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Why quantum computing

Some weaknesses of alternatives

Exact diagonalization Monte Carlo

N degrees of freedom Sign problem with
of dimension d, topological terms or
dim(F) = dV chemical potential,
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Why topological terms
Strong CP problem

Why does QCD preserve CP symmetry (Charge conjugation - Parity)?
Experimentally CP within QCD interactions is conserved

Theoretically we can have a CP violating topological term
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Some related work in the field from 2024

e Scalable Circuits for Preparing Ground States on Digital Quantum Computers:
The Schwinger Model Vacuum on 100 Qubits, Farrell et al, PRX Quantum 5,
020315

* Concurrent VQE for Simulating Excited States of the Schwinger Model, Guo
et al, arXiv:2407.15629

e Digital Quantum Simulation for Spectroscopy of Schwinger Model, Ghim et al,
arxiv:.2404.14788



Schwinger model theory

Staggered and Wilson fermions

Temporal gauge Ayp=0
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Schwinger model theory

Hamiltonians with spin operators
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Schwinger model theory

Observables
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Schwinger model theory

Phase diagram

Electric field density (EFD) Particle number
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Methods for quantum computing

Goal outline

* Find ground states with noiseless variational quantum
eigensolver (VQE) around 1st order phase transition (PT)
line testing different ansatz and gates

* 6, 8, 10, 12 qubits for both fermion discretizations
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* Prepare these states on IBM’s quantum devices

e Measure the EFD and PN to demonstrate the PT
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Results for quantum computing

VQE performance

* Brick ansatz performed better than ladder ansatz

» SO(4) gate (4 # 0) performed better than Ry, yy (4 = 0)

 Achieved fidelities over 0.99
Mat

Mat
= 10 and 2 layers for = (
8 8

 Number of layers consistent for all system sizes between 6-12 qubits

1 layer for



Results for quantum computing o

First order phase transition ___
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Error mitigation

 Dynamical decoupling
 Readout error mitigation
e Pauli twirling

Zero noise extrapolation (ZNE)

Noise factors: 1, 3, 5
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Results for quantum computing
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Methods for tensor networks

Goal outline

Compute ground states as matrix product
states with DMRG and compare to continuum
mass perturbation theory for EFD observable
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Continuum extrapolation

Results for tensor networks
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Summary and outlook

* Analyzed different ansatz and gate performance with VQE

 Remnants of 1st order phase transition with QC

* Variety of error mitigation techniques proved helpful

* Continuum extrapolation comparison of staggered and Wilson fermions
* EXxplore capabilities of quantum devices in continuum extrapolations

e Looking into topological terms in 2+1 QED

* |nvestigate the Schwinger model within open quantum systems
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Variational quantum eigensolver

How it works

‘ O> . Measure
Initial cost

state U] (5) function

preparation
unitary

gradient

|0) w.r.t. @

Update parameters @
to minimize cost function



Variational quantum eigensolver

Details of how algorithm was used

e |-BFGS-B optimizer

 |nitial states either generic or representing what is expected from left and right
of the phase transition

 Warm up stage with 2k iterations while each layer has 1 free parameter then
100k iterations where all gates have their own free parameter

 When adding a layer, the existing layers’ initial parameters are the optimized
ones

 Usually only a few thousand iterations were sufficient for convergence with
high fidelity



Error mitigation techniques

Dynamical decoupling

* During idle periods of qubits, the qubits interact with their environment and
decoherence occurs (inability of qubits to exhibit guantum behaviour)

* Applying externally controlled gates that amount to the identity operation can
suppress this decoherence, e.g. X gate twice

o GRS 6 x
o @Nenean ® ®
%2 X«

ds

Qiskit library

Phys. Rev. A 58, 2733



Error mitigation techniques

Zero noise extrapolation

1. Amplify circuit noise for several noise factors
2. Run every noise amplified circuit

3. Extrapolate back to the zero noise limit

Expectation value

Expectation value
Expectation value

Unmitigated value Unmitigated value

----------------------- Exact value Mitigated value

----------------------- Exact value

Noise amplification factor Noise amplification factor

/

/

/
/

/fnmitigated value

----------------------- Exact value

Noise amplification factor

Qiskit library



Matrix product states

« The MPS ansatz decomposes a quantum state into a set of rank-3 tensors:
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Continuum extrapolation

Mass shift measurement
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Abstracts for literature in 2024

Scalable Circuits for Preparing Ground States on Digital Quantum Computers:
The Schwinger Model Vacuum on 100 Qubits

Roland C. Farrell®,” Marc Illa®," Anthony N. Ciavarella®,* and Martin J. Savage®3

InQubator for Quantum Simulation (IQuS), Department of Physics, University of Washington, Seattle,
Washington 98195, USA

™ (Received 8 September 2023; revised 12 December 2023; accepted 21 March 2024; published 18 April 2024)

The vacuum of the lattice Schwinger model is prepared on up to 100 qubits of IBM’s Eagle-processor
quantum computers. A new algorithm to prepare the ground state of a gapped translationally invariant
system on a quantum computer is presented, which we call “scalable circuits ADAPT-VQE” (SC-ADAPT-
VQE). This algorithm uses the exponential decay of correlations between distant regions of the ground
state, together with ADAPT-VQE, to construct quantum circuits for state preparation that can be scaled
to arbitrarily large systems. These scalable circuits can be determined with use of classical computers,
avoiding the challenging task of optimizing parameterized circuits on a quantum computer. SC-ADAPT-
VQE is applied to the Schwinger model, and 1s shown to be systematically improvable, with an accuracy
that converges exponentially with circuit depth. Both the structure of the circuits and the deviations of
prepared wave functions are found to become independent of the number of spatial sites, L. This allows a
controlled extrapolation of the circuits, determined with use of small or modest-sized systems, to arbitrarily
large L. The circuits for the Schwinger model are determined on lattices up to L = 14 (28 qubits) with the
Qiskit classical simulator, and are subsequently scaled up to prepare the L = 50 (100 qubits) vacuum on
IBM’s 127-superconducting-qubit quantum computers ibm_brisbane and ibm_cusco. After introduction
of an improved error-mitigation technique, which we call “operator decoherence renormalization”, the
chiral condensate and charge-charge correlators obtained from the quantum computers are found to be in
good agreement with classical matrix product state simulations.



Abstracts for literature in 2024

Concurrent VQE for Simulating Excited States of the Schwinger Model

Yibin Guo ©@,! Takis Angelides ®,1>? Karl Jansen ©,»3 and Stefan Kithn ®1

'CQTA, Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
2 Institut fir Physik, Humboldt-Universitit zu Berlin, Newtonstr. 15, 12489 Berlin, Germany
3 Computation-Based Science and Technology Research Center,

The Cyprus Institute, 20 Kavafi Street, 2121 Nicosia, Cyprus

This work explores the application of the concurrent variational quantum eigensolver (cVQE) for
computing excited states of the Schwinger model. By designing suitable ansatz circuits utilizing
universal SO(4) or SO(8) qubit gates, we demonstrate how to efficiently obtain the lowest two, four,
and eight eigenstates with one, two, and three ancillary qubits for both vanishing and non-vanishing
background electric field cases. Simulating the resulting quantum circuits classically with tensor
network techniques, we demonstrate the capability of our approach to compute the two lowest
eigenstates of systems with up to O(100) qubits. Given that our method allows for measuring the
low-lying spectrum precisely, we also present a novel technique for estimating the additive mass
renormalization of the lattice based on the energy gap. As a proof-of-principle calculation, we
prepare the ground and first-excited states with one ancillary and four physical qubits on quantum
hardware, demonstrating the practicality of using the cVQE to simulate excited states.



Abstracts for literature in 2024

Digital Quantum Simulation for Spectroscopy of
Schwinger Model

Dongwook Ghim%?* and Masazumi Honda®"

4 Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS), RIKEN, Wako, Saitama

351-0198, Japan

bYukawa Institute for Theoretical Physics (YITP), Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan

E-mail: dongwook.ghim@riken. jp, masazumi.honda@riken. jp

This note discusses a method for computing the energy spectra of quantum field theory utiliz-
ing digital quantum simulation. A quantum algorithm, called coherent imaging spectroscopy,
quenches the vacuum with a time-oscillating perturbation and then reads off the excited energy
levels from the loss in the vacuum-to-vacuum probability following the quench. As a practical
demonstration, we apply this algorithm to the (1+1)-dimensional quantum electrodynamics with
a topological term known as the Schwinger model, where the conventional Monte Carlo approach
is practically inaccessible. In particular, on a classical simulator, we prepare the vacuum of
the Schwinger model on a lattice by adiabatic state preparation and then apply various types
of quenches to the approximate vacuum through Suzuki-Trotter time evolution. We discuss the
dependence of the simulation results on the specific types of quenches and introduce various
consistency checks, including the exact diagonalization and the continuum limit extrapolation.
The estimation of the computational complexity required to obtain physically reasonable results
implies that the method is likely efficient in the coming era of early fault-tolerant quantum com-

puters.
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