
Matjaž Kebrič, Jad C. Halimeh, Ulrich Schollwöck, and Fabian Grusdt 
Munich Center for Quantum Science and Technology (MCQST) and 
Ludwig Maximilian University of Munich

QUANTHEP, 3 September 2024

Confinement in a one-dimensional  lattice 
gauge theory at finite temperature

ℤ2

@QMany 
          Body

www.quantummanybody.de

http://www.quantummanybody.de


Matjaž Kebrič QUANTHEP, 09/20242

Motivation

Study of the confinement-deconfinement transition.

Kogut, Rev. of Mod. Phys., 51, 659 (1979)

Lattice gauge theories - "high energy physics" 
The standard model has local gauge symmetry: 

. Example:SU(3) × SU(2) × U(1)

✓ Strong interaction: QCD -   gauge theory.SU(3)

✓ Electromagnetic interaction:  QED -   gauge theory.U(1)

Non-perturbative problems: lattice gauge theory (LGT).

✓ Analytics: lattice allows for regularization.

Zohar et al., Rep. Prog. Phys. 79 (2006).

✓ Numerics: Monte Carlo simulations sign problem

Studying "simpler" toy models:  LGTs?ℤN

Quantum simulation?!

Global symmetry

Local symmetry

Interactions

̂c†
j → V ̂c†

j

V → Vj

̂c†
j ̂cj+1 → ̂c†

j Ûj,j+1 ̂cj+1

Uj,j+1 → VjUj,j+1Vj+1

̂c†
j → Vj ̂c†

j

Peirls phase, 
gauge invariance:

Minimal coupling of matter to gauge fields:

Gauge transf.
V†

j Vj = I
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Motivation

Study of the confinement-deconfinement transition.
Kogut, Rev. of Mod. Phys., 51, 659 (1979)

Wilson, PRD 10, 2445 (1974)

Senthil et al., PRB 62, (2000).

Kitaev, Ann. of Phys. 303, 2 (2003).

Direct mapping between a simple 1D  LGT and a  model.ℤ2 t − Jz

Lattice gauge theories - condensed matter 

change the positions of the spins in the 2D lattice, while it is
impossible to permute their configurations within any given
chain. This is formalized by the notion of squeezed space,
introduced to describe 1D doped spin chains [15,16]:
To this end Fock states ⊗y jσð1;yÞ;…; σðLx−1;yÞ; σðLx;yÞi,
with σj ¼ ↑; h;↓ denoting local spin and charge
configurations, are relabeled by ⊗y jσ̃ð1;yÞ;…; σ̃ðL̃x;yÞi ⊗
ĥ†ðx1;yÞ…ĥ†ðxNh

y
;yÞj0i; Now σ̃j ¼ ↑;↓ denotes spins only on

sites x̃ ¼ 1…L̃x ¼ Lx − Nh
y and ĥ†j creates a hard-core

chargon with the same statistics as ĉj;σ on the sites occupied
by holes. The spin states in squeezed space are related to
spins in the lattice by

σ̃ðx̃; yÞ ¼ σ

!
x̃þ

X

j<x̃

nhðj;yÞ; y
"

≠ h; ð2Þ

where nhj denotes the chargon occupation numbers.
After this relabeling, the eigenfunctions of Eq. (1)

become jΨi ¼ jΨ̃i ⊗ jΨci, where jΨ̃i ¼ jfσ̃ j̃gj̃i denotes
a Fock configuration of spins in squeezed space and jΨci is
a (generally correlated) chargon wave function [15]. Since
we consider classical Ising interactions, every Fock con-
figuration jΨ̃i defines a separate hidden-symmetry sector of
Ĥ. In the following we restrict ourselves to Néel states in
squeezed space: jΨ̃i ¼ jNi≡ j…↑↓↑…i, with long-range
antiferromagnetic correlations along the x and y directions.

If projected to the subspace jΨ̃i ¼ jNi, the Hamiltonian
for the chargons (with density n̂hj ¼ ĥ†j ĥj) becomes

Ĥ ¼ −t
X

hi;jix

ðĥ†i ĥj þ H:c:Þ þ Ĥint½fn̂hj g&; ð3Þ

where the sign of the tunneling term is irrelevant.
To express the nonlocal (but instantaneous) interaction

energy Ĥint½fn̂hj g& in a compact form, we introduce the
following string operators,

τ̂xhj;jþexix
¼

Y

i∶ix≤jx

ð−1Þn̂hi : ð4Þ

By definition, each pair of holes is connected by a string of
link variables τxhi;ji ¼ −1 [see Fig. 1(a)] and the following
Z2 Gauss law is satisfied for all sites j:

ĜjjΨi ¼ jΨi; Ĝj ¼
Y

i∶hi;jix

τ̂xhi;jix : ð5Þ

Owing to this Gauss law, the two link variables including
a site j occupied by a spin σj are equal, τxhj−ex;jix ¼
τxhj;jþexix

¼ ð−1Þπj . Their value is given by the sublattice
parity πj ¼ 0, 1 of this spin, i.e., the number of times mod
2 the spin has switched sublattice (starting from a Néel state
with all holes located on the right edge).
The Ising interaction between neighboring spins hi; jiy

along y can be expressed in terms of the sublattice parities,
JzŜ

z
i Ŝ

z
j ¼ −Jzð−1Þπiþπj=4, since we use jΨ̃i ¼ jNi. Along

the chains each bond hi; jix gives JzŜ
z
i Ŝ

z
j ¼ −Jz=4 unless

one of the sites is occupied by a chargon.
We proceed by promoting the link variables to a Z2

lattice gauge theory (LGT) subject to the Z2 Gauss law (5).
This requires adding a term τ̂zhi;jix in the tunneling term
in Eq. (3) which correctly flips the sign of τxhi;jix , i.e.,
τ̂zhi;jix jτ

x
hi;jix

i ¼ j − τxhi;jixi. Note that theZ2 electric field τ̂xhi;jix
has a concrete physical meaning as it can be measured from
the local spin configuration.
Finally, we arrive at the exact representation of Eq. (1), in

the sector jΨ̃i ¼ jNi, by a Z2 LGT,

Ĥ ¼ −A
Jz
4
− t

X

hi;jix

ðĥ†i τ̂
z
hi;jix

ĥj þ H:c:Þ þ Jz
2

X

j

n̂hj

− Jz
4

X

hi;jix

n̂hi n̂
h
j − α

Jz
8

X

hi;jiy

ð1 − n̂hi Þð1 − n̂hj Þ

½τ̂xhi−ex;iix τ̂
x
hj−ex;jix

þ τ̂xhi;iþexix
τ̂xhj;jþexix

&; ð6Þ

where A ¼ LxLy is the total area. We introduced the
dimensionless interchain coupling parameter α, which is
α ¼ 1 for our model in Eq. (1).
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FIG. 1. The mix-D t − Jz model with tunneling t along x and
Ising couplings Jz in both directions can be mapped to coupled
1DZ2 LGTs. (a) With a classical Néel background theZ2 electric
field lines τxhi;jix ¼ −1 denote regions where spins switch sub-
lattice. (b) The phase diagram (here parton mean-field results for
t=Jz ¼ 3 are shown) contains stripes, a confined meson gas, and a
deconfined chargon gas.

PHYSICAL REVIEW LETTERS 125, 256401 (2020)

256401-2

Grusdt et al., PRL 125, (2020).

Subir Sachdev Rep. Prog. Phys. 82 (2019).

Emergent low energy theories in strongly correlated 
systems:

✓ connection to high temperature superconductivity,

✓ topological spin liquids,

✓ fractional excitations, ...

Quantum simulation?!

Many degrees of freedom: hard to solve!

✓ Analytical and numerical calculations (DMRG, QMC).
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Motivation

✓ Direct mapping between a simple 1D  LGT and a  model.ℤ2 t − Jz

Schweizer et al., Nature Phys. 15, (2019).

Barbiero et al., Sci. Adv. 5 (2019)

Görg et al., Nature Phys. 15, (2019).

Experimental realization using 
Floquet scheme.

Lattice gauge theories - quantum simulation

change the positions of the spins in the 2D lattice, while it is
impossible to permute their configurations within any given
chain. This is formalized by the notion of squeezed space,
introduced to describe 1D doped spin chains [15,16]:
To this end Fock states ⊗y jσð1;yÞ;…; σðLx−1;yÞ; σðLx;yÞi,
with σj ¼ ↑; h;↓ denoting local spin and charge
configurations, are relabeled by ⊗y jσ̃ð1;yÞ;…; σ̃ðL̃x;yÞi ⊗
ĥ†ðx1;yÞ…ĥ†ðxNh

y
;yÞj0i; Now σ̃j ¼ ↑;↓ denotes spins only on

sites x̃ ¼ 1…L̃x ¼ Lx − Nh
y and ĥ†j creates a hard-core

chargon with the same statistics as ĉj;σ on the sites occupied
by holes. The spin states in squeezed space are related to
spins in the lattice by

σ̃ðx̃; yÞ ¼ σ

!
x̃þ

X

j<x̃

nhðj;yÞ; y
"

≠ h; ð2Þ

where nhj denotes the chargon occupation numbers.
After this relabeling, the eigenfunctions of Eq. (1)

become jΨi ¼ jΨ̃i ⊗ jΨci, where jΨ̃i ¼ jfσ̃ j̃gj̃i denotes
a Fock configuration of spins in squeezed space and jΨci is
a (generally correlated) chargon wave function [15]. Since
we consider classical Ising interactions, every Fock con-
figuration jΨ̃i defines a separate hidden-symmetry sector of
Ĥ. In the following we restrict ourselves to Néel states in
squeezed space: jΨ̃i ¼ jNi≡ j…↑↓↑…i, with long-range
antiferromagnetic correlations along the x and y directions.

If projected to the subspace jΨ̃i ¼ jNi, the Hamiltonian
for the chargons (with density n̂hj ¼ ĥ†j ĥj) becomes

Ĥ ¼ −t
X

hi;jix

ðĥ†i ĥj þ H:c:Þ þ Ĥint½fn̂hj g&; ð3Þ

where the sign of the tunneling term is irrelevant.
To express the nonlocal (but instantaneous) interaction

energy Ĥint½fn̂hj g& in a compact form, we introduce the
following string operators,

τ̂xhj;jþexix
¼

Y

i∶ix≤jx

ð−1Þn̂hi : ð4Þ

By definition, each pair of holes is connected by a string of
link variables τxhi;ji ¼ −1 [see Fig. 1(a)] and the following
Z2 Gauss law is satisfied for all sites j:

ĜjjΨi ¼ jΨi; Ĝj ¼
Y

i∶hi;jix

τ̂xhi;jix : ð5Þ

Owing to this Gauss law, the two link variables including
a site j occupied by a spin σj are equal, τxhj−ex;jix ¼
τxhj;jþexix

¼ ð−1Þπj . Their value is given by the sublattice
parity πj ¼ 0, 1 of this spin, i.e., the number of times mod
2 the spin has switched sublattice (starting from a Néel state
with all holes located on the right edge).
The Ising interaction between neighboring spins hi; jiy

along y can be expressed in terms of the sublattice parities,
JzŜ

z
i Ŝ

z
j ¼ −Jzð−1Þπiþπj=4, since we use jΨ̃i ¼ jNi. Along

the chains each bond hi; jix gives JzŜ
z
i Ŝ

z
j ¼ −Jz=4 unless

one of the sites is occupied by a chargon.
We proceed by promoting the link variables to a Z2

lattice gauge theory (LGT) subject to the Z2 Gauss law (5).
This requires adding a term τ̂zhi;jix in the tunneling term
in Eq. (3) which correctly flips the sign of τxhi;jix , i.e.,
τ̂zhi;jix jτ

x
hi;jix

i ¼ j − τxhi;jixi. Note that theZ2 electric field τ̂xhi;jix
has a concrete physical meaning as it can be measured from
the local spin configuration.
Finally, we arrive at the exact representation of Eq. (1), in

the sector jΨ̃i ¼ jNi, by a Z2 LGT,

Ĥ ¼ −A
Jz
4
− t

X

hi;jix

ðĥ†i τ̂
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hi;jix

ĥj þ H:c:Þ þ Jz
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where A ¼ LxLy is the total area. We introduced the
dimensionless interchain coupling parameter α, which is
α ¼ 1 for our model in Eq. (1).
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FIG. 1. The mix-D t − Jz model with tunneling t along x and
Ising couplings Jz in both directions can be mapped to coupled
1DZ2 LGTs. (a) With a classical Néel background theZ2 electric
field lines τxhi;jix ¼ −1 denote regions where spins switch sub-
lattice. (b) The phase diagram (here parton mean-field results for
t=Jz ¼ 3 are shown) contains stripes, a confined meson gas, and a
deconfined chargon gas.

PHYSICAL REVIEW LETTERS 125, 256401 (2020)

256401-2

Grusdt et al., PRL 125, (2020).

 Spin-dependent super-lattice potential:

| ↑ ⟩
| ↑ ⟩
| ↓ ⟩

| ↓ ⟩

|R↓⟩ |R↓⟩

|R↑⟩ |R↑⟩

even sites odd sites

period a

ω0

Δ↑

Δ↓

Ω↓ Ω↑
Ω↓ Ω↑

δ

δ

Δ↑

Δ↓

MK et al., PRL. 127, (2021)

Many proposals:

✓ Superconducting qubits,

✓ Rydberg tweezers, ...

Homeier et al., PRB 104, (2021)

Homeier et al., Comm. Phys. 6, (2023).
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Overview of this talk

1D Lattice gauge theory coupled to dynamical matterℤ2

The Hamiltonian and confinement of partons into mesons.

Phase diagrams at different fillings.

Confinement at finite temperature.

✓ Smooth crossover from confined to thermally deconfined regime.

✓ Simple experimental probe of confinement: Friedel oscillations 
and string length histograms.

✓ Dynamical of confined mesons.

Conclusion

MK et al., Phys. Rev. B 109, (2024).

Motivation  



Matjaž Kebrič QUANTHEP, 09/20246

One-dimensional  lattice gauge theoryℤ2

Linear confining potential 

Green's function decays exponentially for h > 0
Borla et al., Phys. Rev. Lett. 124, (2020)

1D  lattice gauge theoryℤ2
t t

t-Jz model

Gauss law string anti-string

string-length repr.
deconf.

conf.

Mott

Confinement

Ĝi |ψ⟩ = ̂τx
⟨i−1,i⟩ ̂τx

⟨i,i+1⟩(−1) ̂ni |ψ⟩ = ± |ψ⟩

Gauss law:

Prosko et al., PRB 96, (2017).

Borla et al., Phys. Rev. Lett. 124, (2020). MK et al., Phys. Rev. Lett. 127, (2021).

[Ĥ, Ĝj] = 0, [Ĝj, Ĝi] = 0.

gi = + 1

h∑
⟨i,j⟩

̂τx
⟨i,j⟩ .

 Confinement of partons into mesons!

Ĥ = − t∑
⟨i,j⟩

( ̂a†
i ̂τz

⟨i,j⟩ ̂aj + h . c . ) − h∑
⟨i,j⟩

̂τx
⟨i,j⟩ + V∑

j

̂nj ̂nj+1

t t

t-Jz model

Gauss law string anti-string

(a) string-length repr.
deconf.

conf.

Mott

(b)String-length basis: 

Broken translational symmetry in the new basis  
confinement!

→

Solving the confinement problem

MK et al., Phys. Rev. Lett. 127, (2021).
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Ground state properties of the  lattice gauge theoryℤ2

Phase Diagrams
Different Mott transitions at fillings  
and .

n = 2/3
n = 1/2

Luttinger liquid for generic values of  and .h V

V/t0.0
0.5

1.0
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2.0h/t
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Mott
Confined Luttinger liquid
Deconfined Luttinger liquid

(a) (b)

Mott state of confined dimers stabilized by .V

MK et al., Phys. Rev. Lett. 127, (2021)

Meson Luttinger Liquid

Mott state of confined mesons

Two-thirds filling

MK et al 2023 New J. Phys. 25 013035

Highly degenerate regime when  
and .

h, V ≫ t
2h ≈ V

Parton-Plasmaa)

b)

c)

Half filling

Ĥ = − t∑
⟨i,j⟩

( ̂a†
i ̂τz

⟨i,j⟩ ̂aj + h . c . ) − h∑
⟨i,j⟩

̂τx
⟨i,j⟩ + V∑

j

̂nj ̂nj+1
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Maximally entangled state between ancilla and 
physical lattice sites is the infinite temperature 
state  β = 1/T = 0

8

Numerical calculations of finite temperature LGT

Method

Quantum purification scheme to obtain finite 
temperature results.

Zwolak et al., PRL., 93, 207 205, (2004).

Feiguin et al., PRB, 72, 220 401, (2005).

By performing imaginary time evolution we 
"cool" the system

Physical observables are calculated as

⟨�̂�⟩ =
⟨ψ(β) | �̂� |ψ(β)⟩

⟨ψ(β) |ψ(β)⟩
.

|ψ(β)⟩ = e−βℋ̂/2 |ψ(0)⟩ .

Ancilla site added to every physical lattice site.

Ĥ = − t∑
⟨i,j⟩

( ̂a†
i ̂τz

⟨i,j⟩ ̂aj + h . c . ) − h∑
⟨i,j⟩

̂τx
⟨i,j⟩

DMRG for the ground state calculations

Nocera et al., PRB, 93, 045 137, (2016).
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Confinement in the  LGT at finite temperatureℤ2

Green's function
 invariant Green's function - probe of 

confinement:
ℤ2

We fit the Green's function with an exponential 
function to extract the correlation length ξ

Comparison of .(ξ(h/t = 1) − ξ(h/t = 0))/ξ(h/t = 0)

fG(x) = Ax−αe−x/ξ .

𝒢(i − j) = ⟨ ̂a†
i ( ∏

i≤ℓ<j

̂τz
l,l+1) ̂aj⟩ .

MK et al., Phys. Rev. B 109, (2024).

Power-law decay in deconfined and exponential 
decay in the confined phase.

Smooth crossover!
We uncover a smooth crossover region 
between confined and thermally deconfined 
regime as a function of temperature. 

Ĥ = − t∑
⟨i,j⟩

( ̂a†
i ̂τz

⟨i,j⟩ ̂aj + h . c . ) − h∑
⟨i,j⟩

̂τx
⟨i,j⟩

Quantum purification scheme via MPS.

Tc/t ≈ 0.25
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1+1D  LGT at finite temperatureℤ2

Friedel oscillations
Period of the Friedel oscillations doubles in the 
confined regime:

Borla et al., Phys. Rev. Lett. 124, (2020)
Frequency remains constant for  
regime as a function of .

h ≠ 0
T

Ĥ = − t∑
⟨i,j⟩

( ̂a†
i ̂τz

⟨i,j⟩ ̂aj + h . c . ) − h∑
⟨i,j⟩

̂τx
⟨i,j⟩

2πn → πn .

Parton Luttinger liquid h = 0

Meson Luttinger liquid h > 0

Another signature of confinement!
Pre-formed mesons at high temperature

Meson Luttinger, h > 0

MK et al., Phys. Rev. B 109, (2024).
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1+1D  LGT at finite temperatureℤ2

Snapshots
Green's function is difficult to access in 
cold-atom experiments.

String lengths can be easily accessible from 
projective measurements.

Snapshots sampled directly from MPS.

Robust measure of confinement!

 Histograms of string and anti-string lengths.

Bimodal distribution in the 
confined regime.

t t

t-Jz model

Gauss law string anti-string

string-length repr.
deconf.

conf.

Mott

MK et al., Phys. Rev. B 109, (2024).
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Quench dynamics

Time evolution

MK et al., Phys. Rev. B 109, (2024).

Initial state with a meson in the center of the system.

Probability of distance  between charges.r = 1

For  the probability of well defined meson remains 
high at high temperature.

h > 0
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Conclusion
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Interplay of non-local confining field and local 
interaction result in rich phase diagrams.

Summary

Outlook
Confinement in LGTs with more complicated gauge 
structure.

Crossover to deconfined regime at high temperature.

Within the reach of current experimental setups.

MK et al., PRL, 127, (2021) MK et al., New J. Phys. 25, (2023).

MK et al., Phys. Rev. B 109, (2024).

Confinement in the 2D  LGT with matter?ℤ2

Pre-formed mesons above the crossover temperature!


