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QCD simulations in more that 1 dimension is a major goal of the community, and
finding the most efficient theory formulations is crucial

To make progress, typically start with simpler theories
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QCD simulations in more that 1 dimension is a major goal of the community, and
finding the most efficient theory formulations is crucial

To make progress, typically start with simpler theories
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QCD simulations in more that 1 dimension is a major goal of the community, and
finding the most efficient theory formulations is crucial

To make progress, typically start with simpler theories

U(l)

SU (2) Turro, PRD 109, 114511 (2024) (4 plaquettes)
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QCD simulations in more that 1 dimension is a major goal of the community, and
finding the most efficient theory formulations is crucial

Quantum Simulation of SU(3)
Lattice Yang Mills Theory at
Leading Order in Large N,
2402.10265

Trailhead for quantum simulation of SU(3)
Yang-Mills lattice gauge theory in the local

multiplet basis,
2101.10227
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QCD simulations in more that 1 dimension is a major goal of the community, and
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Quantum Simulation of SU(3)
Lattice Yang Mills Theory at

Leading Order in Large N,
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There are many different parts of the theory that need to be worked out when
formulating a Hamiltonian lattice gauge theory

1. How to formulate a lattice theory that reproduces SU(3) in the limit of
vanishing lattice spacing
 Whether to add any additional expansions in the theory
2. What basis to choose for the Hilbert space
3. How to implement gauge invariance

4. How to truncate the theory (how to choose a discrete set of field values)

Goal is a Hamiltonian Lattice theory that reproduces QCD in continuum limit
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A Trailhead for Quantum Simulation of SU(3) Yang-Mills Lattice Gauge Theory in
the Local Multiplet Basis

Anthony Ciavarella,’> * Natalie Klco,?'T and Martin J. Savage!'*

' InQubator for Quantum Simulation (IQuS), Department of Physics,
University of Washington, Seattle, WA 98195, USA
* Institute for Quantum Information and Matter (IQIM) and Walter Burke Institute for Theoretical Physics,
California Institute of Technology, Pasadena CA 91125, USA
(Dated: February 23, 2021 - 1:41)
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Part 1: What lattice Hamiltonian to use in the without truncation.

In this case the Kogut-Susskind Hamiltonian is used

2 _ _
5y 9 (D)2 1 . =l
H = 9 qd—2 Z BV + 2q4—dg2 Z 6 — Ux) — D'(x)

b,links plaquettes
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Part 2: How to represent basis to choose for Hilbert space

In this case a basis in representation of SU(3) was chosen in which electric
Hamiltonian is diagonal

D, q)

2 2
A + q“ + pqg + 3p + 3q
N IEO P ) = ©

(p+1)(g+1)(p+q+2)
2

dim(p, q) =
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Part 3: How to implement gauge invariance

In this case gauge invariance is implemented by requiring that representations
satisfy Gauss’ law, therefore putting restrictions on each plaquette
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Part 4: How to truncate the theory

In this case theory is truncated by the maximum allowed p and g values of the
representation at each link
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All detalils In place = theoretical framework. Now needs to work out efficient guantum
algorithms and get results from hardware

Paper presented above was first (and essentially still only one) that could do real
SU(3) calculations in 2+1D on quantum hardware

Results could be obtained on a 3x2 lattice

Christian Bauer
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algorithms and get results from hardware
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We very recently realized that adding an additional expansion can lead to dramatic
simplifications in the lattice theory

1. How to formulate a lattice theory that reproduces SU(3) in the limit
of vanishing lattice spacing

* Whether to add any additional expansions in the theory
2. What basis to choose for the Hilbert space
3. How to implement gauge invariance

4. How to truncate the theory (how to choose a discrete set of field
values)

Christian Bauer = 117 ):
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The basic idea of the 1/Nc expansion is to expand the amplitudes of states and
terms in the Hamiltonian in powers of 1/Nc

Step 1: Represent representations
of SU(3) graphically through double
line notation
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The basic idea of the 1/Nc expansion is to expand the amplitudes of states and
terms in the Hamiltonian in powers of 1/Nc

Step 1: Represent representations Step 2: Represent states on the
of SU(3) graphically through double lattice through loops and
line notation combinations of overlapping links
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The basic idea of the 1/Nc expansion is to expand the amplitudes of states and
terms in the Hamiltonian in powers of 1/Nc

Step 3: Ground state in interacting theory obtained by acting with electric (diagonal) or plaquette
ops on electric vacuum

T
Q) = exp [—iJ dt (Hy + /I(t)HB)] 10),  A0)=0,,X(T) =1
0

Excited states (with simplest topology) require additional action on interacting ground state with
more electric or plaquettes ops on ground state

General state in interacting theory (simplest topology) can therefore be written as

> _ ~ P, 1P
{Py, P,}) = | [ Op»00f |0)
p
Can represent this state as superposition of basis of loop states

|{vapp}> — Z <{Liaa€}‘{vapp}> L, ap)
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The basic idea of the 1/Nc expansion is to expand the amplitudes of states and
terms in the Hamiltonian in powers of 1/Nc

Step 4: Expand overlap of ({L;,a,} | {P,, P,}) using general formula

[Tl =5 T T +oam)

¢ permsk n=1

Expansion can be done graphically
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The basic idea of the 1/Nc expansion is to expand the amplitudes of states and
terms in the Hamiltonian in powers of 1/Nc

Step 4: Expand overlap of ({L;,a,} | {P,, P,}) using general formula

[dUH UanUZ,; — Z H 0 i + O(IN,)

permsk n=1

Expansion can be done graphically
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The basic idea of the 1/Nc expansion is to expand the amplitudes of states and
terms in the Hamiltonian in powers of 1/Nc

Step 4: Expand overlap of ({L;,a,} | {P,, P,}) using general formula

[dUH UanUZ,; N Z H 0 i + O(IN,)

permsk n=1

Expansion can be done graphically
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The basic idea of the 1/Nc expansion is to expand the amplitudes of states and
terms in the Hamiltonian in powers of 1/Nc

Step 4: Expand overlap of a given loop state with the state | {Pp, Pp}) using general formula

Putting results together, can show that final result is given by

({Lisact { Py, Pp}) o H N i

H: multiplying contributions from each loop. m; : number of plaquettes encircled by each loop

l

To leading order in 1/N. only have states with loop encircling
a single plaquette
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Now that we know that only loops encircling single plaquettes are allowed at large N_, add
truncation of Hilbert space

jL ai il 1 truncate,linézlugding only gL 1k 1 1

ﬁ
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Now that we know that only loops encircling single plaquettes are allowed at large N_, add
truncation of Hilbert space

gL ah il 1 truncate,linglugding only gL di 1 1

ﬁ

Finally, theory has charge conjugation symmetry

C-even: (| O)+]0))H>2 C-odd: (1O)=10))N2
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Final structure of Hilbert space at leading order in 1/N_. and simplest non-trivial truncation
Is very simple. Needs one qubit per plagquette

IS

[ 1)

Neighboring plaguettes can not be excited at the same time

|
_I_
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One can now work out the Hamiltonians. H; is diagonal, while H; contains plaquette
operators that can excite plaquettes if neighboring plaquettes unexcited

. 3 | n | n ~
H = 2 —8 - — r l,p 5 2P O,p+xP O,p—xP O,p+yP 0,p— yXp
p s
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One can now work out the Hamiltonians. H; is diagonal, while H; contains plaquette
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One can now work out the Hamiltonians. H; is diagonal, while H; contains plaquette
operators that can excite plaquettes if neighboring plaquettes unexcited
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To implement this system, we need to deal with the realities of existing quantum
hardware. Most difficult term i1s multicontrolled term in Hamiltonian
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To implement this system, we need to deal with the realities of existing quantum
hardware. Most difficult term i1s multicontrolled term in Hamiltonian
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To implement this system, we need to deal with the realities of existing quantum
hardware. Most difficult term i1s multicontrolled term in Hamiltonian
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To implement this system, we need to deal with the realities of existing quantum
hardware. Most difficult term i1s multicontrolled term in Hamiltonian
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To implement this system, we need to deal with the realities of existing quantum
hardware. Most difficult term i1s multicontrolled term in Hamiltonian
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To implement this system, we need to deal with the realities of existing quantum
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To implement this system, we need to deal with the realities of existing quantum
hardware. Most difficult term i1s multicontrolled term in Hamiltonian
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To implement this system, we need to deal with the realities of existing quantum
hardware. Most difficult term i1s multicontrolled term in Hamiltonian
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A 1/N_. expansion in QCD is quite standard in many classical applications. Can it help in
quantum simulation?

Gives dramatic simplifications on the size of the allowed Hilbert space and
dramatically simplifies interactions

Results obtained on 8x8 lattice (25 times more plaquettes than previous best)
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Adding an expansion in 1/N_. dramatically reduces the available
Hilbert space, and also dramatically simplies the Hamiltonian.

This has allowed for the first simulation of SU(3) YM theory on
digital IBMQ quantum computers in 2+1D

Christian Bauer
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There is one more very interesting fact abot the Hamiltonian we have derived. It is very
closely related to the Hamiltonian describing the dynamics of neutral rydberg atoms

The Hamiltonian has a relatively simple form
A\ 8 1 A
— [ —_ -2 _
s (3g 2g2> ZP””

o Z r O,p+xP 0.p— xP O,p+yP O,p—yXp
\/zg »

=10),,(0],  P,,=11),(1]

Closely related to a different Hamiltonian

=_AZP1,p+ ZX Z —P, P,

/

pp pp

Article

Quantum phases of matter ona256-atom
programmable quantum simulator
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Second term applies an X gate if |
neighboring qubits are | 0) Can study QCD using analog

neutral atom arrays
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There is one more very interesting fact abot the Hamiltonian we have derived. It Is very
closely related to the Hamiltonian describing the dynamics of neutral rydberg atoms

The Hamiltonian has a relatively simple form Closely related to a different Hamiltonian
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This is just the beginning. Hamiltonians describing HEP related problems have many
features that make for interesting interactions

* Things get more complicated in 3 dimensions; Can we create systems
that allow us to still do the required simulations?

e (Going beyond the 1/N¢ expansion will add other terms to the
Hamiltonian; Can we still use analog systems to do the simulations?

e So far have focused on superconducint digital and analog neutral atoms;
Are there other systems (trapped ions etc) that might be even better?

* We do have ideas how to use Rydberg blockade for digital simulations;
Can we try that out and improve on the techniques?

 We are developing other formulations of QCD that might be better suited
for some set of parameter values; Can we use similar techniques?
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A 1/N_. expansion in QCD is quite standard in many classical applications. Can it help in
quantum simulation?

Gives dramatic simplifications on the size of the allowed Hilbert space and
dramatically simplifies interactions

Results obtained on 8x8 lattice (25 times more plaquettes than previous best)

| believe that this opens the door for quantum simulation
of QCD through a systematic expansion, where higher
order effects can be included as computing hardware
Improves
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