) ) Classical
- Measure the energy of the state, f Use a classical
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« Hybrid algorithm that can be used to prepare ground
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states.
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« Previously has been applied to studies of the Schwinger
model (PhysRevA.98.032331, Nature 569 355-360
(2019), Phys. Rev. Lett. 126, 220501), SU(2) hadrons
(Nature Communications 12, 6499 (2021)), ...
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Use of VQE at scale will require an appropriate scalable
ansatz circuit and optimization algorithm

=
aEe
izas
Gise
=q(IB

2



SCALABLE CIRCUITS
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« Construct an operator pool that respects translation invariance and other symmetries of

the Hamiltonian
« Perform ADAPT-VQE on several small lattices to optimize a state prep circuit

« Provided the parameters were computed on a lattice larger than multiple correlation
lengths, the convergence will be exponentially fast

« Extrapolate the parameters in lattice size to use on a larger lattice



RUNNING ON HARDWARE

Quantum computers are noisy and to perform reliable calculations, this noise needs to be
corrected

Two types of noise on quantum computers

 Incoherent noise: relaxation and dephasing

« Coherent noise: unitary rotations caused by miscalibration or cross-talk
We can mitigate incoherent noise, but not coherent noise.

However, we can convert coherent noise into incoherent noise

Pauli Twirling (or randomized compiling)
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HARDWARE RESULTS
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OPERATOR DECOHERENCE

RENORMALIZATION

« Remaining errors in the simulation are incoherent

« Measured observable is proportional to noiseless one (under mild assumptions)
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« Measure the noise parameter by running the same circuit with single qubit rotation

angles set to 0
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40 mitigation circuits + 40 physics circuits
= 80 circuts

w/ 8000 shots each

Operator Decoherence R enormalization
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IMPLEMENTATION ON UP TO 100
QUBITS

« All circuits were optimized classically with up to L=14 sites (28 qubits)

« Errors were mitigated using operator decoherence renormalization
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TABLE IV. The chiral condensate in the Schwinger model vacuum obtained from ibm_brisbane (L < 40) and ibm_cusco e 10
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(SC)2-ADAPT-VQE

« ADAPT-VQE can choose different sequences of operators on different lattice sizes.

 This problem can be avoided by doing ADAPT-VQE on one lattice size and optimizing
the same operator sequence on difterent lattice sizes.

« Optimization doesn’t have to minimize energy. One can instead maximize the overlap
with a surrogate for a given state, ex. MPS representation of the vacuum.

 Performing the optimization on lattices with up to 16 sites,

the authors were able to .
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HADRONIC STATES

« Scattering simulations will likely require the ability to prepare hadronic wavepackets.
« Wavepackets are not eigenstates, so VQE can’t be directly applied.

« Adiabatic state preparation can be used in principle, but wavepackets propagate and
spread during adiabatic switching.

State Preparation Measurement
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PREPARING HADRON STATES

« To study scattering or other dynamics, one needs to be able to prepare a state with
hadrons.

« Previous studies of quantum simulations of scalar field theories proposed using adiabatic
switching with forward and backwards evolution.

* In the Schwinger model, adiabatic switching can be performed from the strong coupling
vacuum.

« Not necessary to use a large lattice or do adiabatics on the quantum computer. The

same variational techniques can be used on a small lattice and extrapolated.
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TIME EVOLUTION

Time evolution on a quantum computer is done by Trotterization, i.e. one breaks up the
Hamiltonian into individual pieces that can be implemented in a sequence.

« QQ terms in the Hamiltonian give rise to long range interactions, due to confinement

QQ interactions are exponentially suppressed at long distances can be neglected beyond
a certain distance.

« Propagation of hadrons was tracked by measuring the disturbance of the chiral

condensate from its value in vacuum
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QUANTUM VS CLASSICAL SIMULATION

« Running all of the quantum circuits and processing the results took ~30 minutes per
time slice

« The classical simulation took roughly 30 minutes total

« Simulating multiple hadrons will take the same amount of time to run a quantum
computer (Necessary for scattering or simulating dense systems)

« The time to simulate multiple hadrons on a classical computer will grow exponentially
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SUMMARY
Variational calculations can be extrapolated to larger system \
\

sizes.

This has enabled preparation of vacuum and single hadron
states on quantum computers.

This approach is capable of reaching the continuum limit of
the Schwinger model.

These techniques should scale to higher dimensions.




REAL TIME EVOLUTION
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