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FIG. 6. The (trivial-) vacuum-to-vacuum persistence probability |h00| Û(t) |00i|2 (left panel) and the energy in the electric field
(right panel) of the one-plaquette system derived from the Hamiltonian given in Eq. (14) for color irreps 1,3,3,8. Dashed lines
correspond to the exact results for 2nd-order Trotterization given in Eq. (20) with �t = t, t/2, t/3, t/4, 0. Points correspond to
quadratic extrapolations of results obtained from IBM’s Athens quantum processor, with systematic and statistical uncertainties
combined in quadrature.

extrapolations to r = 0 in the number of CNOTs-per-circuit-CNOT were performed, and 1
2 |O(linear)�O(quadratic)|

was used as an estimate of the systematic uncertainty in the extrapolation of a quantity O. In many cases, the linear

fit was of relatively poor quality and gate fidelity limited the reliable extraction of su�cient samples in r to estimate

the systematic uncertainty at a comparison of higher polynomials. Hence, this comparison provides only an estimate

and should not be considered a complete quantification of CNOT errors.

Measurement errors were mitigated in two ways. The first was implementing Qiskit’s measurement filter sub-

routine [107] during production, which removes the leading order measurement errors by optimizing an approximate

inverse of the calculated all-to-all measurement matrix. When the error introduced by application of a single CNOT

gate is small compared to those of the measurement procedure, it is viable to mitigate measurement errors through the

use of auxiliary qubits by implementing a majority- or unanimous-vote for the measurement result. In this democratic

approach, each auxiliary qubit is connected as the CNOT target controlled on a qubit in the plaquette Hilbert space

and provides one correlated measurement to inform post-selected voting. After calibration, the typical single qubit

measurement error rate on the Athens processor is approximately 3% and the typical CNOT error rate is approxi-

mately 0.9% [103]. As a result, the unanimous voting criterion provides an improvement that is found in some cases

to be comparable to that of the measurement filter, with degradation for circuits implemented at times distant from

a calibration procedure. The initially positive results observed in this work, along with the scalability of the voting

procedure, inspire future exploration of the device-dependent tuning necessary to optimize this measurement error

mitigation strategy.

In addition to a choice of measurement error mitigation, the calculation shown in Fig. 6 was implemented with

both a 3- and 4-CNOT gate version of ei(aX̂⌦X̂+bŶ⌦Ŷ+cẐ⌦Ẑ), the time evolution of the Cartan subalgebra. In

the absence of noise, these two implementations should give the same results. While additional noise would be

reasonably expected for the 4-CNOT calculations, temporal fluctuations in error rates of the device instead produced

lower noise fluctuations for the 4-CNOT calculations. Thus, in order to express most accurately the uncertainties

associated with this calculation on quantum hardware, the four implementations (3-CNOT Cartan subalgebra with

unanimous voting, 4-CNOT Cartan subalgebra with the measurement filter, and others) after r-extrapolation have

been combined. The uncertainty is a quadrature combination of the extrapolation errors and standard deviations

of the four implementations. As a result, the uncertainties presented in Fig. 6 and throughout this manuscript are

not statistical confidence intervals, but also capture the systematic errors associated with gate fidelities and temporal

fluctuations of the device between calibrations that produce dominant error contributions.
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multiplet basis,  
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FIG. 2. Average probability of a plaquette being excited from
the electric vacuum as a function of time on a 4⇥ 4 and 7⇥ 7
plaquette lattice with open boundary conditions and g = 1.
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In this work, a large Nc expansion was combined with
electric basis truncations of the Kogut-Susskind Hamilto-
nian. This led to significant simplifications of the Hamil-
tonian and enabled a quantum simulation of SU(3) lat-
tice gauge theory in multiple spatial dimensions. It is
expected that this formalism can be extended to 3 spa-
tial dimensions and to include matter. Going to sub-
leading order in 1/Nc and to larger truncations should
also be possible systematically. The simplifications from
truncating at some order in 1/Nc and success of large
Nc expansions may allow for near term simulations of
phenomenologically relevant phenomena such as inelas-
tic scattering, jet fragmentation or thermalization. Ad-
ditionally, the connection of the large Nc limit of SU(Nc)
gauge theories to quantum gravity may allow quantum
simulations of these truncations to give insights into some
models of quantum gravity.
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There are many different parts of the theory that need to be worked out when 
formulating a Hamiltonian lattice gauge theory

1. How to formulate a lattice theory that reproduces SU(3) in the limit of 
vanishing lattice spacing

• Whether to add any additional expansions in the theory 

2. What basis to choose for the Hilbert space

3. How to implement gauge invariance

4. How to truncate the theory (how to choose a discrete set of field values)

Goal is a Hamiltonian Lattice theory that reproduces QCD in continuum limit
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A Trailhead for Quantum Simulation of SU(3) Yang-Mills Lattice Gauge Theory in

the Local Multiplet Basis

Anthony Ciavarella,1, ⇤ Natalie Klco,2, † and Martin J. Savage1, ‡
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Maintaining local interactions in the quantum simulation of gauge field theories relegates most

states in the Hilbert space to be unphysical—theoretically benign, but experimentally di�cult to

avoid. Reformulations of the gauge fields can modify the ratio of physical to gauge-variant states of-

ten through classically preprocessing the Hilbert space and modifying the representation of the field

on qubit degrees of freedom. This paper considers the implications of representing SU(3) Yang-Mills

gauge theory on a lattice of irreducible representations in both a global basis of projected global

quantum numbers and a local basis in which controlled-plaquette operators support e�cient time

evolution. Classically integrating over the internal gauge space at each vertex (e.g., color isospin

and color hypercharge) significantly reduces both the qubit requirements and the dimensionality of

the unphysical Hilbert space. Initiating tuning procedures that may inform future calculations at

scale, the time evolution of one- and two-plaquettes are implemented on one of IBM’s supercon-

ducting quantum devices, and early benchmark quantities are identified. The potential advantages

of qudit environments, with either constrained 2D hexagonal or 1D nearest-neighbor internal state

connectivity, are discussed for future large-scale calculations.
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Part 1: What lattice Hamiltonian to use in the without truncation.

3

and group space decimation [19, 25, 36, 79], through mesh digitization [80], using light-front formulations of lattice

field theory [81, 82], and in hybrid and analog approaches leveraging natural properties of trapped ions or ultracold

atoms in optical lattices [15, 17, 18, 22, 33, 83]. These strategies are important as optimal design is likely to depend

on the physical properties of specific quantum architectures, which continue to be developed. Furthermore, this range

of formulations can provide robustness in evaluating systematic uncertainties (from the performance of quantum

hardware and algorithms) for observables that are inaccessible to classical computation.

In this paper, the multiplet basis utilized in the work of Byrnes and Yamamoto [13] is integrated over the local

gauge space at each vertex of the lattice, reducing the Hilbert space describing the system down to the local SU(N)

irreducible representations below a chosen truncation. This approach has been previously used to explore (1+1)-dim

SU(2) lattice gauge theory [26], further implemented for a 1-dim chain of plaquettes in SU(2) lattice gauge theory [37],

and is here developed for application to SU(3) lattice gauge theory.

Quantum simulations of Yang-Mills theories and QCD are in their infancy. Precision calculations of quantities that

can be directly compared with experiment are far in the future, and are expected to require major advances in quantum

devices, algorithms and formalism. However, in starting along the path to this ultimate objective, explorations of

simple systems, establishing informative benchmarks, analyzing features of profitable mappings, observing natural

structures, quantifying truncation sensitivity, and identifying amenable architectures are all important steps. We

focus on understanding the behavior of simple systems, one- and two-plaquette systems, with regard to coupling,

truncations in color space, the scaling of global and local basis states and operators, and the mapping of color irreps

onto qubits, qutrits and qudits. We perform quantum simulations of low-truncation one- and two-plaquette systems

using IBM’s QExperience superconducting quantum devices. Further, we examine a framework (that appears to scale

amiably) for the use of controlled-plaquette operators on qudit systems as a way to perform simulations of SU(3)

Yang-Mills gauge field theory.

II. THE SU(3) YANG-MILLS HAMILTONIAN

Quantum simulations of Yang-Mills gauge theory can be performed by discretizing the gauge fields in the spatial

directions using a cubic lattice of sites and defining link variables connecting adjacent sites of this underlying grid.

These link variables are parallel transporters that connect, for SU(3), color vectors at one site to those at an adjacent

site. The Hamiltonian is a sum over the chromo-electric and chromo-magnetic contributions, as first discussed by

Kogut and Susskind [58],

Ĥ =
g2

2ad�2

X

b,links

|Ê(b)
|
2 +

1

2a4�dg2

X

plaquettes

h
6 � ⇤̂(x) � ⇤̂†(x)

i
, (1)

where g is the strong coupling constant, a is the lattice spacing between adjacent sites, and d is the number of

spatial dimensions. In the irrep basis of tensor indices that are labeled by (p, q), the number of (fundamental,

anti-fundamental) indices with total dimension

dim(p, q) =
(p+ 1)(q + 1)(p+ q + 2)

2
, (2)

the electric Hamiltonian is diagonal with eigenvalues determined by the Casimir operator,

X

b

|Ê(b)
|
2
|p, qi =

p2 + q2 + pq + 3p+ 3q

3
|p, qi . (3)

The plaquette operator, ⇤̂(x), is defined as

⇤̂(x) = Tr
h
Û3(x,x+ aµ) Û3(x+ aµ,x+ aµ+ a⌫) Û3(x+ aµ+ a⌫,x+ a⌫) Û3(x+ a⌫,x)

i
, (4)

In this case the Kogut-Susskind Hamiltonian is used
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Part 2: How to represent basis to choose for Hilbert space

In this case a basis in representation of SU(3) was chosen in which electric 
Hamiltonian is diagonal
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|Ê(b)
|
2
|p, qi =

p2 + q2 + pq + 3p+ 3q

3
|p, qi . (3)

The plaquette operator, ⇤̂(x), is defined as

⇤̂(x) = Tr
h
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These link variables are parallel transporters that connect, for SU(3), color vectors at one site to those at an adjacent
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Part 3: How to implement gauge invariance

In this case gauge invariance is implemented by requiring that representations 
satisfy Gauss’ law, therefore putting restrictions on each plaquette

4

where Û3(x,y) are 3⇥ 3 unitary matrices, and µ and ⌫ are unit vectors that define the orientation of the plaquette.

In the electric basis, links are defined by states of the color irrep to which they belong, R, and the (uncorrelated)

orientations in the two color spaces they connect, ↵ and �, |R,↵,�i. The electric contribution from each link

is proportional to the Casimir operator acting on the link without changing the color irrep, while the plaquette

operators, ⇤̂+ ⇤̂†, add color fluxes to the links in the plaquette, 3 and 3, which change the irrep of each link, subject

to Gauss’s law. Constraints imposed to define physically allowed states of the system are included through additional

conditions. In the absence of external color charges and quarks, Gauss’s law is satisfied by the product of link irreps

at each vertex combining to a color singlet.

A. The Plaquette Operator

In the standard formulation of Hamiltonian lattice gauge theory [58], wavefunctions carry Clebsch-Gordon (CG)

factors at each vertex with the e↵ect of enforcing local gauge invariance. Using the notation of Fig. 1, an example of

FIG. 1. Following an arrow convention generalizable to higher dimension, the above link labels will be employed. Indices local
to one end of each link represent a set of indices characterizing the local gauge space e.g., the color spin and color hypercharge
in SU(3).

the local vertex structure is (upper-left vertex)

| 3pti ⇠

X

b,g,d,�

hC1, b,Rt, g|Q`, di� |C1, a, bi|Q`, c, di|Rt, g, hi , (5)

where the sum is over the quantum numbers internal to the links at the vertex. The subscript, �, on the SU(3)

CG coe�cient indexes the multiplicity of combined irreps achieved through tensor contractions. An example of this

multiplicity is in the product 8 ⌦ 8 that can be combined to produce the 8-dimensional irrep in two distinct ways,

symmetric and antisymmetric contractions, with distinct CGs. These multiplicities mildly complicate the calculation

of plaquette matrix elements, but are otherwise benign with respect to the structure of the quantum simulation.

With a truncation including only up to the single-index irreps, the vertices that contain a singlet (and are thus

gauge invariant) are 1 ⌦ 1 ⌦ 1,1 ⌦ 3 ⌦ 3,3 ⌦ 3 ⌦ 3, and those related under global conjugation and permutation

symmetries. With a truncation including the 8 irrep, described by the two index tensor with one upper and one lower

index, the number of gauge invariant vertices rises to include the 1⌦ 8⌦ 8,3⌦ 3⌦ 8 and 8⌦ 8⌦ 8.

A key role of the vertex CGs is to allow a localization of the plaquette operator, determining the magnetic Hamil-

tonian, as the minimal contracted loop of local link operators (directionality as in Fig. 1),

⇤̂ = Û3
↵,�Û

3
�,�

⇣
Û3
�,�

⌘† ⇣
Û3
�,↵

⌘†
, (6)

Ûr
↵,� |R, a, bi =

X

�R0,~�

X

a0b0

s
dim(R)

dim(R0)
|R0, a0, b0i hR, a, r,↵|R0, a0i�1hR

0, b0|R, b, r,�i�2 , (7)

where r indicates the representation of the link operator, the a(b) label states within an irrep in the left(right) spaces,
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to one end of each link represent a set of indices characterizing the local gauge space e.g., the color spin and color hypercharge
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where the sum is over the quantum numbers internal to the links at the vertex. The subscript, �, on the SU(3)

CG coe�cient indexes the multiplicity of combined irreps achieved through tensor contractions. An example of this

multiplicity is in the product 8 ⌦ 8 that can be combined to produce the 8-dimensional irrep in two distinct ways,

symmetric and antisymmetric contractions, with distinct CGs. These multiplicities mildly complicate the calculation

of plaquette matrix elements, but are otherwise benign with respect to the structure of the quantum simulation.

With a truncation including only up to the single-index irreps, the vertices that contain a singlet (and are thus

gauge invariant) are 1 ⌦ 1 ⌦ 1,1 ⌦ 3 ⌦ 3,3 ⌦ 3 ⌦ 3, and those related under global conjugation and permutation

symmetries. With a truncation including the 8 irrep, described by the two index tensor with one upper and one lower

index, the number of gauge invariant vertices rises to include the 1⌦ 8⌦ 8,3⌦ 3⌦ 8 and 8⌦ 8⌦ 8.

A key role of the vertex CGs is to allow a localization of the plaquette operator, determining the magnetic Hamil-

tonian, as the minimal contracted loop of local link operators (directionality as in Fig. 1),

⇤̂ = Û3
↵,�Û
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⇣
Û3
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⌘† ⇣
Û3
�,↵
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, (6)

Ûr
↵,� |R, a, bi =

X

�R0,~�

X

a0b0

s
dim(R)
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where r indicates the representation of the link operator, the a(b) label states within an irrep in the left(right) spaces,
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Part 4: How to truncate the theory

6

operator controlled on the quantum states of the four neighboring links.

B. Connectivity in Multiplet Space

When designing operations for the implementation of dynamical processes within a Hilbert space, it is helpful to

understand the natural connectivity between states. This basis-dependent feature will a↵ect the e�ciency of digital

formulations of time evolution as well as their ease of implementation on quantum architectures with limited con-

nectivity. Naturally, designing quantum hardware with connectivity matching that of the field Hilbert space (or vice

versa) is expected to be advantageous.

When an SU(2) link operator in the fundamental representation acts, it is capable of raising or lowering the

total angular momentum j value of the link state by ±
1
2 . When the vector components of the link Hilbert space

are classically incorporated into the matrix elements of the plaquette operator, as discussed above, these j values

are su�cient to describe the state of the local link degree of freedom. Thus, in a basis of multiplets, the relevant

connectivity of quantum states within an SU(2) gauge link is in the form of a simple ladder, as shown in Fig. 2. While

SU(2): · · ·

SU(3):

0

1

2

3

4

0

1

2

3

4

p q

p q

+1

p q

-1

+1

p q

-1

or

transitions

FIG. 2. Connectivity diagrams for the low-Casimir irreps in SU(2) and SU(3) gauge theory upon application of the plaquette
operator. In SU(2), connections are bidirectional. In SU(3), connections between multiplets are directional, shown here for the
application of the fundamental representation. The link Hilbert space can be captured through the connectivity of a single
constrained hexagonal lattice of quantum states (lower-left panel) or through a pair of correlated one dimensional lattices
(lower-right panel).

the coe�cients associated with connections between these states depend on the surrounding links and the associated

local CG factors, states interact with maximally two neighboring states.

For SU(3) lattice gauge theory in the multiplet basis, the connectivity among states within the local gauge link

Hilbert space is only slightly more elaborate, and is well known from group theory. For the link operator in the 3 or

3, the tensor indices become,

(p, q)⌦ (1, 0) = (p+ 1, q)� (p� 1, q + 1)� (p, q � 1) ,

(p, q)⌦ (0, 1) = (p, q + 1)� (p+ 1, q � 1)� (p� 1, q) . (11)

In this case theory is truncated by the maximum allowed p and q values of the 
representation at each link
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All details in place  theoretical framework. Now needs to work out efficient quantum 
algorithms and get results from hardware

⇒

21

FIG. 10. Two plaquettes with periodic boundary conditions and an arrow convention amenable to infinite extension in the
two-dimensional plane. Indices local to each end of each link characterize states in SU(3) e.g., the color isospin and hypercharge
indices.

previous algorithms, for example, Ref. [13].

Similar to the methods employed for the one-plaquette system, Gauss’s law can be explicitly satisfied in the global

wavefunctions by construction of the basis states. Using the dimensionality of the color irrep of each link, as shown in

Fig. 10, the basis states for the two-plaquette system are written as |�(R1,Q1,R2,R3,Q2,R4)i. The gauge invariant

lattice wavefunction for this two-plaquette system, as discussed in greater generality in Appendix A, is

|�(R1,Q1,R2,R3,Q2,R4)i =
1

dim(Q1) dim(Q2)

X

all

|R1, a, bi|Q1, c, di|R2, e, fi|R3, g, hi|Q2, i, ji|R4, k, `i

hR3, h, R̄1, a|Q̄2, ji�312 hR1, b, R̄3, g|Q̄1, di�131

hR4, `, R̄2, e|Q2, ii�422 hR2, f, R̄4, k|Q1, ci�241 , (34)

where |R, a, bi is a link-state in the electric basis and hRi, f,Rj , k|Qk, ci�ijk are SU(3) CG coe�cients.

The global wavefunctions of the two-plaquette system are formed from combinations of these basis states, consistent

with the global symmetries of the system such as: color-parity symmetry resulting from the sum of ⇤ + ⇤† in the

Hamiltonian, e.g., {Ri,Qi} $ {Ri,Qi}, translation invariance, and reflection symmetry. These symmetries lead to a

natural block-diagonalization of the Hamiltonian in these projected bases. Quantum numbers may be assigned to the

states in each block, ±1 for each of the symmetries in the case of two-plaquettes. In this section, we consider a global

basis in which dynamical quantum states are mapped to symmetry-projected configurations of the full two-plaquette

lattice. Two related local truncations in color space are used to explore the convergence of both local and global

truncations.

A. Two-Plaquette: {1,3,3} Local Truncation

In limiting the local link basis to color irreps {1,3,3} for the two-plaquette system without constraints and symmetries,

there are 36 independent basis states. Imposing Gauss’s law at each vertex reduces this number down to 27. Further

restricting to global singlet states, as is the strong coupling vacuum and preserved by the Hamiltonian, the dynamical

Hilbert space becomes 9 dimensional, which decomposes into sectors of dimensions (4, 2, 2, 1) under the discrete

symmetries of color parity and spatial translation. Focusing on the sector that contains the trivial vacuum, the basis

states in the ++ sector are,

| (133;++)
1 i = |�(1,1,1,1,1,1)i

| (133;++)
2 i =

1

2

⇥
|�(3,3,3,1,3,1)i+ |�(3,3,3,1,3,1)i+ |�(1,3,1,3,3,3)i+ |�(1,3,1,3,3,3)i

⇤

| (133;++)
3 i =

1
p
2

⇥
|�(3,1,3,3,1,3)i+ |�(3,1,3,3,1,3)i

⇤

Paper presented above was first (and essentially still only one) that could do real 
SU(3) calculations in 2+1D on quantum hardware

Results could be obtained on a 3x2 lattice
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Paper presented above was first (and essentially still only one) that could do real 
SU(3) calculations on quantum hardware

Results could be obtained on a 3x2 lattice

24

circuit in Eq. (19), and the third can be implemented with the following circuit relation

ei(↵Ẑ⌦X̂+�X̂⌦Ẑ) =
H • H ei↵Ẑ H • H

ei�Ẑ
. (43)

The results of performing first order Trotter time steps with g = 1 beginning in the electric vacuum are shown in

Fig. 12. Two middle qubits were used to store the state of the system and, when the measurement error mitigation

is implemented through voting, the remaining three qubits were used to inform the post-selection described in Sec-

tion III B 1. As the results show, three Trotter steps are capable of reproducing the first maximum and minimum

in the evolution of the electric energy and calculations on the Athens quantum processor are in agreement with the

exact calculation.

Exact

1 Trotter Step
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FIG. 12. The (trivial-) vacuum-to-vacuum persistence probability |h00| Û(t) |00i|2 (left panel) and the energy in the electric
field (right panel) of the two plaquette system in the color parity basis truncated locally at 3 and 3. Evolution is a 1st-order
Trotterization of the Hamiltonian in Eq. (39). Points correspond to quadratic extrapolations of results obtained from IBM’s
Athens quantum processor, with systematic and statistical uncertainties combined in quadrature.

B. Two-Plaquette: {1,3,3,8} Local Truncation

To further explore global wavefunctions and also to demonstrate a further complexity in such calculations, the dis-

cussion in Subsection IVA is here extended to include the 8 in the local link basis. The construction involves

an expanded basis that requires considering non-trivial multiplicities in the products of irreps, in particular in

8 ⌦ 8 = 27 � 10 � 10 � 8 � 8 � 1. Of the 46 states in this local basis, 109 of them satisfy Gauss’s law. Pro-

jecting further to the global color singlet states—the global color charge being a quantum number conserved by the

Hamiltonian—there are 41 distinct physical configurations potentially connected to the strong coupling vacuum.

These physical and global color singlet states combine into states with definite transformation properties under the

discrete symmetries of color parity, translation, and reflection, which is no longer redundant in this larger basis as

3 ⌦ 3 = 8 � 1 leads to configurations that can be odd under reflection. Focusing only on the + + + sector, the 15

independent states are,

| (1338;+++)
1 i = |�(1,1,1,1,1,1)i ,

| (1338;+++)
2a i =

1

2

⇥
|�(3,3,3,1,3,1)i+ |�(3,3,3,1,3,1)i+ |�(1,3,1,3,3,3)i+ |�(1,3,1,3,3,3)i

⇤
,

| (1338;+++)
2b i =

1
p
2

⇥
|�(3,1,3,3,1,3)i+ |�(3,1,3,3,1,3)i

⇤
,

| (1338;+++)
3 i =

1
p
2
[ |�(8,1,1,8,1,1)i+ |�(1,1,8,1,1,8)i ] ,

15

All details in place  theoretical framework. Now needs to work out efficient quantum 
algorithms and get results from hardware
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We very recently realized that adding an additional expansion can lead to dramatic 
simplifications in the lattice theory

1. How to formulate a lattice theory that reproduces SU(3) in the limit 
of vanishing lattice spacing

• Whether to add any additional expansions in the theory 

2. What basis to choose for the Hilbert space

3. How to implement gauge invariance

4. How to truncate the theory (how to choose a discrete set of field 
values)

5. …
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Appendix A: Graphical representation of Basis States.

To explain the large Nc counting employed in this
work, it will be useful to develop some graphical notation
for physical states on a lattice. The Hilbert space describ-
ing a single link in a lattice gauge theory is spanned by
electric basis states of the form |R, a, bi where R is a rep-
resentation of the gauge group, and a and b are indices
that label states in the representation R when acted from
the left and right. Physical states are subject to a con-
straint from Gauss’s law which requires that the sum of
representations on each vertex of the lattice forms a sin-
glet. On a lattice where each vertex is connected to at
most three links, gauge invariant states can be specified
by the representation R on each link and a specification
on each vertex of how the links add to form a singlet.

For SU(N) gauge groups a representation R can be
labeled by a Young diagram, which can be specified
through the number of columns with 1, 2, . . . , N�1 boxes.
For SU(3) only two numbers are required, and the labels
are often chosen as (p, q), with p labeling the number of
columns with a single box, and q labeling the number of
columns with two boxes. It will be useful to obtain a
representation of Young diagrams in terms of lines with
arrows, as illustrated in Fig. 3. One can see that fun-
damental and anti-fundamental representations can be
represented either by lines with a single arrow in one di-
rection, or by lines with a double arrow in the opposite
direction. More complex representations can be built by
combining such lines together.

For lattices where vertices connect to more links, such
as a square lattice in 2D or 3D, not all states that can
be labeled by the representation above are linearly in-
dependent, leading to an ambiguity in labeling the basis
states. This is due to the so-called Mandelstam con-
straints, which relate contractions of representation in-
dices across a vertex. A point splitting procedure can
be performed to split each vertex into three link vertices
connected by virtual links, which lifts this ambiguity. In
this point-split lattice, the gauge invariant states can be
specified with the same assignment of labels used on a
trivalent lattice.

There is an equivalent labeling of the states of the phys-
ical Hilbert space that will prove useful, using the arrow
representation introduced above. This is illustrated in
Fig. 4, and will be called a “loop representation”[156].
In this representation each state is labeled by a set of
loops Li, together with a specification a`, which denotes

FIG. 4. Graphical representations of basis states on a point-
split lattice.

the way the arrows at each link ` having more than one
loop pass through being combined. Each loop needs to
specify which plaquettes are encircled and in which or-
der, while a` contains the information on how to com-
bine lines of multiple loops into single or double arrows.
Note that it might seem that there is an ambiguity in
the choice of single arrows in one or double arrows in
the other direction. This ambiguity is fixed by choosing
representations with p = 0 or q = 0 to have only single
arrows, and demanding that the number of arrows enter-
ing and leaving a vertex is conserved. Due to the point
splitting, closed loops have have the property that their
lines can not cross each other, so they can not form knots
or be twisted. A loop representation is therefore spanned
by the states |{Li, a`}i . Note that this loop representa-
tion is simply a graphical representation of the states
with definite representation at each link. In particular,
lines do not necessarily represent the tensor indices of a
given representation, and lines being connected does not
necessarily imply tensor indices being contracted. Before
moving on, we want to make it clear that the loop repre-
sentation as given is likely not a computationally e�cient
representation of the Hilbert space, since loops are nec-
essarily non-local objects which can in general span an
arbitrary number of plaquettes. Its usefulness will come
from applying the 1/Nc expansion.

The vacuum state in the interacting theory can be gen-
erated adiabatically from the vacuum state of the free
electric theory (the vacuum at g = 1) by acting with
the operators of the interacting Hamiltonian, which are
⇤̂ operators at the di↵erent plaquettes or Ê2

i operators at
the di↵erent links. Excited states in the simpliest topo-
logical sector can be obtained by further applications of
electric energy or plaquette operators. One can therefore
classify all states in this sector by the minimum number
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straints, which relate contractions of representation in-
dices across a vertex. A point splitting procedure can
be performed to split each vertex into three link vertices
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the way the arrows at each link ` having more than one
loop pass through being combined. Each loop needs to
specify which plaquettes are encircled and in which or-
der, while a` contains the information on how to com-
bine lines of multiple loops into single or double arrows.
Note that it might seem that there is an ambiguity in
the choice of single arrows in one or double arrows in
the other direction. This ambiguity is fixed by choosing
representations with p = 0 or q = 0 to have only single
arrows, and demanding that the number of arrows enter-
ing and leaving a vertex is conserved. Due to the point
splitting, closed loops have have the property that their
lines can not cross each other, so they can not form knots
or be twisted. A loop representation is therefore spanned
by the states |{Li, a`}i . Note that this loop representa-
tion is simply a graphical representation of the states
with definite representation at each link. In particular,
lines do not necessarily represent the tensor indices of a
given representation, and lines being connected does not
necessarily imply tensor indices being contracted. Before
moving on, we want to make it clear that the loop repre-
sentation as given is likely not a computationally e�cient
representation of the Hilbert space, since loops are nec-
essarily non-local objects which can in general span an
arbitrary number of plaquettes. Its usefulness will come
from applying the 1/Nc expansion.

The vacuum state in the interacting theory can be gen-
erated adiabatically from the vacuum state of the free
electric theory (the vacuum at g = 1) by acting with
the operators of the interacting Hamiltonian, which are
⇤̂ operators at the di↵erent plaquettes or Ê2

i operators at
the di↵erent links. Excited states in the simpliest topo-
logical sector can be obtained by further applications of
electric energy or plaquette operators. One can therefore
classify all states in this sector by the minimum number
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with definite representation at each link. In particular,
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The vacuum state in the interacting theory can be gen-
erated adiabatically from the vacuum state of the free
electric theory (the vacuum at g = 1) by acting with
the operators of the interacting Hamiltonian, which are
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FIG. 5. Graphical method to obtain the scaling of the overlap matrix
⌦
{Li}

��{Pp, P̄p}
↵
. The top example contains two loops,

each encircling a single plaquette m1 = m2 = 1, while the bottom example has a single loop encircling 2 loops m1 = 1. This
gives for the top example q1 = q2 = 1 + 3 ⇥ 1 = 4 and v1 = v2 = 2 + 2 ⇥ 1 = 4, giving the final scaling N

0
c . For the bottom

example we have q1 = 1 + 2⇥ 3 = 7 and v1 = 2 + 2⇥ 2 = 6, giving the final scaling 1/Nc.

of plaquette operators and its conjugate that are required
to reach it from the vacuum

��{Pp, P̄p}
↵
⌘

Y

p

⇤̂Pp

p ⇤̂†P̄p

p |0i . (11)

This state will be a linear combination of several electric
basis states and one can write

��{Pp, P̄p}
↵
=

X

{Li,a`}

⌦
{Li, a`}

��{Pp, P̄p}
↵
|Li, a`i . (12)

Appendix B: Large Nc Counting of States. The large
Nc scaling of a state, |{Li, a`}i is determined by the
large Nc expansion of

⌦
{Li, a`}

��{Pp, P̄p}
↵
for the minimal

choice of Pp and P̄p to obtain a nonzero overlap. Defin-
ing |{Li}i =

Q
i ULi

|0i where ULi
is a product of parallel

transporters along the loop Li and using that the overlap
h{Li, a`}|{Li}i is O(1) in the Nc scaling, the Nc scaling is
determined by the overlap

⌦
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��{Pp, P̄p}
↵
. This overlap

can be evaluated in the magnetic basis through inserting
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R
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will be used [157]. The large Nc scaling will be deter-
mined by the permutation of indices contraction that
gives the largest factors of Nc. A diagrammatic method
of evaluating the large Nc scaling is shown in Fig. 5.

First, the plaquette operators being applied are placed
over loops in the final state. To determine the powers of
Nc that come from contracting the Kronecker �s, one can
erase the middle of each link in the diagram and connect
the lines from the same vertex. This leaves a set of v
closed loops involving one vertex each, and each of these
closed loops contributes a factor of Nc in the numerator.
Each loop Li therefore contributes a factor Nvi�qi

c and

the the total Nc scaling is given by

Nv�q
c , q ⌘

X

i

qi , v ⌘
X

i

vi (14)

to the final overlap. Since each Uij in Eq. (13) corre-
sponds to a line in the figure, one immediately finds that
q = nl/2, where nl is the total number of lines on each
link in the diagram. Denoting by mi the number of pla-
quettes encircled by each loop Li, one needs mi plaquette
operators for each loop. The total number of lines is then
given by nl = 2 + 6mi, and the total number of closed
loops nv is given by 2 + 2mi for each loop in the basis.
Thus one finds

qi = 1 + 3mi , vi = 2 + 2mi . (15)

Putting this together, one finds that each loop con-
tributes a factor of N1�mi

c to the overall scaling of the
overlap, such that

⌦
{Li, a`}

��{Pp, P̄p}
↵
/

Y

i

N1�mi

c , (16)

This implies that the states that can be reached to
leading order in 1/Nc are those that only involve loops
Li withmi = 1. Therefore, the only overlap that survives
in the large Nc limit is the one with states |{Li, a`}i for
which each loop encircles exactly one plaquette. At order
1/Nc, states with loops extending over two plaquettes
will be present. Basis constructions similar to those in
the main text can be used to represent these states on a
quantum computer.

|Ω⟩ = exp [−i∫
T

0
dt (HE + λ(t)HB)] |0⟩E λ(0) = 0, , λ(T ) = 1

Excited states (with simplest topology) require additional action on interacting ground state with 
more electric or plaquettes ops on ground state

General state in interacting theory (simplest topology) can therefore be written as

Can represent this state as superposition of basis of loop states
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erase the middle of each link in the diagram and connect
the lines from the same vertex. This leaves a set of v
closed loops involving one vertex each, and each of these
closed loops contributes a factor of Nc in the numerator.
Each loop Li therefore contributes a factor Nvi�qi

c and

the the total Nc scaling is given by

Nv�q
c , q ⌘

X

i

qi , v ⌘
X

i

vi (14)

to the final overlap. Since each Uij in Eq. (13) corre-
sponds to a line in the figure, one immediately finds that
q = nl/2, where nl is the total number of lines on each
link in the diagram. Denoting by mi the number of pla-
quettes encircled by each loop Li, one needs mi plaquette
operators for each loop. The total number of lines is then
given by nl = 2 + 6mi, and the total number of closed
loops nv is given by 2 + 2mi for each loop in the basis.
Thus one finds

qi = 1 + 3mi , vi = 2 + 2mi . (15)

Putting this together, one finds that each loop con-
tributes a factor of N1�mi

c to the overall scaling of the
overlap, such that

⌦
{Li, a`}

��{Pp, P̄p}
↵
/

Y

i

N1�mi

c , (16)

This implies that the states that can be reached to
leading order in 1/Nc are those that only involve loops
Li withmi = 1. Therefore, the only overlap that survives
in the large Nc limit is the one with states |{Li, a`}i for
which each loop encircles exactly one plaquette. At order
1/Nc, states with loops extending over two plaquettes
will be present. Basis constructions similar to those in
the main text can be used to represent these states on a
quantum computer.
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FIG. 5. Graphical method to obtain the scaling of the overlap matrix
⌦
{Li}

��{Pp, P̄p}
↵
. The top example contains two loops,

each encircling a single plaquette m1 = m2 = 1, while the bottom example has a single loop encircling 2 loops m1 = 1. This
gives for the top example q1 = q2 = 1 + 3 ⇥ 1 = 4 and v1 = v2 = 2 + 2 ⇥ 1 = 4, giving the final scaling N

0
c . For the bottom

example we have q1 = 1 + 2⇥ 3 = 7 and v1 = 2 + 2⇥ 2 = 6, giving the final scaling 1/Nc.

of plaquette operators and its conjugate that are required
to reach it from the vacuum

��{Pp, P̄p}
↵
⌘

Y

p

⇤̂Pp

p ⇤̂†P̄p

p |0i . (11)

This state will be a linear combination of several electric
basis states and one can write

��{Pp, P̄p}
↵
=

X

{Li,a`}

⌦
{Li, a`}

��{Pp, P̄p}
↵
|Li, a`i . (12)

Appendix B: Large Nc Counting of States. The large
Nc scaling of a state, |{Li, a`}i is determined by the
large Nc expansion of

⌦
{Li, a`}

��{Pp, P̄p}
↵
for the minimal

choice of Pp and P̄p to obtain a nonzero overlap. Defin-
ing |{Li}i =

Q
i ULi

|0i where ULi
is a product of parallel

transporters along the loop Li and using that the overlap
h{Li, a`}|{Li}i is O(1) in the Nc scaling, the Nc scaling is
determined by the overlap

⌦
{Li}
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. This overlap

can be evaluated in the magnetic basis through inserting
1 =
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will be used [157]. The large Nc scaling will be deter-
mined by the permutation of indices contraction that
gives the largest factors of Nc. A diagrammatic method
of evaluating the large Nc scaling is shown in Fig. 5.

First, the plaquette operators being applied are placed
over loops in the final state. To determine the powers of
Nc that come from contracting the Kronecker �s, one can
erase the middle of each link in the diagram and connect
the lines from the same vertex. This leaves a set of v
closed loops involving one vertex each, and each of these
closed loops contributes a factor of Nc in the numerator.
Each loop Li therefore contributes a factor Nvi�qi

c and

the the total Nc scaling is given by

Nv�q
c , q ⌘

X

i

qi , v ⌘
X

i

vi (14)

to the final overlap. Since each Uij in Eq. (13) corre-
sponds to a line in the figure, one immediately finds that
q = nl/2, where nl is the total number of lines on each
link in the diagram. Denoting by mi the number of pla-
quettes encircled by each loop Li, one needs mi plaquette
operators for each loop. The total number of lines is then
given by nl = 2 + 6mi, and the total number of closed
loops nv is given by 2 + 2mi for each loop in the basis.
Thus one finds

qi = 1 + 3mi , vi = 2 + 2mi . (15)

Putting this together, one finds that each loop con-
tributes a factor of N1�mi

c to the overall scaling of the
overlap, such that

⌦
{Li, a`}

��{Pp, P̄p}
↵
/

Y

i

N1�mi

c , (16)

This implies that the states that can be reached to
leading order in 1/Nc are those that only involve loops
Li withmi = 1. Therefore, the only overlap that survives
in the large Nc limit is the one with states |{Li, a`}i for
which each loop encircles exactly one plaquette. At order
1/Nc, states with loops extending over two plaquettes
will be present. Basis constructions similar to those in
the main text can be used to represent these states on a
quantum computer.
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⌦
{Li}

��{Pp, P̄p}
↵
. The top example contains two loops,

each encircling a single plaquette m1 = m2 = 1, while the bottom example has a single loop encircling 2 loops m1 = 1. This
gives for the top example q1 = q2 = 1 + 3 ⇥ 1 = 4 and v1 = v2 = 2 + 2 ⇥ 1 = 4, giving the final scaling N

0
c . For the bottom

example we have q1 = 1 + 2⇥ 3 = 7 and v1 = 2 + 2⇥ 2 = 6, giving the final scaling 1/Nc.

of plaquette operators and its conjugate that are required
to reach it from the vacuum

��{Pp, P̄p}
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⌘
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p ⇤̂†P̄p

p |0i . (11)

This state will be a linear combination of several electric
basis states and one can write

��{Pp, P̄p}
↵
=

X

{Li,a`}

⌦
{Li, a`}

��{Pp, P̄p}
↵
|Li, a`i . (12)

Appendix B: Large Nc Counting of States. The large
Nc scaling of a state, |{Li, a`}i is determined by the
large Nc expansion of

⌦
{Li, a`}

��{Pp, P̄p}
↵
for the minimal

choice of Pp and P̄p to obtain a nonzero overlap. Defin-
ing |{Li}i =

Q
i ULi

|0i where ULi
is a product of parallel

transporters along the loop Li and using that the overlap
h{Li, a`}|{Li}i is O(1) in the Nc scaling, the Nc scaling is
determined by the overlap

⌦
{Li}

��{Pp, P̄p}
↵
. This overlap

can be evaluated in the magnetic basis through inserting
1 =

Q
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R
dUl |Uli hU |l. To evaluate the large Nc scal-

ing of these integrals, the identity

Z
dU

qY

n=1

UinjnU
⇤
i0
n
j0
n

=

1

Nq
c

X

permutations k

qY

n=1

�ini0kn

�jnj0kn

+O
✓

1

Nq+1
c

◆
, (13)

will be used [157]. The large Nc scaling will be deter-
mined by the permutation of indices contraction that
gives the largest factors of Nc. A diagrammatic method
of evaluating the large Nc scaling is shown in Fig. 5.

First, the plaquette operators being applied are placed
over loops in the final state. To determine the powers of
Nc that come from contracting the Kronecker �s, one can
erase the middle of each link in the diagram and connect
the lines from the same vertex. This leaves a set of v
closed loops involving one vertex each, and each of these
closed loops contributes a factor of Nc in the numerator.
Each loop Li therefore contributes a factor Nvi�qi

c and

the the total Nc scaling is given by

Nv�q
c , q ⌘

X

i

qi , v ⌘
X

i

vi (14)

to the final overlap. Since each Uij in Eq. (13) corre-
sponds to a line in the figure, one immediately finds that
q = nl/2, where nl is the total number of lines on each
link in the diagram. Denoting by mi the number of pla-
quettes encircled by each loop Li, one needs mi plaquette
operators for each loop. The total number of lines is then
given by nl = 2 + 6mi, and the total number of closed
loops nv is given by 2 + 2mi for each loop in the basis.
Thus one finds

qi = 1 + 3mi , vi = 2 + 2mi . (15)

Putting this together, one finds that each loop con-
tributes a factor of N1�mi

c to the overall scaling of the
overlap, such that

⌦
{Li, a`}

��{Pp, P̄p}
↵
/

Y

i

N1�mi

c , (16)

This implies that the states that can be reached to
leading order in 1/Nc are those that only involve loops
Li withmi = 1. Therefore, the only overlap that survives
in the large Nc limit is the one with states |{Li, a`}i for
which each loop encircles exactly one plaquette. At order
1/Nc, states with loops extending over two plaquettes
will be present. Basis constructions similar to those in
the main text can be used to represent these states on a
quantum computer.
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Step 4: Expand overlap of  using general formula⟨{Li, aℓ} |{Pp, P̄p}⟩
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FIG. 5. Graphical method to obtain the scaling of the overlap matrix
⌦
{Li}

��{Pp, P̄p}
↵
. The top example contains two loops,

each encircling a single plaquette m1 = m2 = 1, while the bottom example has a single loop encircling 2 loops m1 = 1. This
gives for the top example q1 = q2 = 1 + 3 ⇥ 1 = 4 and v1 = v2 = 2 + 2 ⇥ 1 = 4, giving the final scaling N

0
c . For the bottom

example we have q1 = 1 + 2⇥ 3 = 7 and v1 = 2 + 2⇥ 2 = 6, giving the final scaling 1/Nc.

of plaquette operators and its conjugate that are required
to reach it from the vacuum

��{Pp, P̄p}
↵
⌘

Y

p
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p ⇤̂†P̄p

p |0i . (11)

This state will be a linear combination of several electric
basis states and one can write

��{Pp, P̄p}
↵
=

X

{Li,a`}

⌦
{Li, a`}

��{Pp, P̄p}
↵
|Li, a`i . (12)

Appendix B: Large Nc Counting of States. The large
Nc scaling of a state, |{Li, a`}i is determined by the
large Nc expansion of

⌦
{Li, a`}

��{Pp, P̄p}
↵
for the minimal

choice of Pp and P̄p to obtain a nonzero overlap. Defin-
ing |{Li}i =

Q
i ULi

|0i where ULi
is a product of parallel

transporters along the loop Li and using that the overlap
h{Li, a`}|{Li}i is O(1) in the Nc scaling, the Nc scaling is
determined by the overlap

⌦
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��{Pp, P̄p}
↵
. This overlap

can be evaluated in the magnetic basis through inserting
1 =

Q
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dUl |Uli hU |l. To evaluate the large Nc scal-
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will be used [157]. The large Nc scaling will be deter-
mined by the permutation of indices contraction that
gives the largest factors of Nc. A diagrammatic method
of evaluating the large Nc scaling is shown in Fig. 5.

First, the plaquette operators being applied are placed
over loops in the final state. To determine the powers of
Nc that come from contracting the Kronecker �s, one can
erase the middle of each link in the diagram and connect
the lines from the same vertex. This leaves a set of v
closed loops involving one vertex each, and each of these
closed loops contributes a factor of Nc in the numerator.
Each loop Li therefore contributes a factor Nvi�qi

c and

the the total Nc scaling is given by

Nv�q
c , q ⌘

X

i

qi , v ⌘
X

i

vi (14)

to the final overlap. Since each Uij in Eq. (13) corre-
sponds to a line in the figure, one immediately finds that
q = nl/2, where nl is the total number of lines on each
link in the diagram. Denoting by mi the number of pla-
quettes encircled by each loop Li, one needs mi plaquette
operators for each loop. The total number of lines is then
given by nl = 2 + 6mi, and the total number of closed
loops nv is given by 2 + 2mi for each loop in the basis.
Thus one finds

qi = 1 + 3mi , vi = 2 + 2mi . (15)

Putting this together, one finds that each loop con-
tributes a factor of N1�mi

c to the overall scaling of the
overlap, such that

⌦
{Li, a`}

��{Pp, P̄p}
↵
/

Y

i

N1�mi

c , (16)

This implies that the states that can be reached to
leading order in 1/Nc are those that only involve loops
Li withmi = 1. Therefore, the only overlap that survives
in the large Nc limit is the one with states |{Li, a`}i for
which each loop encircles exactly one plaquette. At order
1/Nc, states with loops extending over two plaquettes
will be present. Basis constructions similar to those in
the main text can be used to represent these states on a
quantum computer.
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Step 4: Expand overlap of a given loop state with the state  using general formula|{Pp, P̄p}⟩

Putting results together, can show that final result is given by
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FIG. 5. Graphical method to obtain the scaling of the overlap matrix
⌦
{Li}

��{Pp, P̄p}
↵
. The top example contains two loops,

each encircling a single plaquette m1 = m2 = 1, while the bottom example has a single loop encircling 2 loops m1 = 1. This
gives for the top example q1 = q2 = 1 + 3 ⇥ 1 = 4 and v1 = v2 = 2 + 2 ⇥ 1 = 4, giving the final scaling N

0
c . For the bottom

example we have q1 = 1 + 2⇥ 3 = 7 and v1 = 2 + 2⇥ 2 = 6, giving the final scaling 1/Nc.

of plaquette operators and its conjugate that are required
to reach it from the vacuum

��{Pp, P̄p}
↵
⌘

Y
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p ⇤̂†P̄p

p |0i . (11)

This state will be a linear combination of several electric
basis states and one can write

��{Pp, P̄p}
↵
=

X

{Li,a`}

⌦
{Li, a`}

��{Pp, P̄p}
↵
|Li, a`i . (12)

Appendix B: Large Nc Counting of States. The large
Nc scaling of a state, |{Li, a`}i is determined by the
large Nc expansion of

⌦
{Li, a`}

��{Pp, P̄p}
↵
for the minimal

choice of Pp and P̄p to obtain a nonzero overlap. Defin-
ing |{Li}i =

Q
i ULi

|0i where ULi
is a product of parallel

transporters along the loop Li and using that the overlap
h{Li, a`}|{Li}i is O(1) in the Nc scaling, the Nc scaling is
determined by the overlap

⌦
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↵
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can be evaluated in the magnetic basis through inserting
1 =

Q
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R
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will be used [157]. The large Nc scaling will be deter-
mined by the permutation of indices contraction that
gives the largest factors of Nc. A diagrammatic method
of evaluating the large Nc scaling is shown in Fig. 5.

First, the plaquette operators being applied are placed
over loops in the final state. To determine the powers of
Nc that come from contracting the Kronecker �s, one can
erase the middle of each link in the diagram and connect
the lines from the same vertex. This leaves a set of v
closed loops involving one vertex each, and each of these
closed loops contributes a factor of Nc in the numerator.
Each loop Li therefore contributes a factor Nvi�qi

c and

the the total Nc scaling is given by

Nv�q
c , q ⌘

X

i

qi , v ⌘
X

i

vi (14)

to the final overlap. Since each Uij in Eq. (13) corre-
sponds to a line in the figure, one immediately finds that
q = nl/2, where nl is the total number of lines on each
link in the diagram. Denoting by mi the number of pla-
quettes encircled by each loop Li, one needs mi plaquette
operators for each loop. The total number of lines is then
given by nl = 2 + 6mi, and the total number of closed
loops nv is given by 2 + 2mi for each loop in the basis.
Thus one finds

qi = 1 + 3mi , vi = 2 + 2mi . (15)

Putting this together, one finds that each loop con-
tributes a factor of N1�mi

c to the overall scaling of the
overlap, such that

⌦
{Li, a`}

��{Pp, P̄p}
↵
/

Y

i

N1�mi

c , (16)

This implies that the states that can be reached to
leading order in 1/Nc are those that only involve loops
Li withmi = 1. Therefore, the only overlap that survives
in the large Nc limit is the one with states |{Li, a`}i for
which each loop encircles exactly one plaquette. At order
1/Nc, states with loops extending over two plaquettes
will be present. Basis constructions similar to those in
the main text can be used to represent these states on a
quantum computer.

: multiplying contributions from each loop.    number of plaquettes encircled by each loop ∏
i

mi :

To leading order in  only have states with loop encircling 
a single plaquette

1/Nc
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truncate, including only 
1, 3, 3̄

Finally, theory has charge conjugation symmetry
C − even : ( | ↻ ⟩ + | ↺ ⟩)/ 2 C − odd : ( | ↻ ⟩ − | ↺ ⟩)/ 2
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Final structure of Hilbert space at leading order in  and simplest non-trivial truncation 
is very simple. Needs one qubit per plaquette

1/Nc
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+

|0⟩ =

|1⟩ =
Neighboring plaquettes can not be excited at the same time
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operators that can excite plaquettes if neighboring plaquettes unexcited

HE HB
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Multicontrolled operations 
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have correct connectivity
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(a) Qubit Layout (odd lattices left, even lattices right)

P1 • •
A1 • •

A2 H e
�i⇡8 Ẑ

e
�i⇡8 Ẑ

e
�i⇡8 Ẑ

e
�i⇡8 Ẑ H • •

A3 • •
P2 • •

(b) Ancilla Preparation Circuit

FIG. S8. Circuit that sends all ancillas (A1, A2, and A3 beginning in the state |0i) to the state |1i if the physical qubits (P1

and P2) are in the state |0i, and leaves them alone otherwise. The upper diagram shows the connectivity of the qubits on the
hardware and the lower shows the circuit applied to these qubits.
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A  expansion in QCD is quite standard in many classical applications. Can it help in 
quantum simulation?

1/Nc

Gives dramatic simplifications on the size of the allowed Hilbert space and 
dramatically simplifies interactions 

Results obtained on 8x8 lattice (25 times more plaquettes than previous best)
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Adding an expansion in  dramatically reduces the available 
Hilbert space, and also dramatically simplies the Hamiltonian. 

This has allowed for the first simulation of SU(3) YM theory on 
digital IBMQ quantum computers in 2+1D

1/Nc
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There is one more very interesting fact abot the Hamiltonian we have derived. It is very 
closely related to the Hamiltonian describing the dynamics of neutral rydberg atoms
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The Hamiltonian has a relatively simple form
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Quantum phases of matter on a 256-atom 
programmable quantum simulator

Sepehr Ebadi1, Tout T. Wang1, Harry Levine1, Alexander Keesling1,2, Giulia Semeghini1, 
Ahmed Omran1,2, Dolev Bluvstein1, Rhine Samajdar1, Hannes Pichler3,4, Wen Wei Ho1,5, 
Soonwon Choi6, Subir Sachdev1, Markus Greiner1, Vladan Vuletić7 & Mikhail D. Lukin1 ✉

Motivated by far-reaching applications ranging from quantum simulations of 
complex processes in physics and chemistry to quantum information processing1, a 
broad effort is currently underway to build large-scale programmable quantum 
systems. Such systems provide insights into strongly correlated quantum matter2–6, 
while at the same time enabling new methods for computation7–10 and metrology11. 
Here we demonstrate a programmable quantum simulator based on deterministically 
prepared two-dimensional arrays of neutral atoms, featuring strong interactions 
controlled by coherent atomic excitation into Rydberg states12. Using this approach, 
we realize a quantum spin model with tunable interactions for system sizes ranging 
from 64 to 256 qubits. We benchmark the system by characterizing high-fidelity 
antiferromagnetically ordered states and demonstrating quantum critical dynamics 
consistent with an Ising quantum phase transition in (2 + 1) dimensions13. We then 
create and study several new quantum phases that arise from the interplay between 
interactions and coherent laser excitation14, experimentally map the phase diagram 
and investigate the role of quantum fluctuations. Offering a new lens into the study of 
complex quantum matter, these observations pave the way for investigations of 
exotic quantum phases, non-equilibrium entanglement dynamics and 
hardware-efficient realization of quantum algorithms.

Recent breakthroughs have demonstrated the potential of program-
mable quantum systems, with system sizes reaching around 50 trapped 
ions2,15,16 or superconducting qubits7–9, for simulations and computa-
tion. Correlation measurements with over 70 photons have been used 
to perform boson sampling10, while optical lattices with hundreds of 
atoms are being used to explore Hubbard models3–5. Larger-scale Ising 
spin systems have been realized using superconducting elements17, 
but they lack the coherence essential for probing quantum matter.

Neutral atom arrays have recently emerged as a promising platform 
for realizing programmable quantum systems6,12,18. Based on individu-
ally trapped and detected cold atoms in optical tweezers with strong 
interactions between Rydberg states19, atom arrays have been used 
to explore quantum dynamics in one- and two-dimensional (1D and 
2D) systems6,20–24, to create high-fidelity25 and large-scale26 entangle-
ment, to perform parallel quantum logic operations27,28, and to realize 
optical atomic clocks29,30. Although large numbers of atoms have been 
trapped30 and rearranged in two and three dimensions31–34, coherent 
manipulation of programmable, strongly interacting systems with 
more than 100 individual particles remains a challenge. Here, we realize 
a programmable quantum simulator using arrays of up to 256 neutral 
atoms with tunable interactions, demonstrating several new quantum 
phases and quantitatively probing the associated phase transitions.

 
Programmable Rydberg arrays in 2D
Our experiments are carried out on the second generation of an experi-
mental platform described previously6. The new apparatus uses a spa-
tial light modulator (SLM) to form a large 2D array of optical tweezers 
in a vacuum cell (Fig. 1a, Methods). This static tweezer array is loaded 
with individual 87Rb atoms from a magneto-optical trap, with a uni-
form loading probability of 50–60% across up to 1,000 tweezers. We 
rearrange the initially loaded atoms into programmable, defect-free 
patterns using a second set of moving optical tweezers that are steered 
by a pair of crossed acousto-optical deflectors (AODs) to arbitrary 
positions in two dimensions (Fig. 1a)35. Our parallel rearrangement 
protocol (see Methods) enables rearrangement into a wide variety of 
geometries including square, honeycomb and triangular lattices (left 
panels in Fig. 1b–d). The procedure takes a total time of 50–100 ms 
for arrays of up to a few hundred atoms and results in filling fractions 
exceeding 99%.

Qubits are encoded in the electronic ground state  g'  and the highly 
excited n = 70 Rydberg state  r'  of each atom. We illuminate the entire 
array from opposite sides with two counter-propagating laser beams 
at 420 nm and 1,013 nm, shaped into light sheets (see Methods), to 
coherently couple  g'  to   r'  via a two-photon transition (Fig. 1a).
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Can study QCD using analog 
neutral atom arrays
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The Hamiltonian has a relatively simple form Closely related to a different Hamiltonian

There is one more very interesting fact abot the Hamiltonian we have derived. It is very 
closely related to the Hamiltonian describing the dynamics of neutral rydberg atoms



Quantum simulating QCD in the Large Nc limitQuantum simulating QCD in the Large Nc limit
Christian Bauer

This is just the beginning. Hamiltonians describing HEP related problems have many 
features that make for interesting interactions
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• Things get more complicated in 3 dimensions; Can we create systems 
that allow us to still do the required simulations?

•  Going beyond the 1/Nc expansion will add other terms to the 
Hamiltonian; Can we still use analog systems to do the simulations?

• So far have focused on superconducint digital and analog neutral atoms; 
Are there other systems (trapped ions etc) that might be even better?

• We do have ideas how to use Rydberg blockade for digital simulations; 
Can we try that out and improve on the techniques?

• We are developing other formulations of QCD that might be better suited 
for some set of parameter values; Can we use similar techniques?
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I believe that this opens the door for quantum simulation 
of QCD through a systematic expansion, where higher 
order effects can be included as computing hardware 

improves
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