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Develop technologies required by 

the CERN scientific programme

Integrate CERN to future quantum 

infrastructures

How does CERN engage in Quantum Technologies?
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QT4HEP HEP4QT

Extend and share technologies 
available at CERN

Boost development and adoption of 
QT beyond CERN

M. Grossi - CERN QTI - QuantHEP24 Munich



CERN QTI Phase 2
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HYBRID QUANTUM 

COMPUTING AND 

ALGORITHMS

QUANTUM 

NETWORKS AND 
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FOR IMPACT

CERN QUANTUM 

TECHNOLOGY 

PLATFORMS

Launched  January 2024

A 5 years research plan
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CERN QUANTUM 

TECHNOLOGY 

PLATFORMS

o Develop quantum sensors to provide new capabilities for 
particle physics research (dark matter search, axion search, 
gravitational wave detection…)

o Focus areas: Superconducting RF cavities, hydrogen-like 
Rydberg ions, and Transition Edge Sensors

CERN’s broad expertise and experimental facilities in many 
areas (superconducting materials, magnets, radiation effects, 
cryogenics, controls etc.) could be useful to support your 
developments. 
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HYBRID QUANTUM 

COMPUTING AND 

ALGORITHMS

• Integration in the EU and US HPC+QCS infrastructures

• Development of hybrid classic+quantum algorithms for 

theoretical and experimental physics

• Lead the development of common libraries of quantum 

algorithms and tools for HEP and other sciences

• Simulation of high dimensional classical / quantum 

systems 

• Software stacks for quantum devices calibration and 

control systems

• Investigations of distributed quantum computing, 

resource optimisation, green computing

M. Grossi - CERN QTI - QuantHEP24 Munich



Theory

Data 
Generation

Feature 
Extraction

Data 
Analysis
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HEP Pipeline



Fundamental motivation

Utilise information and correlations inherent in HEP data.

Exploit “quantum remnants” in data.

entanglement [1703.02989] spin correlations [1907.03729]

interference [2110.10112] Bell inequalities [2102.11883, 2203.05582]

M. Grossi - CERN QTI - QuantHEP24 Munich

Why Quantum Computing for HEP?



Quantum Machine Learning (QML) 
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Theory

Data 
acquisition
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Data 
Analysis

phase-space cuts 

Agliardi, Grossi, Pellen, Prati "Quantum integration of elementary 
particle processes."  https://doi.org/10.1016/j.physletb.2022.137228

𝜎 =
1

𝐹
න𝑑Φ 𝑀 2Θ Φ − Φ𝑐

probability distributions/

matrix element 

integrandphase-space factor

With QAE the number of call to the algorithm, required to approximate

I can be reduced almost quadratically beyond the MC classical bound. 

https://doi.org/10.1016/j.physletb.2022.137228
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Agliardi, Grossi, Pellen, Prati "Quantum integration of elementary 
particle processes."  https://doi.org/10.1016/j.physletb.2022.137228

• IQAE: demonstrated speed up 
(Grinko, Gacon, Zoufal, Woerner npj QI 7, 52 (2021))

• QGAN: potential bottleneck for data/function 

upload
• Difficult to run on real HW

https://doi.org/10.1016/j.physletb.2022.137228
https://www.nature.com/articles/s41534-021-00379-1
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Agliardi, Grossi, Pellen, Prati "Quantum integration of elementary 
particle processes."  https://doi.org/10.1016/j.physletb.2022.137228

• IQAE: demonstrated speed up 
(Grinko, Gacon, Zoufal, Woerner npj QI 7, 52 (2021))

• Integrate trigonometric functions

• QNN encoding into Fourier series 

• QFIAE applicable to n-D functions
• Good result (1% error) on HW

Loop Feynman integral

(Bubble)

https://doi.org/10.1016/j.physletb.2022.137228
https://www.nature.com/articles/s41534-021-00379-1
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s-channel
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𝐹
න𝑑Φ 𝑀 2Θ Φ − Φ𝑐

matrix element

phase-space factor

phase-

space cuts 

t-channel

• Build a quantum supervised model that can 

distinguish (C) and compute (R) the scattering 

amplitude squared for related Feynman diagrams

LO QED process

• Topology encoded in the adjacency matrix of the 
graph

• Particles (m,Q,S) encoded in the edges 

• Time flow (initial state, interaction vertex, final 

state) encoded in the vertices
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matrix element

phase-space factor

phase-

space cuts 

Successful training:

- Is able to learn several diagrams at the same time

- Can learn diagrams with same topology but 

different particles

- Task difficult with classic approaches
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F.Rehm et al., Precise image generation on current noisy quantum computing devices, 
Quantum Sci. Technol. 9 015009

• Quantum angle generator (QAG): a full quantum machine learning 

model designed to generate accurate images on current quantum 

devices

• Reproduces average values, AND, complex pixel-wise correlations
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Where is NEW PHYSICS?
Are we using the right data?
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Where is NEW PHYSICS?
Are we using the right data?

What if you do not know the signal or 
where to look for new-physics ? 

Re-embracing the scientific method: 
  starts gathering information about nature 

 … our baseline is the SM (from 1970!) → let’s change the approach

Rather than specifying a signal hypothesis upfront, we could start looking at 
our data
 
Based on what we see (e.g., clustering alike objects) we could formulate a 
signal hypothesis 

→ QCD dijet events
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Quantum Anomaly Detection
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Quantum Anomaly Detection
Belis V., GM, et al – arXiv:2301.10780

https://arxiv.org/abs/2402.09524v1
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Quantum Anomaly Detection
Belis V., GM, et al – arXiv:2301.10780

https://arxiv.org/abs/2402.09524v1


QC research directions in HEP

22

• Quantum computing could be revolutionary in HEP

• To go beyond the hype we need concrete challenges

• What are the most promising applications?

• How to define performance metrics and validate results? 

• Experimental data has high dimensionality

• Can we train Quantum Machine Learning algorithms  

effectively?

• Can we reduce the impact of data reduction 

techniques?

• Experimental data is shaped by physics laws

• Can we leverage them to build better algorithms? 

QC4HEP working group

M. Grossi - CERN QTI - QuantHEP24 Munich



Methods and applications
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Phase Detection with Anomaly Detection

- Quantum equivalent of an Autoencoder to learn an effective 
unitary operation capable of compressing all the information in 
the Pauli-Z expectation values of a subset of the qubits

- Minimization of the loss function

- All anomaly detection models were 
trained to compress the point
 (κ, h) = (0, 0) of the Hamiltonian

- Training: single state selected to 
achieve compression

- Cost is assigned to compressed state 
allowing the outline of all phases

Compression:

Exploring the Phase Diagram of the 

quantum one-dimensional ANNNI model

https://arxiv.org/abs/2402.11022

M. Grossi - CERN QTI - QuantHEP24 Munich

https://arxiv.org/abs/2402.11022


QT4HEP 2025 -  save the date

25

20-24 January 2025
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