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Motivation
Studying the properties of strongly coupled theories from first principles is necessary 
to fully understand the Standard Model 

• Provides precise and quantitative description of the 
strong nuclear force over an broad range of energies 

• Gives rise to complex array of emergent phenomena that 
cannot be identified from underlying degrees of freedom 

• Ab-initio calculations crucial for comparing theoretical 
predictions of the Standard Model to experimental results

Proposed QCD Phase Diagram

Rich phenomena of non-perturbative quantum field theories is a profitable place to look 
for new answers to the big questions

Quantum Chromodynamics (QCD)
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Probe theories that are inaccessible through 

Digital Quantum Simulation
Quantum Lattice: Very young field, utilizing NISQ-era hardware and quantum simulators 
to carry out exploratory studies on lower-dimensional toy models

General Procedure: Simulation proceeds in three steps 
1. Initial State Preparation 
2. Evolution via multiple applications of time translation operator 
3. Measurement 

4. Circuit is re-run multiple times to build up expectation value

eiH(t1)Δt

…
. eiH(t2)Δt eiH(tn)Δt

…. MeasurementInitial State 
Preparation

Overarching Research Goal 
“Re-write” theory into quantum circuit formulation that runs in reasonable amount of time

Hamiltonian Formulation
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Probe theories that are inaccessible through 

Simulating Lattice Gauge Theories
Three fundamental hurdles must be addressed to carry out quantum 

simulations of lattice gauge theories Hamiltonian

C) Gauss Law is not automatically satisfied

Q= 0Q= 2
Q= 3

Q= 1B) Phenomenologically-relevant 
gauge groups are continuous

A) Infinite-dimensional Hamiltonian 
must be truncated

• “Sampling” method needs to capture gauge 
phenomena, such as gauge invariance

• Gauss's law is the constraint associated with the  
Lagrange multiplier 

• Naive Hilbert space is tensor product of different 
charge sectors

A0
• Finite-dimensional Hamiltonian needs to faithfully 
capture desired physics 

• Akin to UV regularization of Lagrangian methods 
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Hamiltonian Lattice Gauge Theory, Abelian 
Quantum simulations utilize Hamiltonian formulations 

•  Continuous time, but discrete space 

•  Use Weyl Gauge ( ) 

•  Can be derived from Wilson’s action  

•  Commutation relations inform how operators map onto qubits

A0 = 0

H =
1

2a
g2 ∑

ℓ∈ links

EℓEℓ +
1
g2 ∑

p∈ plaquettes

Tr (2I − Pp − P†
p)

Kogut-Susskind Hamiltonian

[ ̂Eℓ, Ûℓ′￼] = Ûℓδℓℓ′￼

Ûℓ

̂Eℓ′￼

̂Pp

Phys Rev D 11, 395 (1975)

These define the theory and 
therefore the circuit
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Hamiltonian Lattice Gauge Theory, Abelian 

•  Commutation relations inform how operators map onto qubits 

•  Precise mapping will depend on choice of BASIS

H =
1

2a
g2 ∑

ℓ∈ links

EℓEℓ +
1
g2 ∑

p∈ plaquettes

Tr (2I − Pp − P†
p)

Phys Rev D 11, 395 (1975)

Kogut-Susskind Hamiltonian

|0⟩

| + 1⟩

| + 2⟩

| − 1⟩ | + 2⟩

|0⟩ | − 1⟩

| + 1⟩ | − 1⟩ | − 1⟩

| + 1⟩

| − 1⟩ | + 1⟩ |0⟩

| − 1⟩ |0⟩

| − 1⟩ | − 1⟩
[ ̂Eℓ, Ûℓ′￼] = Ûℓδℓℓ′￼

Operators defined in the electric basis

̂E = ∑
ϵ

ϵ |ϵ⟩⟨ϵ | Û = ∑
ϵ

|ϵ + 1⟩⟨ϵ |

Indicates that  is 
raising operator

Û

|0⟩

| − 1⟩

|0⟩

| − 1⟩

Action of plaquette on a given state
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• Theory now contains both left and right electric operators 

• Rotations of gauge link from left and right are generated by 
left and right electric fields

General Idea: Similar to Abelian, but electric and gauge link operators carry color indices 

7

Probe theories that are inaccessible through 

Hamiltonian Lattice Gauge Theory, SU(N) Version 

H =
1

2a
g2 ∑

ℓ∈ links

Ea
ℓEa

ℓ +
1
g2 ∑

p∈ plaquettes

Tr (2I − Pp − P†
p)

Ûℓ

n n + ̂ei

̂ER̂EL

|ψ ⟩ [ ̂Ea
L, Ûj

mn] = Tja
mm′￼

Ûj
m′￼n

[ ̂Ea
R, Ûj

mn] = Ûj
mn′￼

Tja
n′￼n

[ ̂Ea
L, ̂Eb

L] = − if abc ̂Ec
L

[ ̂Ea
R, ̂Eb

R] = if abc ̂Ec
R

[ ̂Ea
L, ̂Eb

R] = 0

• Each electric field has their own Lie algebra 
and commutation relations

I can add something here

Û(n, ei) ⟼ Ω(n) Û(n, ei) Ω(n + ei)†

Phys Rev D 11, 395 (1975)
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Probe theories that are inaccessible through 

Gauge Fixing and Gauss Law

Key Issue: Weyl gauge is an incomplete gauge-fixing procedure. Gauge transformations 
with only spatial dependence still allowed and Gauss law becomes a constraint

• “Energy penalty” term added to Hamiltonian to 
reduce “unphysical transitions” for noisy simulations 

• Simulations utilizes more qubits than necessary due 
to spanning multiple disconnected sectors

Fact: Hamiltonian does commute with Gauss 
law operators and so charge is conserved

Option One: No Additional Gauge Fixing

Gauss Law Gauge Invariance

Charge Conservation

Option Two: Additional Gauge Fixing

• Fully gauge-fixed Hamiltonian spans only one 
charge sector 

• Expect increase in non-locality due to imposition of 
Gauss law constraints

Halimeh, J.C. and Hauke, P. Phys. Rev. Lett. 125, 030503 (2020)

|0⟩

| − 1⟩ |0⟩

| − 1⟩

State of definite charge will remain in that 
state of definite charge under time evolution

|0⟩

| − 1⟩

|0⟩ | − 1⟩
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Probe theories that are inaccessible through 

Coupling Strength and Basis Choices
Starting Point: Theory has fundamentally different properties at large and small (bare) gauge coupling

GOOD

BAD

⟨𝔤 | jmLmR⟩ =
dim( j)

|G |
Dj

mLmR
(𝔤)

Strong Coupling (Irrep Basis) 

Electric component of Hamiltonian dominates 

Basis: | j, mL, mR⟩

Weak Coupling (Group Element Basis) 

Magnetic component of Hamiltonian dominates 

Basis: |𝔤⟩

[ ̂Ea
L, Ûj

mn] = Tja
mm′￼

Ûj
m′￼n [ ̂Ea

R, Ûj
mn] = Ûj

mn′￼
Tja

n′￼n

[ ̂Ea
L, ̂Eb

L] = − if abc ̂Ec
L [ ̂Ea

R, ̂Eb
R] = if abc ̂Ec

R [ ̂Ea
L, ̂Eb

R] = 0

• Gauge links diagonal 
• Well-suited for “close to continuum” physics 

• Electric fields are more complicated 
• Gauge links digitization must be done carefully 

• Easier to impose Gauss’ law 
• States naturally discretized, with a UV truncation 

• Not well-suited for “close to continuum” physics

H =
1

2a
g2 ∑

ℓ∈ links

Ea
ℓEa

ℓ +
1
g2 ∑

p∈ plaquettes

Tr (2I − Pp − P†
p)
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Probe theories that are inaccessible through 

Step One: Gauge-Fixing Procedure
Motivation: Gauge fixing allows for “importance sampling” when working in magnetic basis without 
worrying about breaking gauge-invariance 

General Idea: Residual (spatial) gauge transformations 
allow for certain number of links to be set to identity 

• Maximal-tree procedure provides a systematic method 
for determining which links can be eliminated 

• Tree links: unphysical links that are part of a 
maximal tree, which can be set to the identity 

• Physical links: all other remaining links 

Still Incomplete: Procedure eliminates all local gauge 
transformations, but not global 

• All gauge transformations are carried out relative to the 
origin and so an overall gauge transformation remains

[ℰ̂a
L(κ), X̂(κ′￼)] = TaX̂(κ)δκ,κ′￼

[ℰ̂a
R(κ), X̂(κ′￼)] = X̂(κ)Taδκ,κ′￼

Tree link Physical link
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Probe theories that are inaccessible through 

Step One: Gauge-Fixing Procedure
Motivation: Gauge fixing allows for “importance sampling” when working in magnetic basis without 
worrying about breaking gauge-invariance 

Non-Local Hamiltonian: Hamiltonian written in terms of new gauge-fixed variables is more complicated

[ℰ̂a
L(κ), X̂(κ′￼)] = TaX̂(κ)δκ,κ′￼

[ℰ̂a
R(κ), X̂(κ′￼)] = X̂(κ)Taδκ,κ′￼

[ℰ̂a
L(κ), X̂(κ′￼)] = TaX̂(κ)δκ,κ′￼

[ℰ̂a
R(κ), X̂(κ′￼)] = X̂(κ)Taδκ,κ′￼

H =
1

2a
g2 ∑

ℓ∈ links

EℓEℓ +
1
g2 ∑

p∈ plaquettes

Tr (2I − Pp − P†
p)

H =
g2

2a ∑
ℓ

∑
κ ∈ t+(ℓ)

ℰ̂a
Lκ − ∑

κ ∈ t−(ℓ)

ℰ̂a
Rκ

2

+
1

2g2a ∑
p

Tr I − ∏
κ∈p

X̂(κ)σ(κ) + h . c .

Commutation relations of new variables are canonical

Max. Tree Gauge Fixing

P(κ)

κ
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Eye towards Digitization: Axis-angle coordinates are 
particularly convenient parameterization of SU(2) 

• Each loop variable is simply an SU(2) matrix 

• Electric operators are differential operators  

12

X =
cos ω

2 − i sin ω
2 cos θ −i sin ω

2 sin θe−iϕ

−i sin ω
2 sin θeiϕ cos ω

2 + i sin ω
2 cos θ

𝓔L/R =
Σ ∓ L

2

θ

ϕ

I

(ω, θ, ϕ)

ω = π

−I

ω = π

θ′ 

ϕ′ 

(ω′ , θ′ , ϕ′ )

Step Two: Parameterizing Operators  
Bauer, D’Andrea, Freytsis and DMG, 
Phys.Rev.D 109 (2024) 7, 074501

Motivation: Three quantum numbers of SU(2) Hamiltonian can be thought of as total angular 
momentum and projected angular momentums in lab frame and body frame: , , L̂2 L̂z L̂′￼z

• Axis-angle coordinates are also hyperspherical coordinates of the double cover of S3“Quantum Theory of Angular Momentum” 
Varshalovich, Moskalev, Khersonskii 

Σ = 2in∂ω + cot ( ω
2 ) (n × L)
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Small Change of Basis: Angular coordinates  
can be recast as spherical harmonic quantum 
numbers  

• Basis  is called the mixed basis 

• Quantum numbers  are discrete, with a 
natural truncation 

• Variable  is radial coordinate and can be digitized 
using previously developed methods*

(θi, ϕi)

(ℓi, mi)
(ωi, ℓi, mi)

(ℓi, mi)

ωi

13

Probe theories that are inaccessible through 

Step Three: Digitize Operators  
Motivation: As currently written,  are all continuous variables and so cannot yet be 
implemented onto digital quantum computers

(ωi, θi, ϕi)

* Bauer, C.W. and DMG, Phys.Rev.D 107 (2023) 3, L031503

H[1] =
2g2

a
L̂2

4 sin2 ω
2

−
∂2

∂2ω
− cot

ω
2

∂
∂ω

+
2

g2a (1 − cos
ω
2 )

Are we done?
Bauer, D’Andrea, Freytsis and DMG, 
Phys.Rev.D 109 (2024) 7, 074501
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Global Conservation Laws

Toy Model: Imagine laying down a pattern with playing cards whose two sides are different

Global Charge: Number of purple cards - Number of blue cards

Intuitive Idea: If each cards is allowed to be flipped, but the global charge must stay the same, then a 
component of the algorithm must “look” at the full system, not just small local patches

Recall: All gauge transformations are carried out relative to the origin and so an overall global 
gauge transformation remains

Intuitive Idea: Similarly, fully gauged-fixed Hamiltonians are thought to be highly non-local and thus 
expensive to implement on any machine - are we being foolhardy?
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Recall: Three quantum numbers of link can be thought 
of as eigenstates of , ,  and therefore the total 
charge of the system should be , , 

L̂2 L̂z L̂′￼z

L̂2
tot L̂z

tot L̂′￼z
tot

15

Probe theories that are inaccessible through 

Finish Step One: Gauge Fix Fully  

Motivation: The quantum numbers  are 
related to the total color charge of the system

(ℓi, mi)

DMG, Kane and Bauer, to appear shortly

Ĝa(n0) = ∑
κ

[ ̂Ea
L(κ) − ̂Ea

R(κ)] = − ∑
i

La
i

Observation: SU(2) Hamiltonian can be thought of as a system of rigid rods fixed together at 
the origin (axis-angle are hyperspherical coordinates)

ω1

n(θ1, ϕ1)

n(θ2, ϕ2)
ω2

n(θ3, ϕ3)

ω3

̂x

̂y

̂z

θ1

ϕ1

(“difference between lab and body frame”)
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Finish Step One: Gauge Fix Fully  

ω1

n(ϑ12,0)ω2

n(ϑ3, φ3)

ω3

̂x′￼

̂y′￼

̂z′￼

ϑ12

ω1

n(θ1, ϕ1)

n(θ2, ϕ2)
ω2

n(θ3, ϕ3)

ω3

̂x

̂y

̂z

θ1

ϕ1

Euler Angles 
(α, β, γ)

Motivation: Euler Angles  will take total system from lab frame to body frame(α, β, γ)

DMG, Kane and Bauer, to appear shortly

If we can relate these two bases AND do a change of variable on all operators in 
the Hamiltonian, then we will have a fully gauge-fixed theory!
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Finish Step One: Gauge Fix Fully  
Motivation: Simple* change of variable will lead us to a fully gauge-fixed theory

DMG, Kane and Bauer, to appear shortly

Original Basis
n(0)

1 = R(α, β, γ)(0,0,0)

n(0)
2 = R(α, β, γ)(sin ϑ12,0, cos ϑ12)

n(0)
μ = R(α, β, γ){sin ϑμ cos φμ, sin ϑμ sin φμ, cos ϑμ}

Sequestered Basis

ni = {sin θi cos ϕi, sin θi sin ϕi, cos θi}

|ωi, θi, ϕi⟩ → |ωi, ℓi, mi⟩ |ωi, ϑ12, ϑμ, ϑμ; α, β, γ⟩ → |ωi, n12, ℓμ, mμ; Λ, M, N⟩

* Simple in theory, but difficult to execute; luckily, we only have to do it once and it’s done now 

Step 1: Relate the two basis by writing the position of the rods in the two frames

Step 2: Change from angular variable basis to mixed basis
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Motivation: Simple* change of variable will lead us to a fully gauge-fixed theory

DMG, Kane and Bauer, to appear shortly

Step 3: Classify and derive all possible electric bilinear and magnetic loops 

Finish Step One: Gauge Fix Fully  

𝓔1η ⋅ 𝓔1η′￼
𝓔2η ⋅ 𝓔2η′￼

𝓔μη ⋅ 𝓔μη′￼

𝓔1η ⋅ 𝓔2η′￼
𝓔1η ⋅ 𝓔μη′￼

𝓔2η ⋅ 𝓔μη′￼
𝓔μη ⋅ 𝓔νη′￼

No single operator in the electric (Magnetic) Hamiltonian can change more than 
four (five) quantum numbers at a time!
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Conclusions

19

Quantum computers have a fundamentally different computational strategy and will 
provide novel probes of fundamental questions in particle and nuclear physics 

Main Take-Away Point 1: Basis choice can dramatically affect both the resource 
efficiency  

Main Take-Away Point 2: It is important to explore a variety of approaches to 
simulating lattice gauge Hamiltonian and critically analyze commonly-heard lore.

Paper presenting fully gauge-fixed SU(2) Hamiltonian that can be simulated with 
polynomial resources will be on arXiv next week!


