Efficient Hamiltonian bases for
quantum simulation of non-
Abelian gauge theories

Dorota Grabowska
They/Them

V \ InQubator for
1QuS Quantum Simulation

@ University of Washington, Seattle




Motivation

Studying the properties of strongly coupled theories from first principles is necessary
to fully understand the Standard Model

Rich phenomena of non-perturbative quantum field theories is a profitable place to look
for new answers to the big questions
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Hamiltonian Formulation

Digital Quantum Simulation

Quantum Lattice: Very young field, utilizing NISQ-era hardware and quantum simulators
to carry out exploratory studies on lower-dimensional toy models

General Procedure: Simulation proceeds in three steps
1. Initial State Preparation
2. Evolution via multiple applications of time translation operator

3. Measurement

' Measurement

In|t|al State | E— iH(t)AI — iH(t) At

i Preparatlon - ] €

4. Circuit is re-run multiple times to build up expectation value

Overarching Research Goal
‘Re-write” theory into quantum circuit formulation that runs in reasonable amount of time
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Simulating Lattice Gauge Theories

Three fundamental hurdles must be addressed to carry out quantum
simulations of lattice gauge theories Hamiltonian
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Phys Rev D 11, 395 (1975)

Hamiltonian Lattice Gauge Theory, Abelian

®---—-—-—- - - - - ——-
Quantum simulations utilize Hamiltonian formulations
» Continuous time, but discrete space ﬁp
- Use Weyl Gauge (A, = 0) ®
» Can be derived from Wilson’s action E
E, |
U, |
L )
® ® ® ol

These define the theory and
therefore the circuit
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Phys Rev D 11, 395 (1975)

Hamiltonian Lattice Gauge Theory, Abelian

®------- @ ------- & ------- °

Kogut-Susskind Hamiltonian |

H=— g2 EE, +— Tr(21-P,—P] :
_2_ag2f£+? Z r(—p—p> ® ® ® ¢

£€ links PE plaquettes |

« Commutation relations inform how operators map onto qubits |
A A A : £ ® ® ® o

E.U ] —0.5,, Indicatesthat Uis .

[ A ree raising operator |

» Precise mapping will depend on choice of BASIS |
® ® ® O

Action of plaquette on a given state
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Phys Rev D 11, 395 (1975)

Hamiltonian Lattice Gauge Theory, SU(N) Version

General Idea: Similar to Abelian, but electric and gauge link operators carry color indices

1 1
R ) _ _p _pt
H=— g Y EfE{+— ) Tr<21 P, Pp)
€ links 8 PE plaquettes
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Gauss Law <«—— (Gauge Invariance

Gauge Fixing and Gauss Law ™~ o

Charge Conservation

Key Issue: Weyl gauge is an incomplete gauge-fixing procedure. Gauge transformations
with only spatial dependence still allowed and Gauss law becomes a constraint

Fact: Hamiltonian does commute with Gauss
law operators and so charge is conserved
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Coupling Strength and Basis Choices

Starting Point: Theory has fundamentally different properties at large and small (bare) gauge coupling

1 1
—_ 2 —_p _pt
H=—|g Y, EES+— ) Tr<2I P, Pp>
Z€ links 8 PE plaquettes
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Step One: Gauge-Fixing Procedure

Motivation: Gauge fixing allows for “importance sampling” when working in magnetic basis without
worrying about breaking gauge-invariance

X X X X X X
General Idea: Residual (spatial) gauge transformations
allow for certain number of links to be set to identity
: : : X X X X X X
* Maximal-tree procedure provides a systematic method
for determining which links can be eliminated
X X X X X X
X X X X X X
X X X X X X
Tree link Physical link
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Step One: Gauge-Fixing Procedure

Motivation: Gauge fixing allows for “importance sampling” when working in magnetic basis without
worrying about breaking gauge-invariance

Non-Local Hamiltonian: Hamiltonian written in terms of new gauge-fixed variables is more complicated

1 , 1 X m == XmmmmXmm = === X = = s X

_ b 1 b pi . : 4 . . .
Heoo |8 X EE+— 3 Tr(21- P, - P}) .

€ links PE plaquettes : : : : K : :

).( ----- ).( - mmom ).( - F).(h - - -*

* Max. Tree Gauge Fixing . . . . . .

2 Xim o= XmmmmXmmm mfm == X = = X

) . . . . . .

_g_ »a 2a 1 — X ()0 (%)

H= az > &- ) &+ 2g2aZTr I-[]xw@ | +hc. | : : : : :

4 K € t.() KkEt () p KEp Xomom - XmmmmXm == =K== Xim = = X

Commutation relations of new variables are canonical . . Pkx) . : 4 :

x.d.'...x ...... 53 ....bx ...... % ..... X

(&9, X()] = T'XW)S e [EUR), XK = X(1) TS,
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Bauer, D’Andrea, Freytsis and DMG,
Phys.Rev.D 109 (2024) 7, 074501

Step Two: Parameterizing Operators

Motivation: Three quantum numbers of SU(2) Hamiltonian can be thought of as total angular
momentum and projected angular momentums in lab frame and body frame: L?, ¢, L*

Eye towards Digitization: Axis-angle coordinates are
particularly convenient parameterization of SU(2)

* Each loop variable is simply an SU(2) matrix

cosZ —isinZcosd —isinZsinfe
¥ = 2 2 2
—isin % sin@e®  cos % + isin % cos @

“Quantum Theory of Angular Momentum”
Varshalovich, Moskalev, Khersonskii
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Bauer, D’Andrea, Freytsis and DMG,

A re Phys.Rev.D 109 (2024) 7, 074501

Step Three: Digitize Operators ¢ done>

Motivation: As currently written, (a)l-, o, gbi) are all continuous variables and so cannot yet be

implemented onto digital quantum computers
Spectrum as a function of coupling (N =16)

. . — £=0 (x1) —— 1=1 (x3)
Small Change of Basis: Angular coordinates (Hi, qﬁl—) ol — =2 (x5) 1=3 xn
. . — #  harmonic approx. /7
can be recast as spherical harmonic quantum g | free energies ji+ 1) )
S 15+
numbers (Z;, m; ) s
3
% 10+
>
o
2 5r
L
0_ 1 1 1 1 1 _I _______ L 1
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
coupling, g
2g° [? o @ 0 2 0]
H[1]= A S _62 —COtEa—-FT 1 —cos—
a — w (0)] a
* Bauer, C.W. and DMG, Phys.Rev.D 107 (2023) 3, L031503 st 2 &
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Global Conservation Laws

Recall: All gauge transformations are carried out relative to the origin and so an overall global
gauge transformation remains

Toy Model: Imagine laying down a pattern with playing cards whose two sides are different

Global Charge: Number of purple cards - Number of blue cards

Intuitive Idea: Bieathlgands/ig allowed tedel flipped but the giohajcHarge maoststeaythiecshane] thea a
eamponentofiingcalgaritbm amusthdobkieat thre full sSystenioniotjustsmall local patches
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DMG, Kane and Bauer, to appear shortly

Finish Step One: Gauge Fix Fully

Observation: SU(2) Hamiltonian can be thought of as a system of rigid rods fixed together at
the origin (axis-angle are hyperspherical coordinates)

n(0,, ¢,) i

Motivation: The quantum numbers (fl-, ml-) are
related to the total color charge of the system

Gong) = ) |B30 - o | = = Y L

K

(“difference between lab and body frame”)

Recall: Three quantum numbers of link can be thought
of as eigenstates of L2, L%, L% and therefore the total

72 Tz T2z
charge of the system should be L, L§ ., LS .

|%s> Efficient Hamiltonian bases for quantum simulation of non-Abelian gauge theories D.M. Grabowska



DMG, Kane and Bauer, to appear shortly

Finish Step One: Gauge Fix Fully

Motivation: Euler Angles (a, p, }/) will take total system from lab frame to body frame

n@.4) A

Euler Angles

(a.B.7)

n(93, ¢3)

If we can relate these two bases AND do a change of variable on all operators in
the Hamiltonian, then we will have a fully gauge-fixed theory!

o<
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DMG, Kane and Bauer, to appear shortly

Finish Step One: Gauge Fix Fully

Motivation: Simple* change of variable will lead us to a fully gauge-fixed theory

Step 1: Relate the two basis by writing the position of the rods in the two frames

. . . Sequestered Basis
Original Basis
: n® = R(a, f,7)(0,0,0)
n; = {sin @, cos ¢,, sin 6, sin ¢, cos 6} ”2(0) = R(a, B, 7) (sin 9,,,0, cos 9, 2)

(0) _ . . .
n,” = R(a, p,y){sind, cos g, sind, singp, cosd,}

* Simple in theory, but difficult to execute; luckily, we only have to do it once and it's done now
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DMG, Kane and Bauer, to appear shortly

Finish Step One: Gauge Fix Fully

Motivation: Simple* change of variable will lead us to a fully gauge-fixed theory

Step 3: Classify and derive all possible electric bilinear and magnetic loops

| Bilinear |Changing quantum numbers|o change | Total (four rods)| Total (N rods) |

E,% E,ll, no change 1 1
AN = +1 Ao = +1 2 2
Aml = 41 Ao = +1 4 2, — 4
AN=+1;Amll =41 | Ac=0 4 2, — 4
Aml = +1, Aml! =41, | Ac =0 2 (ne — 2)(nye — 3)
total: 13 ne(ne — 1)+ 1
E,% E,27/ no change 1 1
total: 1 1
E#[d] Es,[d] no change 1 1
total: 1 1

le electric (Magnetic) Hamiltonian can change more than
tour (five) quantum numbers at a time!
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Conclusions

Quantum computers have a fundamentally different computational strateqgy and will
provide novel probes of fundamental questions in particle and nuclear physics

Main Take-Away Point 1: Basis choice can dramatically affect both the resource
efficiency

Main Take-Away Point 2: It is important to explore a variety of approaches to
simulating lattice gauge Hamiltonian and critically analyze commonly-heard lore.

Paper presenting fully gauge-fixed SU(2) Hamiltonian that can be simulated with
polynomial resources will be on arXiv next week!
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