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Evolution of cosmic large-scale structure
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larger than the value required by cosmology. Postulating instead a con-
nection to the energy scale of quantum chromodynamics would still 
leave a discrepancy of some 40 orders of magnitude. A cosmological 
dark energy field that is so unnaturally small compared with these par-
ticle physics scales is a profound mystery. 

The evidence for an accelerating universe provided by type Ia super-
novae relies on a purely phenomenological calibration of the relation 
between the peak luminosity and the shape of the light curve. It is this 
that lets these supernovae be used as an accurate standard candle. Yet 
this relation is not at all understood theoretically. Modern simulations 
of thermonuclear explosions of white dwarfs suggest that the peak lumi-
nosity should depend on the metallicity of the progenitor star66,67. This 
could, in principle, introduce redshift-dependent systematic effects, 
which are not well constrained at present. Perhaps of equal concern is the 
observation that the decline rate of type Ia supernovae correlates with 
host galaxy type68,69, in the sense that the more luminous supernovae 
(which decline more slowly) are preferentially found in spiral galaxies. 

Interestingly, it has also been pointed out that without the evidence 
for accelerated expansion from type Ia supernovae, a critical density 
Einstein–de Sitter universe can give a good account of observations of 
large-scale structure provided the assumption of a single power  law for 
the initial inflationary fluctuation spectrum is dropped, a small amount 
of hot dark matter is added, and the Hubble parameter is dropped to the 
perhaps implausibly low value h ≈ 0.45 (ref. 70).

The CMB temperature measurements provide particularly compelling 
support for the paradigm. The WMAP temperature maps do, however, 
show puzzling anomalies that are not expected from gaussian fluctua-
tions71–73, as well as large-scale asymmetries that are equally unexpected 
in an isotropic and homogeneous space74,75. Although these signals could 
perhaps originate from foregrounds or residual systematics, it is curious 
that the anomalies seem well matched by anisotropic Bianchi cosmologi-
cal models, although the models examined so far require unacceptable 
cosmological parameter values76. Further data releases from WMAP 
and future CMB missions such as PLANCK will shed light on these 

Figure 4 | Time evolution of the cosmic large-
scale structure in dark matter and galaxies, 
obtained from cosmological simulations of the 
ΛCDM model. The panels on the left show the 
projected dark matter distribution in slices 
of thickness 15 h–1 Mpc, extracted at redshifts 
z = 8.55, z = 5.72, z = 1.39 and z = 0 from the 
Millennium N-body simulation of structure 
formation5. These epochs correspond to times of 
600 million, 1 billion, 4.7 billion and 13.6 billion 
years after the Big Bang, respectively. The colour 
hue from blue to red encodes the local velocity 
dispersion in the dark matter, and the brightness 
of each pixel is a logarithmic measure of the 
projected density. The panels on the right show 
the predicted distribution of galaxies in the same 
region at the corresponding times obtained by 
applying semi-analytic techniques to simulate 
galaxy formation in the Millennium simulation5. 
Each galaxy is weighted by its stellar mass, and 
the colour scale of the images is proportional to 
the logarithm of the projected total stellar mass. 
The dark matter evolves from a smooth, nearly 
uniform distribution into a highly clustered state, 
quite unlike the galaxies, which are strongly 
clustered from the start.
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Quantum origin of fluctuations

Universe was almost homogeneous at early times
small fluctuations magnified by gravitational attraction
primordial quantum fluctuations from inflation
[Mukhanov & Chibisov (1981), Hawking (1982), Starobinsky (1982), Guth & Pi (1982),
Bardeen, Steinhardt & Turner (1983), Fischler, Ratra & Susskind (1985)]
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Ultracold quantum gases

Although theT ¼ 0 superfluid is maximally robust close to unitarity, Tc as a function of 1/kFa
showsonly a ratherweakmaximumand then flattens out in theBEC regime, as seen inFigure 3 and
also inQMCsimulations discussed below. In the BCS regime,Tc is determined by the gap,whereas
in the BEC regime it is controlled by the superfluid density, or phase stiffness, which has its scale set
by the density in our Galilean invariant system. However, Tc for a lattice model of the crossover,
such as the “negative U”Hubbard model, has a strong maximum (32) and decreases like t2/jUj in
the BEC regime.

The normal (nonsuperfluid) state crossover ismore subtle than the ground-state crossover from
large to small pairs. In the BCS limit, given that both pair formation and condensation occur at
Tc " EF, the normal state is a Landau Fermi liquid. In the BEC regime, however, superfluid order
is destroyed by phase fluctuations depleting the condensate, not by destroying pairing. The state
above Tc is a normal Bose gas of dimers, which dissociate only at the pairing T#. The question of
how the system above Tc evolves from a normal Fermi liquid to a normal Bose liquid is quite
nontrivial. It was proposed early on that it does so via a pairing pseudogap (33–35) betweenTc and
T#. The existence of a pseudogap would be particularly exciting near unitarity, where the system
can be in a degenerate Fermi regime and yet show marked deviations from Fermi-liquid behavior
(see Section 7).

3.3. Beyond the Simplest Approaches

Although the results described above have the virtue of interpolating smoothly between the BCS
and BEC limits, there is no small parameter to control the calculations in the strongly interacting
regime. The results, although qualitatively correct, are quantitatively inadequate. Even in the
BCS limit,MFT fails in twodistinctways. First,MFToverestimates both theT¼ 0 gapD andTc by

BECBCS 1/kFa

T/
E F

–2 –1 0 1 2
0

0.2

0.4

Unpaired
fermions

Normal
Bose
liquid

Normal
Fermi
liquid

Pseudogap

T*

Tc Super!uid

Figure 3

Qualitative phase diagram of the BCS-BEC crossover as a function of temperature T/EF and coupling 1/kFa,
wherekF is the Fermimomentumand a is the scattering length (based on the results found inReference 26). The
pictures show schematically the evolution from the BCS limit with large Cooper pairs to the BEC limit
with tightly bound molecules. Unitarity (1/kFa ¼ 0) corresponds to strongly interacting pairs with size
comparable to k$1

F . As the attraction increases, the pair-formation crossover scale T# diverges away from the
transition temperature Tc, below which a condensate exists and the system is superfluid (blue region).
The best quantitative estimates ofTc andT# alongwith the question of the pseudogap at unitarity are discussed
in the text.
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can be very well controlled experimentally
develop and test quantum field theory
finite density, finite temperature
out-of-equilibrium
quantum information
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Non-relativistic quantum fields

Bose-Einstein condensate in two dimensions
[Gross (1961), Pitaevskii (1961)]

Γ[Φ] =

∫
dt d2x

{
~Φ∗(t, x)

[
i ∂
∂t − V (t, x)

]
Φ(t, x)

− ~2

2m∇Φ∗(t, x)∇Φ(t, x)− λ(t)
2 Φ∗(t, x)2Φ(t, x)2

}

low energy theory for bosonic atoms
optical trap potential V (t, x)
coupling strength λ(t)
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Feshbach resonance

allow to control scattering length or effective s-wave interaction strength
through magnetic field B
can be made time-dependent by varying magnetic field

λ(t)
2 Φ∗(t, x)2Φ(t, x)2
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Experimental realization

[Markus K. Oberthaler group, Uni Heidelberg]
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Superfluid and small excitations

Complex non-relativistic field can be decomposed

Φ = eiS0

(
√

n0 +
1√
2
[φ1 + iφ2]

)
real fields φ1 and φ2 describe excitations on top of the superfluid
low energy field φ2(t, x)
stationary superfluid density n0(x) and vanishing superfluid velocity

v =
~
m∇S0 = 0

7 / 36



Sound waves / phonons

small energy excitations are sound waves or phonons
propagate with finite velocity, similar to light
local speed of sound

cS(t, x) =
√
λ(t)n0(x)

m

sound waves propagate along

ds2 = −dt2 +
1

cS(t, x)2 (dx − vdt)2 = 0

acoustic metric for vanishing fluid velocity v = 0

gµν =

−1 0 0
0 1

cS(t,x)2 0
0 0 1

cS(t,x)2
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Relativistic scalar field

Low energy theory for phonons (with φ = φ2/
√

2m)

Γ[φ] =

∫
dt d2x √g

{
−1

2gµν ∂µφ∂νφ

}

metric determinant √g =
√

−det(gµν)
acoustic metric depends on space and time like the space-time metric in
general relativity
phonons behave like a real, massless, relativistic scalar field in a curved
spacetime !
quantum simulator for QFT in curved space
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Density profiles

assume specifically for r = |x| < R

n0(r) = n̄0 ×
[
1 − r2

R2

]2

experimental realization with optical trap and digital micromirror device
approximate realization in harmonic trap

Position

D
en
si
ty
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Acoustic spacetime geometry
variable transform to 0 ≤ u <∞

u(r) = r
1 − r2

R2

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

r/R

u
/R

leads to Friedmann-Lemaitre-Robertson-Walker metric

ds2 = −dt2 + a2(t)
(

du2

1 − κu2 + u2dϕ2
)

negative spatial curvature
κ = −4/R2

scale factor

a(t) =

√
m
n̄0

1
λ(t)
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Hyperbolic geometry
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Experimental realization in a Bose-Einstein condensate 2
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FIG. 1. Curvature in space and time realised in a Bose-Einstein condensate. a) Hyperbolic space with constant negative
curvature mapped onto the finite-sized Poincaré disc. b) Realisation of a hyperbolic geometry in an inhomogeneous condensate. The
corresponding density profile (black) is approximated by a condensate in a harmonic trap (red). c) Propagation of a phononic wave
packet averaged over ⇠ 100 realisations (left) and di↵erence to the unperturbed condensate (right). d) Quantitative comparison
between prediction and experiment for the propagation along the geodesic indicated in the lower right panel of c (black line). The
red dots mark the position of the wave packet at each time. The blue line is the theory prediction for the hyperbolic space and the
grey line the prediction for the acoustic metric of the parabolic Thomas-Fermi profile. e) Illustration of the equivalence between an
expanding space and the static BEC with dynamically controlled s-wave scattering length as. f) Density and density contrast �c of a
single realisation before and after a ramp with scale factor a(t) / t� . The emergence of fluctuations on large scales indicates particle
production. g) Structures are distributed randomly in di↵erent realisations.

gation averaged over ⇠ 100 realisations, as well as the
density di↵erence to the unperturbed system. For each
time-step, the profile of the density is extracted along
the geodesic connecting the initial perturbation with the
centre of the condensate.

Figure 1 d shows the normalised profiles from which
the positions of the minima are extracted (red points).
We use the three points marked with open symbols to
fit the speed of sound at the centre of the condensate.
This measured speed of sound and the extracted Thomas-
Fermi radius completely determine the metric and hence
set the prediction for the phononic wave packet trajec-
tories (for further details see methods). The solid grey
line in Fig. 1 d shows the prediction for the harmonically
trapped condensate, and the blue line the prediction for
a hyperbolic space. This serves as a quantitative demon-
stration that a condensate in a harmonic trap approxi-
mates a hyperbolic geometry, corresponding to negative
curvature. Deviations only occur close to the Thomas-
Fermi radius of 25µm.

This concept can be extended to di↵erent curvatures

by choosing the appropriate density profile (see meth-
ods). For spacetime geometries beyond hyperbolic, we
use a digital micromirror device (DMD) [5, 6] to con-
figure arbitrary spatial curvatures. One such possibility
is positive spatial curvature, also known as spherically
curved space. Figure 2 contrasts the wave packet propa-
gation on background densities corresponding to hyper-
bolic and spherical metrics. We observe fundamentally
di↵erent evolution in agreement to the expected dynam-
ics. This confirms that our simulator can be configured
to positive or negative curvature.

The implementation of curvature in time, i.e. extrin-
sic curvature, is depicted in Figure 1 e in two equiva-
lent representations of a spatially flat FLRW metric with
increasing scale factor a(t). The distance covered by a
signal moving at the causal speed in a unit of time is
depicted by the separation between the circles. For a
constant causal speed, the expansion of space is encoded
in the increase of coordinate distance between the two red
points, as illustrated on the left side of 1 e. However, this
is equivalent to keeping coordinates static (comoving co-
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Geometries with constant spatial curvature
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Propagating sound waves
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Expansion and particle production
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ti tf
t

ai

af

I II III

a(t)

time-dependent scattering length induces time-dependent metric

ds2 = −dt2 + a2(t)
(

du2

1 − κu2 + u2dϕ2
)

particle concept works well in regions I and III but not in region II
vacuum state in region I leads to state with particles in region III
expanding space leads to particle production
analytic calculations possible for power law scale factors

a(t) = const × tγ
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Laplace operator

Laplace-Beltrami operator with spatial curvature

∆ =


|κ|
[

1
sin θ

∂θ (sin θ ∂θ) +
1

sin2 θ
∂2
ϕ

]
for κ > 0

∂2
u + 1

u∂u + 1
u2 ∂

2
ϕ for κ = 0

|κ|
[

1
sinhσ

∂σ (sinhσ ∂σ) +
1

sinh2 σ
∂2
ϕ

]
for κ < 0

eigenfunctions

Hkm(u, ϕ) =


Ylm(θ, ϕ) for κ > 0 with l ∈ N0,m ∈ {−l, ..., l}
Xkm(u, ϕ) for κ = 0 with k ∈ R+

0 ,m ∈ Z
Wlm(σ, ϕ) for κ < 0 with l ∈ R+

0 ,m ∈ Z

eigenvalues with k = |κ|l

h(k) =


−k(k +

√
|κ|) for κ > 0

−k2 for κ = 0
−
(
k2 + 1

4 |κ|
)

for κ < 0
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Eigenfunctions

positive spatial curvature κ > 0: spherical harmonics

Ylm(θ, ϕ) =

√
(l − m)!

(l + m)!
eimϕ Plm(cos θ),

vanishing spatial curvature κ = 0: Bessel functions

Xkm(u, ϕ) = eimϕ Jm(ku),

negative spatial curvature κ < 0: sperical harmonics with complex angular
momentum

Wlm(σ, ϕ) = (−i)m Γ(il + 1/2)
Γ(il + m + 1/2)eimϕPm

il−1/2 (coshσ) ,
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Mode functions and Bogoliubov transforms

field gets expanded in modes

φ(t, u, ϕ) =
∫

k,m

[
âkmHkm(u, ϕ)vk(t) + â†

kmH∗
km(u, ϕ)v∗

k (t)
]

temporal mode functions satisfy

v̈k(t) + 2 ȧ(t)
a(t) v̇k(t) +

k2 + |κ|/4
a2(t) vk(t) = 0

vacuum state only unique for ȧ(t) = 0 where vk(t) ∼ e−iωk t

Bogoliubov transforms between different choices of âkm and vacuum states

ti tf
t

ai

af

I II III

a(t)
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Bogoliubov transforms
in region I one has positive frequency modes vk and corresponding
operators. Define vacuum

âkm|Ω〉 = 0

similar in region III positive frequency modes uk with

b̂km|Ψ〉 = 0

Bogoliubov transform mediates between them

uk = αkvk + βkv∗
k , vk = α∗

k uk − βku∗
k

operators are related by

b̂km = α∗
k âkm − β∗

k (−1)m â†
k,−m

condition |αk|2 − |βk|2 = 1
constant term in spectrum Nk = |βk|2

oscilating term ∆Nk = Re[αkβke2iωk t]
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Cosmology in d = 2 + 1 spacetime dimensions
analytic solutions for many choices of

a(t) = const × tγ

correlation function in momentum space proportional to

Sk(t) =
1
2 + Nk + Ak cos (θk + 2ωkt)

depends on number of e-folds, exponent γ and time after expansion ceases 2

γ = 1/2
γ = 1
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Observation of particle production
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rescaled density contrast

δc(t, x) =

√
n0(x)

n̄3
0

[n(t, x)− n0(x)]

∼ ∂tφ(t, x)

allows to access correlation functions of relativistic scalar field by
observation of density fluctuations
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Density contrast correlation function
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Time dependent correlation functions after expansion
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Figure 1. Theoretical prediction for density-density contrast correlation functions as they evolve through hold time, propagating
at twice the speed of sound. These results are given for a condensate with an initial temperature of roughly 40nK and taking into
account an experimental precision of 0.8µm by convoluting the functions defined in momentum space with a Gaussian distribution of
the corresponding width.
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Figure 2. Speed of sound 1.2µm/ms. Initial scattering as = 350a0.
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Figure 1. Theoretical prediction for density-density contrast correlation functions as they evolve through hold time, propagating
at twice the speed of sound. These results are given for a condensate with an initial temperature of roughly 40nK and taking into
account an experimental precision of 0.8µm by convoluting the functions defined in momentum space with a Gaussian distribution of
the corresponding width.
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Figure 2. Speed of sound 1.2µm/ms. Initial scattering as = 350a0.

Experiment Theory

analgous to baryon accoustic or Sakharov oscillations in cosmology
optical resolution important for detailed shape
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Oscillations in Fourier space
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1
2 + Nk + Ak cos(2ωk(t − tf) + ϑk)

decelerated, coasting and accelerated expansion
good agreement with analytic theory (solid lines)
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Quantum recurrences

uniform expansion with a(t) = Qt is special
shows quantum recurrences of the incoming vacuum state at special values
of wavenumber k

kn =
af − ai

∆t

[(
nπ

ln (af/ai)

)2

+
1
4

] 1
2

,

with integer n = 1, 2, 3, . . .
at these points one has trivial Bogoliubov coefficient βk = 0
can be seen experimentally as a discontinuity in the phase !
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The scattering analogy 6

and

�k = �
Wr[uk, k]p

Wr[uk, u
⇤

k
]
p

Wr[ k, 
⇤

k
]
, (28)

where the Wronskian is defined as

Wr[uk, k] = uk 
0

k
� u

0

k
 k. (29)

In particular, the coefficient �k 6= 0 represents a finite
overlap between negative and positive frequency modes
in region III, indicating that the notion of the vacuum
disagrees between region I and region III such that one
can speak of particle production.

A. Description of the scattering analogy

Within the scattering analogy, the evolution of the
mode functions is described as follows (see fig. 1 for a
graphical illustration):

1. In region I, ⌘ < ⌘i, the expansion has not yet taken
place. In the incoming vacuum state, the mode functions
are plane waves  I

k
(⌘) with positive frequency !k such

that the relation

d 
I
k
(⌘)

d⌘
= �i!k 

I
k
(⌘) with !k > 0 (30)

holds [78]. Therefore, we can write the mode solution in
region I as

 
I
k
(⌘) = cke�i!k⌘. (31)

In the scattering analogy, the mode corresponds to a
plane wave solution of the free Schrödinger equation,
which was transmitted by a scattering potential and now
propagates freely towards smaller ⌘ (to the left in fig. 1).
The dispersion relation for the mode is !k =

p
�h(k)

with h(k) given in eq. (22).
2. In region II, ⌘i  ⌘  ⌘f, the field is subjected

to a dynamic spacetime. The Klein-Gordon evolution is
mapped to a Schrödinger equation with a non-vanishing
scattering potential defined in (24).

3. In region III, ⌘ > ⌘f, the expansion has ceased
and the modes are again of plane wave form. However,
now they are a superposition of positive and negative
frequencies

 
III
k
(⌘) = ake�i!k⌘ + bkei!k⌘, (32)

where the presence of negative frequency modes with am-
plitude bk indicates the non-emptiness of the vacuum

Region III Region II Region I 

 

outgoing
vacuum

incoming
 vacuum

   

Figure 1. Graphical illustration of the scattering analogy.
For a clearer illustration in terms of rk and tk, the coefficient
ak is normalized to unity here.

state after the expansion has taken place, equivalent to
a non-vanishing Bogoliubov coefficient �k. The negative
frequency modes with amplitude ⇠ bk correspond in the
scattering analogy to a wave that is reflected at the po-
tential V (⌘), whereas the incoming wave of the scattering
problem with amplitude ⇠ ak is the positive frequency
part of the vacuum after the expansion has ceased (prop-
agating from right to left in fig. 1).

In the context of one-dimensional scattering problems
in quantum mechanics, it is common to define the reflec-
tion and transmission amplitudes rk and tk, which in this
context are given by

rk =
bk

ak
and tk =

ck

ak
. (33)

These amplitudes satisfy

1 = |rk|
2
+ |tk|

2 or |ak|
2
= |bk|

2
+ |ck|

2
, (34)

which reflect the probability conserving condition of uni-
tarity.

To complete the shift of perspective, it is useful to ex-
press the Bogoliubov coefficients in eqs. (27) and (28) in
terms of the early and late time solutions in eqs. (31)
and (32), respectively. A straightforward calculation
leads to

↵k =
a
⇤

k

c
⇤

k

and �k = �
bk

c
⇤

k

. (35)

Note that the condition

|↵k|
2
� |�k|

2
= 1, (36)

which is necessary to preserve the Wronskian under the
Bogoliubov transformation, Wr[uk, u

⇤

k
] = Wr[ k, 

⇤

k
], is

provided by eq. (34).
The described analogy between Bogoliubov coefficients

and scattering amplitudes was used in [79] to derive gen-
eral bounds on the process of one-dimensional scattering.

evolution equation

v̈k(t) + 2 ȧ(t)
a(t) v̇k(t) +

k2 + |κ|/4
a2(t) vk(t) = 0

can be rewritten with rescaled mode function and conformal time
ψk(η) =

√
a(t)vk(t), dt = a(t)dη

results in stationary Schrödinger equation
d2

dη2ψk(η) + [E − V (η)]ψk(η) = 0

with V (η) = ȧ2/4 + äa/2 and E = −h(k) = k2
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Some example potentials

10

           

Figure 2. Scattering potential landscapes in the quantum field simulation, which correspond to cosmological power-law expan-
sions in 2 + 1 dimensions (q = 0 in the left image, q = 1/2 in the central image) and, in the right image, the anti-bouncing
scale-factor (66). The cosmological scenarios are also depicted in fig. 3.

Figure 3. Cosmological expansion scenarios according to their
analogue elementary scattering potentials.

be converted into a Riccati equation), a scale factor a(⌘)
corresponding to a specific potential of interest is most
likely to be found via this approach. However, transform-
ing a(⌘) into an analytic expression for the scale factor
as a function of cosmic time, a(t), is non-trivial since the
coordinate transformation between t and ⌘ may be tran-
scendental. Indeed, this already occurs in elementary
situations as we will see in the next section.

In summary, the strategy to design a specific potential
landscape is to:

1. Solve the differential equation (63) with
V (⌘) = Vr(⌘) for y(⌘) to infer the scale factor
a(⌘).

2. Compute the time derivatives of a(⌘) at the bound-
aries of region II and infer the singular part Vs(⌘)

according to eq. (57).

3. Since the differential equation (63) is of second or-
der, two integration constants are available to give
the cosmological scenario desired properties like

symmetry, extrema, acceleration, etc. In particu-
lar, the �-peaks at each boundary of region II can be
tuned. Depending on the functional form of a(⌘),
one may even be able to set both singular contri-
butions to zero.

Let us showcase with an instructive example the use of
this strategy and the occurrence of the aforementioned
features by designing a rectangular-well potential as the
regular part of the scattering potential landscape (cf.
right panel of fig. 2)

Vr(⌘) = �
H

2
0

4
⇥(⌘ � ⌘i)⇥(⌘f � ⌘), (64)

which leads to the solution to eq. (63)

a(⌘) = amax cos
2


H0

2
(⌘ + ')

�
, (65)

and is displayed in fig. 3. The analogue cosmological sce-
nario has singularities when H0 (⌘ + ') = ⇡. Therefore,
we have to restrict the potential landscape of interest by
choosing a suitable value of '. Here, we choose symmet-
ric anti-bounce, i.e. the decelerating half-cycle of eq. (65),
as it maximizes the dynamical range accessible to the cos-
mological expansion under regularity constraints. With
this choice, the scale factor takes the form

a(⌘) =
amax

2

⇢
1 + cos


H0

✓
⌘ �

⌘f + ⌘i

2

◆��
, (66)

and the expansion duration in cosmic time

�t =
amax

2

⇢
⌘f � ⌘i +

2

H0
sin


H0

2
(⌘f � ⌘i)

��
, (67)

where the product between depth and width of the po-
tential is again constrained by the expansion ratio

H0

2
(⌘f � ⌘i) = arccos

✓
2
amin

amax
� 1

◆
, (68)
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sions in 2 + 1 dimensions (q = 0 in the left image, q = 1/2 in the central image) and, in the right image, the anti-bouncing
scale-factor (66). The cosmological scenarios are also depicted in fig. 3.
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analogue elementary scattering potentials.

be converted into a Riccati equation), a scale factor a(⌘)
corresponding to a specific potential of interest is most
likely to be found via this approach. However, transform-
ing a(⌘) into an analytic expression for the scale factor
as a function of cosmic time, a(t), is non-trivial since the
coordinate transformation between t and ⌘ may be tran-
scendental. Indeed, this already occurs in elementary
situations as we will see in the next section.

In summary, the strategy to design a specific potential
landscape is to:

1. Solve the differential equation (63) with
V (⌘) = Vr(⌘) for y(⌘) to infer the scale factor
a(⌘).

2. Compute the time derivatives of a(⌘) at the bound-
aries of region II and infer the singular part Vs(⌘)

according to eq. (57).

3. Since the differential equation (63) is of second or-
der, two integration constants are available to give
the cosmological scenario desired properties like

symmetry, extrema, acceleration, etc. In particu-
lar, the �-peaks at each boundary of region II can be
tuned. Depending on the functional form of a(⌘),
one may even be able to set both singular contri-
butions to zero.

Let us showcase with an instructive example the use of
this strategy and the occurrence of the aforementioned
features by designing a rectangular-well potential as the
regular part of the scattering potential landscape (cf.
right panel of fig. 2)

Vr(⌘) = �
H

2
0

4
⇥(⌘ � ⌘i)⇥(⌘f � ⌘), (64)

which leads to the solution to eq. (63)

a(⌘) = amax cos
2


H0

2
(⌘ + ')

�
, (65)

and is displayed in fig. 3. The analogue cosmological sce-
nario has singularities when H0 (⌘ + ') = ⇡. Therefore,
we have to restrict the potential landscape of interest by
choosing a suitable value of '. Here, we choose symmet-
ric anti-bounce, i.e. the decelerating half-cycle of eq. (65),
as it maximizes the dynamical range accessible to the cos-
mological expansion under regularity constraints. With
this choice, the scale factor takes the form

a(⌘) =
amax

2

⇢
1 + cos


H0

✓
⌘ �

⌘f + ⌘i

2

◆��
, (66)

and the expansion duration in cosmic time

�t =
amax

2

⇢
⌘f � ⌘i +

2

H0
sin


H0

2
(⌘f � ⌘i)

��
, (67)

where the product between depth and width of the po-
tential is again constrained by the expansion ratio

H0

2
(⌘f � ⌘i) = arccos

✓
2
amin

amax
� 1

◆
, (68)

potential V (η) = ȧ2/4 + äa/2 has Dirac peaks when ȧ has discontinuity
coasting universe a ∼ t leads to square barrier
“radiation dominated” universe a ∼ t2/3 has only Dirac peaks
particular anti-bounce leads to square well
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Resulting particle spectra
14

0π

1π

2π

Figure 4. Offset, amplitude and phase (left to right image) of the excitation power spectrum corresponding to the expansion
scenarios in fig. 3 in case of a spatially flat spacetime ( = 0). �⌘

B is equal to the (sound) horizon ⌘f�⌘i for the Barrier-scenario
and H

W
0 is the Hubble parameter for the Well-scenario. The only open parameter is the expansion strength which is set to

amax/amin =
p
8. For clearer visibility, the phases #k were shifted by ⇡.

Figure 5. Imaginary and real part of the reflection amplitude of the rectangular-barrier, �-peak landscape and rectangular-well
(left to right image) for amax/amin =

p
8 and  = 0. The wavenumber k is the curve parameter and different colors indicate

different reflection cycles. Spiral trajectories intersecting themselves at the origin indicate phase jumps of magnitude ⇡ which
coincides with the tangent slopes at the origin.

analogue is the so-called Dirac comb [11, 84] (also known
as the Kronig-Penney model [85, 86]), which is analyti-
cally solvable and serves as a minimal model to under-
stand the energy spectrum of electrons in solids. Here,
we will use it (consider fig. 7 for a visualization) to study
the characteristic properties of particle spectra created
by oscillating spacetimes (displayed in figs. 10 and 11).

A. Construction of a Dirac comb

The general solution to eq. (51) for a vanishing scat-
tering potential is a radiation-dominated expansion (con-
traction) with

ae(c)(t) = amin


1 +

(�)

3

2
H0(t� tb/2)

�2/3
. (77)

Joining a contracting with an expanding period at tb/2

via

arb(t; tb) = ac(t)⇥(tb/2� t) + ae(t)⇥(t� tb/2), (78)

yields a radiation-bounce that contributes with the sin-
gular term

1

2
ärb(t; tb)arb(t; tb)

�
1

2
[ȧe(tb/2)� ȧc(tb/2)] arb(tb/2)�(t� tb/2)

= aminH0�(⌘ � ⌘b/2)

(79)

to the scattering landscape, where ⌘b/2 is defined to be
the conformal time evaluated at tb/2.

To construct a periodic lattice, we match J symmetric
radiation bounces in between the initial time ti and the
final time tf = Jtb + ti. The times at which the bounces

resulting particle spectra

Sk(t) =
1
2 + Nk +∆N 0

k cos(2ωk(t − tf) + ϑk)

reflection amplitude has zero crossings that explain phase jumps
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B is equal to the (sound) horizon ⌘f�⌘i for the Barrier-scenario
and H

W
0 is the Hubble parameter for the Well-scenario. The only open parameter is the expansion strength which is set to
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8. For clearer visibility, the phases #k were shifted by ⇡.
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(left to right image) for amax/amin =

p
8 and  = 0. The wavenumber k is the curve parameter and different colors indicate

different reflection cycles. Spiral trajectories intersecting themselves at the origin indicate phase jumps of magnitude ⇡ which
coincides with the tangent slopes at the origin.

analogue is the so-called Dirac comb [11, 84] (also known
as the Kronig-Penney model [85, 86]), which is analyti-
cally solvable and serves as a minimal model to under-
stand the energy spectrum of electrons in solids. Here,
we will use it (consider fig. 7 for a visualization) to study
the characteristic properties of particle spectra created
by oscillating spacetimes (displayed in figs. 10 and 11).

A. Construction of a Dirac comb

The general solution to eq. (51) for a vanishing scat-
tering potential is a radiation-dominated expansion (con-
traction) with

ae(c)(t) = amin


1 +

(�)

3

2
H0(t� tb/2)

�2/3
. (77)

Joining a contracting with an expanding period at tb/2

via

arb(t; tb) = ac(t)⇥(tb/2� t) + ae(t)⇥(t� tb/2), (78)

yields a radiation-bounce that contributes with the sin-
gular term

1

2
ärb(t; tb)arb(t; tb)

�
1

2
[ȧe(tb/2)� ȧc(tb/2)] arb(tb/2)�(t� tb/2)

= aminH0�(⌘ � ⌘b/2)

(79)

to the scattering landscape, where ⌘b/2 is defined to be
the conformal time evaluated at tb/2.

To construct a periodic lattice, we match J symmetric
radiation bounces in between the initial time ti and the
final time tf = Jtb + ti. The times at which the bounces
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Periodic universes 16

Figure 7. Alternating finite Dirac comb as the bulk of the scattering potential analogue to a radiation-dominated bouncing
cosmology. Minimal (maximal) cusps in the cosmological evolution result in repulsive (attractive) �-peaks. The amplitudes of
the comb are related to the cosmological quantities via H

+ = H0amin and H
� = H

+
p

amin/amax < H
+

equation
 
 
+
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where the superscripts ± indicate positive and negative
frequency modes. The transfer along a single elementary
cell of the lattice is
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where the transfer along an individual �-peak is described
by the matrix
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and the free-space transfer matrix by

�(⌘) =
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!
, (86)

which connects two �-peaks separated by a distance ⌘.
Here, we used the property M(H/2)⇥M(H/2) = M(H)

in order to divide up the structure shown in fig. 7 into
pure N -fold repetition of the elementary cell depicted in
fig. 8.

In general, diagonal elements are associated with trans-
mission, whereas the off-diagonal elements represent re-
flection. Since each degree of freedom of the diagonal or

Figure 8. Transfer matrices along an elementary cell of an
alternating Dirac-comb.

off-diagonal entries is associated to a direction in time,
its components satisfy M

±

11 = (M
±

22)
⇤ and M

±

12 = (M
±

21)
⇤,

if the problem is time-reversal symmetric. Furthermore,
the unitarity of quantum mechanics constrains transfer
matrices to be unimodular [87, 88], i.e. they are elements
of the special linear group SL(2,C).

Adopting the method described in Refs. [86, 88],
we compute the matrix power of T using the Cayley-
Hamilton theorem. The characteristic equation for the
unimodular operator T is

T
2
� (trT )T + 1 = 0. (87)

combination of expanding and contracting phases where a ∼ t2/3

potential landscape with attractive and repulsive Dirac peaks
can be solved with transfer matrix method
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if the problem is time-reversal symmetric. Furthermore,
the unitarity of quantum mechanics constrains transfer
matrices to be unimodular [87, 88], i.e. they are elements
of the special linear group SL(2,C).

Adopting the method described in Refs. [86, 88],
we compute the matrix power of T using the Cayley-
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unimodular operator T is
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Figure 10. Offset Nk of particle spectrum (upper image)
resulting from J radiation bounces for bouncing ratio of
amax/amin = 3. The spectrum is compared to U

2
j�1(cos(qk⌘b))

(central image) which exhibits a typical resonance structure
(cf. eq. (90)) with peak locations independent of J . Since the
resulting spectrum Nk is the product of this Dirichlet-kernel
with the single-bounce spectrum (lower image, J = 1), the
latter acts as an envelope for Nk. Thus, the peak locations
shift with each cycle (see inset of top image) and converge to
the corresponding peak locations of the Dirichlet-kernel with
an increasing amount of cycles J .
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Figure 11. Structural relation between the phase of the power
spectrum #k and the offset Nk produced by the bouncing
cosmology analogue to the alternating Dirac comb shown in
fig. 7 with J = amax/amin = 3. The dominant peaks in Nk

correspond to extrema in cos(qk⌘b) around !k⌘b ⇡ n⇡ with
n 2 N\{0}. The more the mode lies outside the transmission
band in fig. 9, the stronger the peak in Nk is. Also, the general
trend that reflection becomes weaker with increasing mode
energy can be withstood by secondary reflection resonances
as can be seen by comparing the peaks at !k⌘b ⇡ 3⇡ and
!k⌘b ⇡ 2⇡. Periods of continuous, close to linear evolution in
the phase are connected by phase-jumps which corresponds to
acoustic peaks Nk being connected by zero-crossings. With
eqs. (92) and (93) at hand, we can now also understand how
many zero-crossings Nk has at a given cycle number J : The
Chebyshev-polynomials U

2
J�1(cos qk⌘b) that define the mod-

ulating factor in eq. (92) have J�1 roots in cos qk⌘b 2 [�1, 1]

and monotonously increase/decrease outside given interval as
a function of cos qk⌘b. Now, between two adjacent dominant
peaks, corresponding to extrema in cos qk⌘b (see fig. 9), the
function cos qk⌘b runs through [�1, 1] once such that (J � 1)

roots are taken by Nk in addition to possible zero crossings
stemming from the factor N

(1)
k (see fig. 10). Equivalently, in

the phase (93), whenever r
(1)
k or sin(Jqk⌘b) crosses zero, a

jump with magnitude ⇡ occurs.

coincidence; in fact, these contributions affect the bound
state structure of the potential such that there exists a
zero-energy resonance.

To realize this, it is instructive to investigate the sta-
tionary Schrödinger equation (23) for vanishing energy,
Ek = 0, in the case m� = ⇠ = 0, where the potential
reads

V (⌘) =
D � 1

2

"
a
00
(⌘)

a(⌘)
+

D � 3

2

✓
a
0
(⌘)

a(⌘)

◆2
#
. (94)

This second order differential equation has two linearly
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Relativistic fermions in materials
low energy theory of Dirac materials

Γ[Ψ] =

∫
dtd2x

{
−Ψ̄

[
γ0∂t + vF(t)γ ·∇+∆(t)Γ

]
Ψ
}

time dependent Fermi velocity vF(t)
change in twist angle for bilayer graphene
change in pressure
light pulses

time-dependent gap or mass parameter ∆(t)Γ can be
breaking spatial inversion Γ = 1

Kekulé modulation of hoping Γ = γ3 cos(α) + γ5 sin(α)
Haldane mass breaking time parity Γ = γ35

can be manipulated with fast electronics
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Fermions in curved spacetime

action for Dirac fermions in general spacetime

Γ[Ψ] =

∫
dtd2x√g

{
−Ψ̄ [γαe µ

α ∂µ(∂µ +Ωµ) + mΓ]Ψ
}

tetrad field e µ
α inverse to eα

µ so that

gµν(x) = eα
µ(x)eβ

ν(x)ηαβ

spin connection Ωµ = ωµαβ [γ
α, γβ ]/8 with

ωµαβ = −ηαγ

[
∂µeγ

ν − Γρ
µνeγ

ρ

]
e ν
β

and Levi-Civita connection Γρ
µν

local Lorentz transformations
general coordinate transformations
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Weyl scaling transformation
transform Dirac fields (with conformal weight ∆Ψ = (d − 1)/2 = 1)

Ψ(x) → e−ζ(x)Ψ(x), Ψ̄(x) → e−ζ(x)Ψ̄(x)

transform tetrad field
eα

µ(x) → eζ(x)eα
µ(x)

and accordingly metric like

gµν(x) → e2ζ(x)gµν(x)

spin connection transforms like

ωµαβ → ωµαβ +
[
eαµe ν

β − eβµe ν
α

]
∂νζ

gap term is not invariant
mΓ = eζ(x)mΓ

allows to transform a time-dependent mass term into a constant mass term
only ratio ∆(t)/vF(t) matters for particle production
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Fermionic particle production
time dependence of ratio ∆/vF

5

We note that Eq. (25) corresponds to a differential har-
monic oscillator equation with complex, time-dependent
frequency. The mode functions u⇠�

q can be determined by
solving Eq. (24) for a given set of initial conditions.

D. Hamiltonian and time segments

The Hamiltonian of the system is given by

H = H0 +H� =

Z
d2

x ̄ (~vF� · @ +�j�j) , (26)

and for time-dependent vF and � it depends explicitly on
time. Accordingly, the energy in excitations need not to
be conserved. The kinetic part of the Dirac Hamiltonian
in Eq. (26) in the basis of Eq. (12) reads

H0 =� ~vF
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In the following, we exclusively study a specific mass term
for Eq. (26), i.e., the one proportional to the identity,

H� = �

Z
d2

x ̄ . (28)

Other forms of the mass gap are investigated in Ap-
pendix C. In the basis of Eq. (12) the massive part of
Eq. (26) reads

H� =�
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The full Dirac Hamiltonian then reads [36–38]

H =

Z
d2

q
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where
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(30)

with
�
E

⇠
q

�2
+ |F

⇠
q |

2 = ~2v2F!2
q .

ηi ηf
η

Δ0/v0

Δf /vf

Δ/vF

FIG. 1. Time dependence of the ratio �(⌘)/vF (⌘) for the
three different temporal regions. In regions I (⌘  ⌘i) and III
(⌘ � ⌘f) the mass gap and the Fermi velocity are held constant,
while in region II they become time-dependent. If their time
dependencies in region II are cancelled out, then no particles
will be produced. The time dependencies shown in the plot
are given by Eqs. (33) and (34).

We choose the Hamiltonian to be initially diagonal in
terms of the set of operators c

⇠(†)
q and d

⇠(†)
q in a time seg-

ment where the Fermi velocity, vF (⌘  ⌘i) ⌘ v0, and the
band gap, �(⌘  ⌘i) ⌘ �0, are constant. We refer to this
stationary time segment as region I, cf. Fig. 1. The initial
Hamiltonian (29) becomes diagonal by taking a convenient
initial configuration of mode functions corresponding to
a no-particle state, leading to E

⇠
q(⌘  ⌘i) = ~v0!I

q and
F

⇠
q (⌘  ⌘i) = 0. Note that the last term of Eq. (23)

vanishes in stationary regions and it becomes a massive
Klein-Gordon equation. Consequently, expanding the
Dirac field in Fourier modes, the mode functions in this
region are solutions of a harmonic oscillator differential
equation and can be taken as standard Minkowski modes.
Accordingly, a possible initial configuration of the mode
functions, diagonalizing the initial Hamiltonian for a band
gap proportional to the identity matrix, is given by

u
⇠A,I
q (⌘  ⌘i) =

e
�⇠i'/2

p
2

s
1�

�0

~v0!I
q

e
�i!I

q⌘,

u
⇠B,I
q (⌘  ⌘i) = �⇠

e
⇠i'/2

p
2

s
1 +

�0

~v0!I
q

e
�i!I

q⌘,

(31)

with positive frequency !
I

q ⌘ !q(⌘i) =
p
q2 +�2

0/(~v0)2.
With this, the behavior is indeed compatible with the
one for Lorentz transformations, see Appendix D. In
a similar way one can find for each band gap a set of
initial mode functions corresponding to the no-particle
state and with an initial Hamiltonian in the standard
diagonal form. The (creation) annihilation fermionic c

⇠(†)
q

and antifermionic d
⇠(†)
q operators associated to the mode

functions u
⇠�
q define an initial "c-" and "d-vacuum" state

|⌦i for such excitations,

c
⇠
q |⌦i = d

⇠
q |⌦i = 0. (32)

Now, we assume that at time ⌘i a dynamical time segment
begins. There, the Fermi velocity vF (⌘) and/or the band

leads to particle production
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FIG. 3. Equal-time two-point correlation functions of fermionic excitations. From top to bottom: Equal-time two
point correlation function of fermionic excitations in momentum space G̃S

 ̄�35 and statistical equal-time two-point correlation
function of fermionic excitations (also known as static structure factor) in momentum space G̃S

 ̄ in units of (aM )2 as a function
of momentum q in units of 1/aM . This has been calculated for a band gap term proportional to the identity matrix. The
time dynamical process in region II has a duration of tf � ti = aM/(5v0). The Fermi velocity vF is changed here from v0 to
vf = 102v0 and the band gap from �0 = 50~v0/aM to �f = ~v0/aM with the time dependencies given in Eqs. (34) and (33),
respectively. The insets show the dimensionless equal-time two-point correlation functions in position space as a function of the
distance L obtained after a regularization with a Gaussian window function of width w = aM . In the left panels, the colors
correspond to different initial thermal states with temperature T in units of ~v0/(kBaM ). The two-point correlation functions
are evaluated at final time tf. In the right panels, the initial state is taken to be the vacuum at T = 0K. The colors correspond
to different holding times after the expansion has ceased with �t = aM/(50v0).

2. Two-point correlation functions

Two-point correlation functions are also a good indi-
cator of particle production. Let us start studying the
equal-time two-point correlation functions in momentum
space h ̄q (t) �↵ q0 (t)i for ↵ = 0, 1, 2. The zero compo-
nent of this set of two-point correlation functions corre-
sponds to the electronic one-particle density matrix ⇢,
which evaluated at t � tf is given by

⇢ (t; q) = 2, (50)

with ⇢ (t; q) (2⇡)2�(2) (q � q0) = h †
q(t) q0(t)i For the

equal-time two-point correlation function with ↵ = 1

evaluated at t � tf

G̃ ̄�1 (t, q) = � 2
X
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1� 2N ⇠
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,

(51)
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Conclusion

Bose-Einstein condensates can act as quantum simulators for quantum
fields in curved spacetime
symmetric spaces with constant curvature can be realized with specific
density profiles
experimental realization achieved in two spatial dimensions
time-dependent coupling allows to simulate expansion or contraction
particle production
Sacherov oscillations after expansion allow detailed investigations
scattering analogy picture allows to gain insights into many possible
“cosmologies”
fermion production in expanding geometry could be realized with Dirac
materials
extensions to three dimensions, other geometries, different field content,
and more, to come
Geometric fields (metric, tetrad, spin connection, Weyl gauge fields, …)
allow to study very interesting regime of non-equilibrium physics
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Backup



Symmetries and Wigners classification

Particles as representations of space-time symmetries [Eugene P. Wigner (1939)]

translations in space and time ↔ momentum, energy, mass
rotations and Lorentz boosts ↔ spin / helicity
what happens when translational symmetries get broken?



Baryon acoustic oscillations



Hyperbolic geometry in Minkowski space

position
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b c

start with Minkowski space ds2 = dX2 + dY 2 − dZ2

consider hyperboloid (“mass shell”) X2 + Y 2 − Z2 = −R2/4
stereographic projection to Poincaré disc



Horizon crossing

power law expansion
a(t) = const × tγ

can be decelerating, coasting or accelerating 8

FIG. 2. Different regimes for evolving mode functions in a
d = 2 + 1 dimensional universe with power-law scale factor
a(t) ⇠ t� . Indicated in capital letters are the different scenarios
for power-law expansions specified in the text.

oscillating until they “leave the horizon” and then
evolve algebraically as a superposition of the above
two solutions.

(B) For the coasting universe with � = 1 and q = 0
one has far outside the horizon the two indepen-
dent solutions e

Q⌘/2 and e
�Q⌘/2 corresponding to

vk(t) ⇡ const. and vk(t) ⇡ a
�1(t), respectively.

Note that for these real solutions the normalization
condition in Eq. (40) cannot be applied. Because
the conformal Hubble rate is constant for � = 1,
every comoving wave number k can be classified
as oscillating (when the square bracket in Eq. (52)
is positive) or growing/decaying (when the square
bracket in Eq. (52) is negative) with respect to the
evolution of wk(⌘) with conformal time ⌘. Allow-
ing for nonzero spatial curvature  does not change
this qualitative picture as long as || < H

2. The
transition between the two regimes is at the critical

comoving wave number

kc =

8
><

>:

1
2 (
p

H2 + ||�

p
||) for  > 0,

1
2H for  = 0,
1
2

p
H2 � || for  < 0.

(62)

In this particular case with � = 1 modes do not
cross the horizon.

(C) For decelerated universes the conformal Hubble
rate is decreasing, such that modes with a given
wave number k enter the horizon at some point in
time and start then an oscillating behavior. Modes
with very large wavelength that are far outside the
horizon still have the two independent solutions in
Eq. (61), but now the conformal time ⌘ is positive
and increasing.

(D) For the specific case of � = 2/3 the term in round
brackets in (52) drops out and the solutions are
simply plane waves in conformal time, e±i|k|⌘.

(E) For a decelerated expansion with � < 2/3 the “ef-
fective mass squared” proportional H2 is positive
and decreasing in time, such that one expects some
kind of oscillating solution for all wave numbers k.

(F) Finally, for � = 0 one has vanishing conformal
Hubble rate and standard oscillating behavior for
all wave numbers.

Let us mention here that one can actually find analytic
solutions for many choices of �, some of which are
presented in the Appendix.

C. Spectrum and two-point correlation functions

The phenomenon of particle production due to a time-
dependent metric can be analyzed in terms of two point
functions in position space and their corresponding power
spectrum in momentum space. To look into these quanti-
ties we place ourselves in a static situation after expansion,
i.e. at times t � tf in Eq. (43), and consider equal-time
two-point correlation functions of fields at two positions
(u,') and (u0

,'
0). As a consequence of statistical homo-

geneity and isotropy, all two-point correlation functions
depend on spatial coordinates only through the (comov-
ing) distance L, given by

L =

8
>><

>>:

1p
||

cos�1 (cos ✓ cos ✓0 + sin ✓ sin ✓0 cos('� '
0)) for  > 0,

⇥
u
2 + u

02
� 2uu0 cos('� '

0)
⇤1/2 for  = 0,

1p
||

cosh�1 (cosh� cosh�0
� sinh� sinh�0 cos('� '

0)) for  < 0.

(63)

This property of the correlators is a consequence of the symmetries of the FLRW universe.



Bogoliubov dispersion relation
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Renormalization in two dimensions
[S. Floerchinger, C. Wetterich, Superfluid Bose gas in two dimensions, PRA 79, 013601 (2009)]

arbitrary dimension d. In this paper we apply these flow
equations for d=2.

II. SCALE DEPENDENCE OF INTERACTION STRENGTH

It is well known that in two dimensions the scattering
properties cannot be determined by a scattering length as it is
the case in three dimensions. In experiments where a tightly
confining harmonic potential restricts the dynamics of a bose
gas to two dimensions, the interaction strength has a loga-
rithmic energy dependence in the two-dimensional regime
!12". For low energies and in the limit of vanishing momen-
tum the scattering amplitude vanishes. In our formalism this
is reflected by the logarithmic running of the interaction
strength !#k$ in the vacuum, where both temperature and
density vanish. In general, the flow equations in vacuum de-
scribe the physics of few particles similar to, for example,
the scattering properties or binding energies. Following the
calculation of Ref. !9", we find the flow equations for the
interaction strength !t=ln#k /"$"

!t! =
!2#k2 − m2$

4k2#S
$#k2 − m2$ . #11$

Since in vacuum the propagator is not renormalized, !tS
=!tV=!tĀ=!tm2=0, we set S=1 and V=0 on the right-hand
side of Eq. #11$. The vacuum corresponds to m2=0 !9" and
we obtain the flow equation

!t! =
!2

4#
. #12$

The vacuum flow is purely driven by quantum fluctuations. It
will be modified by the thermal fluctuations for T"0 and for
nonzero density n.

The solution of Eq. #12$

!#k$ =
1

1
!"

+
1

4#
ln#"/k$

#13$

goes to zero logarithmically for k→0, !#k=0$=0. In contrast
to the three-dimensional system, the flow of the interaction
strength ! does not stop in two dimensions. To relate the
microscopic parameter !" to experiments exploring the scat-
tering properties, we have to choose a momentum scale qexp,
where experiments are performed. To a good approximation
the relevant interaction strength can be computed from Eq.
#13$ by setting k=qexp. If not specified otherwise, we will use
a renormalized coupling !=!#kph$.

For our calculation we also have to use a microscopic
scale " below which our approximation of an effectively
two-dimensional theory with pointlike interaction becomes
valid. Our two-dimensional computation only includes the
effect of fluctuations with momenta smaller then ". In ex-
periments "−1 is usually given either by the range of the van
der Waals interaction or by the length scale of the potential
that confines the system to two dimensions. We choose in the
following

" = 10, kph = 10−2. #14$

At this stage the momentum or length units are arbitrary, but
we will later often choose the density to be n=1, so that we
measure length effectively in units of the interparticle spac-
ing n−1/2. For typical experiments with ultracold bosonic al-
kali atoms one has n−1/2%10−4 cm.

The flow of !#k$ for different initial values !" is shown in
Fig. 1. Following the flow from " to kph yields the depen-
dence of !=!#kph$ on !" as displayed in Fig. 2.

It follows from Eq. #13$ that for positive initial values !"

the interaction strength ! is bounded by

! %
4#

ln#"/kph$
% 1.82. #15$

The last equation holds for our choice of " and kph. We
emphasize that our bound holds only if the interactions are
approximately pointlike for all momenta below ". Close to a
Feshbach resonance this may not be true and our formalism
would need to be extended by considering nonlocal interac-
tions or introducing an additional field for the exchanged

!4 !3 !2 !1 0 1 2

1

2

3

4
λ(k)

ln(k)

FIG. 1. #Color online$ Flow of the interaction strength !#k$ at
zero temperature and density for different initial values !"=100,
!"=10, !"=4, !"=2, !"=1, and !"=0.4 #from top to bottom$.

5 10 15 20 25 30

0.5

1.0

1.5

λ

λΛ

FIG. 2. #Color online$ Interaction strength ! at the macroscopic
scale kph=10−2 in dependence on the microscopic interaction
strength !" at "=10 #solid$. The upper bound !max= 4#

ln#"/kph$
is also

shown #dashed$.
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scale-dependent coupling in two dimensions

k ∂

∂k λ =
λ2

4π

sound velocity and critical temperature

compute the microscopic sound velocity for the lower branch
!−!p!" as cS= !!

!p at p=0. In our truncation we find #9$

cS
2 =

2"#0

S2 + 2"#0V
. !23"

Our result for cS at T=0 is shown in Fig. 8 as a function of
the interaction strength ".

For a large range of small " we find good agreement with
the Bogoliubov result cS

2=2"#0. However, for large " or re-
sult for cS exceeds the Bogoliubov result by a factor up to 2.

IV. NONZERO TEMPERATURE

At nonzero temperature and for infinite volume, long
range order is forbidden in two spatial dimensions by the
Mermin-Wagner theorem. Because of that, no proper Bose-
Einstein condensation is possible in a two-dimensional ho-
mogeneous Bose gas at nonvanishing temperature. However,
even if the order parameter vanishes in the thermodynamic
limit of infinite volume, one still finds a nonzero superfluid

density for low enough temperature. The superfluid density
can be considered as the square of a renormalized order pa-
rameter #0= %$0%2 and the particular features of the low-
temperature phase can be well understood by the physics of
the Goldstone boson for a phase with effective spontaneous
symmetry breaking #13$. The renormalized order parameter
$0 is related to the expectation value of the bosonic field $̄0

and therefore to the condensate density #̄0= $̄0
2 by a wave

function renormalization, defined by the behavior of the bare
propagator Ḡ at zero frequency for vanishing momentum

$0 = Ā1/2$̄0, #0 = Ā#̄0, Ḡ−1!p! → 0" = Āp!2. !24"

While the renormalized order parameter #0!k" remains non-
zero for k→0 if T%Tc, the condensate density #̄0=#0 / Ā
vanishes since Ā diverges with the anomalous dimension,
Ā&k−&. After restoring dimensions the relation

#0 = lim
p!→0

#̄0

p!2Ḡ!p!"
!25"

is the Josephson relation #14$.
The strict distinction between a zero Bose-Einstein con-

densate #̄0=0 and a nonzero superfluid density #0'0 for
nonzero temperature 0%T%Tc is valid only in the infinite
volume limit of a homogeneous system. For a finite size of
the system, as atoms in a trap, the running of Ā!k" is effec-
tively stopped at some scale kph. There are simply no collec-
tive modes with wavelength larger than the size of the sys-
tem, whose fluctuations would be responsible for a further
increase of Ā. With a finite Āph both #̄0 and #0 are nonzero
for T%Tc, and the distinction between a Bose-Einstein con-
densate and superfluidity is no longer relevant in practice.
For large systems Ā!kph" can be large, however, such that the
condensate density can be suppressed substantially as com-
pared to the superfluid density. In any case, there is only one
critical temperature Tc, defined by #0!T%Tc"'0.

The flow equations permit a straightforward computation
of #0!T" for arbitrary T, once the interaction strength of the
system has been fixed at zero temperature and density. We
have extracted the critical temperature as a function of "
="!kph" for different values of kph. The behavior for small ",

Tc

n
=

4(

ln!)/""
!26"

is compatible with the free theory where Tc vanishes for
kph→0 and with the perturbative analysis in Ref. #15$. We
find that the value of ) depends on the choice of kph. For
kph=10−2 we find )=100, while kph=10−4 corresponds to )
=225 and kph=10−6 to )=424. In Fig. 9 we show our result
for Tc /n as a function of " for these choices. We also plot the
curve in Eq. !26" with the Monte Carlo result )=380 from
Ref. #16$.

We find that Tc vanishes for kph→0 in the interacting
theory as well. This is due to the increase of ) and, for a
fixed microscopical interaction, to the decrease of "!kph".
Since the vanishing of Tc /n is only logarithmic in kph, a
phase transition can be observed in practice. We find agree-

!10 !8 !6 !4 !2 0 2

!10

!5

0

5

10

15

20

ln(p)

ln ω±(p)

ln ω+(p)

ln ω−(p)

FIG. 7. !Color online" Dispersion relation !−!p", !+!p" at tem-
perature T=0 and for vacuum interaction strength "=1 !solid", "
=0.5 !long dashed", and "=0.1 !short dashed". The units are set by
the density n=1.
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4

cS/n1/2

λ

FIG. 8. !Color online" Dimensionless sound velocity cS /n1/2 as a
function of the vacuum interaction strength !solid". We also show
the Bogoliubov result cS='2"#0 for reference !dashed".
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ment with Monte-Carlo results !16" for small ! if kph /"
#10−7. The dependence of Tc /n on the size of the system kph

−1

remains to be established for the Monte Carlo computations.
The critical behavior of the system is governed by a

Kosterlitz-Thouless phase transition. Usually this is de-
scribed by considering the thermodynamics of vortices. In
Refs. !17,18" it was shown that functional renormalization
group can account for this “nonperturbative” physics without
explicitly taking vortices into account. The correlation length
in the low-temperature phase is infinite. In our picture, this
arises due to the presence of a Goldstone mode if #0$0. The
system is superfluid for T%Tc. The powerlike decay of the
correlation function at zero frequency

Ḡ$p!% & $p!2%−1+&/2 $27%

is directly related to the running of Ā. As long as k2' p!2 the
bare propagator obeys approximately

Ḡ =
1

Ā$k%p!2
, Ā$k% & k−&. $28%

Once k2( p!2, the effective infrared cutoff is given by p!2

instead of k2, and therefore Ā$k% gets replaced by Ā$'p!2%,
turning Eq. $28% into Eq. $27%. For large #0 the anomalous
dimension depends on #0 and T, &=T / $4)#0%.

Another characteristic feature of the Kosterlitz-Thouless
phase transition is a jump in the superfluid density at the
critical temperature. However, a true discontinuity arises
only in the thermodynamic limit of infinite volume $kph
→0%, while for finite systems $kph$0% the transition is
smoothened. In order to see the jump, as well as essential
scaling for T approaching Tc from above, our truncation is
insufficient. These features become visible only in extended
truncations that we will briefly describe next.

For very small scales k2

T (1, the contribution of Matsub-
ara modes with frequency q0=2)Tn, n!0, is suppressed
since nonzero Matsubara frequencies act as an infrared cut-

off. In this limit a dimensionally reduced theory becomes
valid. The long distance physics is dominated by classical
two-dimensional statistics, and the time dimension param-
etrized by * no longer plays a role.

The flow equations simplify considerably if only the zero
Matsubara frequency is included, and one can use more in-
volved truncations. Such an improved truncation is indeed
needed to account for the jump in the superfluid density. In
Ref. !18" the next to leading order in a systematic derivative
expansion was investigated. It was found that for k(T the
flow equation for #0 can be well approximated by

"t#0 = 2.54T−1/2$0.248T − #0%3/2+$0.248T − #0% . $29%

We switch from the flow equation in our more simple trun-
cation to the improved flow equation $29% for scales k with
k2 /T%10−3. We keep all other flow equations unchanged. A
similar procedure was also used in Ref. !19".

In Fig. 10 we show the flow of the density n, the super-
fluid density #0 and the condensate density #̄0 for different
temperatures. In Fig. 11 we plot our result for the superfluid
fraction of the density as a function of the temperature for
different scales kph. One can see that with the improved trun-
cation the jump in the superfluid density is indeed found in
the limit kph→0. Figure 12 shows the condensate fraction
#̄0 /n and the superfluid density fraction #0 /n as a function of
T /n. We observe the substantial kph dependence of the con-
densate fraction, as well as an effective jump at Tc for small
kph. We recall that the infinite volume limit kph=0 amounts to
#̄0=0 for T$0.

The Kosterlitz-Thouless description is only valid if the
zero Matsubara frequency mode $n=0% dominates. For a
given nonzero T this is always the case if the the character-
istic length scale goes to infinity. In the infinite volume limit
the characteristic length scale is given by the correlation
length ,. The description in terms of a classical two-
dimensional system with U$1% symmetry is the key ingredi-
ent of the Kosterlitz-Thouless description and holds for ,2T
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FIG. 9. $Color online% Critical temperature Tc /n as a function of
the interaction strength !. We choose here kph=10−2 $circles%, kph
=10−4 $boxes%, and kph=10−6 $diamonds%. For the last case the
bound on the scattering length is !% 4)

ln$"/kph%
#0.78. We also show

the curve
Tc

n = 4)
ln$-/!% $dashed% with the Monte Carlo result -=380

!16" for reference.
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FIG. 10. $Color online% Flow of the density n $solid%, the super-
fluid density #0 $dashed%, and the condensate density #̄0 $dotted%, for
chemical potential .=1, vacuum interaction strength !=0.5 and
temperatures T=0 $top%, T=2.4 $middle%, and T=2.8 $bottom%. The
vertical line marks our choice of kph. We recall n=#0 for T=0 such
that the upper dashed and solid lines coincide.
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Figure 1. Color. Effect of initial temperature, leading to stimulated particle production: it can be seen that in this case the
number of excited soft momenta is large, in contrast to particle production from the vacuum; note also that the spectrum Sk

diverges for k ! 0 as a consequence of the bosonic nature of gapless phonons at vanishing spatial curvature. After the expansion
has ceased, the power apparently moves towards lower momentum modes, and the spectrum distribution oscillates around
Sk = (1/2 + |�k|2)(1 + 2N

in
k ). Regarding position space, a finite initial occupation enhances anticorrelations and suppresses

correlations. The short range correlation that builds up after the expansion has ceased is also enhanced, and the correlations
propagate again at twice the speed of sound, indicated through dotted lines in the bottom right panel. The two point rescaled
density contrast converges at long times to a thermal state, plus a finite contribution from the exited modes, determined by
|�k|2. In all the momentum space plots, a gray vertical dashed line indicates the low k limit at inverse condensate size. The
position space results given here correspond to a Gaussian convolution of w = 0.5 µm standard deviation.

FIG. 6. Effect of initial temperature, leading to stimulated particle production: it can be seen that in this case the number of
excited soft momenta is large, in contrast to particle production from the vacuum; note also that the spectrum Sk diverges
for k ! 0 as a consequence of the bosonic nature of gapless phonons at vanishing spatial curvature. After the expansion
has ceased, the power apparently moves towards lower momentum modes, and the spectrum distribution oscillates around
Sk = (1/2 + |�k|2)(1 + 2N

in
k ). Regarding position space, a finite initial occupation enhances anticorrelations and suppresses

correlations. The short range correlation that builds up after the expansion has ceased is also enhanced, and the correlations
propagate again at twice the speed of sound, indicated through dotted lines in the bottom right panel. The two point rescaled
density contrast converges at long times to a thermal state, plus a finite contribution from the exited modes, determined by
|�k|2. In all the momentum space plots, a gray vertical dashed line indicates the low k limit at inverse condensate size. The
position space results given here correspond to a Gaussian convolution of w = 0.5 µm standard deviation.

In Fig. 6 we investigate stimulated particle production,
for three different initial temperatures in fractions of Tc,
at the level of both, the spectrum and the rescaled density
contrast correlation function as a function of hold time.

C. Spatial curvature

We showed in Sec. II D that different types of trapping
potentials induce acoustic spacetimes with different emer-
gent spatial curvatures. In the formalism employed in
Sec. III A, the effects of spatial curvature are carried into
the shape of Laplace-Beltrami’s operator, its eigenfunc-
tions, and its eigenvalues. Regarding time evolution in
momentum space (cf. Eq. (77)), spatial curvature enters
in fact only through the eigenvalue spectrum. Here, the
features of spatial curvature are equivalent to posing dif-
ferent boundary conditions on the eigenvalue equation,
and do not go further than that. A further dependence
on spatial curvature arises in the integral transform from
momentum to position space (cf. Eq. (98)).

As expected, the effect of curvature on the spectrum
of fluctuations is often negligible, but can be tuned to
a higher impact when decreasing the condensate radius.

Something similar happens to the rescaled density con-
trast, where differences are unimportant, even at small
radii; this is shown in Fig. 7. In the presence of an initial
thermal state this situation could change, given that the
Bose-Einstein distribution (108) differs for different dis-
persion relations. In particular for negative curvature N

in
k

is bounded at k = 0, as a consequence of an acquired gap
in the dispersion relation. This was investigated and no
particular differences were found at different curvatures.

D. Time evolution of momentum modes and robust
features in momentum space

As we see overall in Fig. 5, the qualitative differences
related to different exponents � in the scale factor could
be difficult to appreciate experimentally, when looking
into the complete spectrum and rescaled density contrast.
Nevertheless, one can look into details of the spectrum,
and through them, validate the particle production nature
of the experimental outcomes, and its dependence on
different expansion histories.

We consider first the time evolution of the spectra for
certain modes in regions II and III (cf. Fig. 9) that is,
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FIG. 7. Effect of different trapping potentials (inverted har-
monic, box, harmonic), which convey different spatial curva-
tures (positive, flat, negative; respectively). On the upper row
we show the outcome for a fixed atom number, so that the
density at the center of the trap depends on the shape of the
trap (c.f. (17) and (52)); this renders visible differences for
both the spectrum Sk and the rescaled density contrast Gnn

(obtained with a Gaussian convolution of width w = 4 µm).
However, if the density at the center is taken to be the same for
all trap shapes, the spatial curvature  influences the shape of
the spectrum Sk only at low momentum modes and provided
that R is sufficiently small, as depicted in the lower row. The
differences between rescaled density contrast correlations for
the closed, flat, and open universe are barely visible even when
R = 3 µm. Additionally, for the chosen convolution width
(w = 0.4 µm) the vacuum sector dominates in position space.
An inset into the correlation function shows that the results
for each curvature fall one above the other: this is a width
independent feature.

during and after the dynamic change of the scale factor;
there we observe that, independently of the polynomial
power of the scale factor, the phononic modes correspond-
ing to small wave numbers are suppressed by the expan-
sion, which is consistent with Fig. 5. Moreover, the time
evolution of the each momentum mode shows a slight de-
pendence on the expansion history, which is most evident
for a particular mode, at k = 1.51µm�1, that remains in
its vacuum value after uniform expansion (� = 1), given
that this characteristic is not present for any mode in
nonuniform expansions.

This precise feature is also explicit in the phase ✓k

that each mode acquires after expansion, defined in (100),
which we consider next in Fig. 8. There, we see that
the phases of each wave number k strongly depend on
whether there is a decelerated, uniform, or accelerated
expansion. In the case of uniform expansion there are
phase jumps appearing at each mode where �k turns out
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Figure 1. Color. Phases ✓k (cf. (??)) of each k-mode after
expansion for three different scale factors. We see an important
qualitative difference in behavior depending on the choice of
�: for � = 1 and � = 3/2 the phase remains in a range of
(0, ⇡), in particular, in the � = 1 case the phase is a linear
function of k. Also for this case there is a ⇡ jump which
appears if and only if Nk = 0, that is when a particular mode
is not excited as a result of expansion. The other two scale
factors don’t exhibit this feature. In contrast, for � = 1/2 the
phase increases continuously in the complete range (0, 2⇡). In
all cases, a slower expansion rate allows for a greater phase
growth.

FIG. 8. Phases ✓k (cf. (100)) of each k-mode after expansion
for three different scale factors. We see an important qualita-
tive difference in behavior depending on the choice of �: for
� = 1 and � = 3/2 the phase remains in a range of (0, ⇡), in
particular, in the � = 1 case the phase is a linear function of k.
Also for this case there is a ⇡ jump which appears if and only
if Nk = 0, that is when a particular mode is not excited as a
result of expansion. The other two scale factors don’t exhibit
this feature. In contrast, for � = 1/2 the phase increases
continuously in the complete range (0, 2⇡). In all cases, a
slower expansion rate allows for a greater phase growth.

to be zero. To emphasize, due to the shape of expansion,
�k is never zero for � 6= 1. It is worthwhile to note that
phases as a function of k also give an insight into the
expansion duration �t.

E. Window function dependence and robust
features in position space

Given that any computation of the rescaled density con-
trast correlation function requires an ultraviolet regulator
in the form of a window or test function, we wish to find
features of the latter which are robust against variations
in the standard deviation w of the Gaussian family of
window functions we have chosen in Eq. (104). This is
not only an interesting task by itself, but also paves the
ground for a quantitative comparison to experiments.

To that end, we study the positions of the second mini-
mum –the first minimum is just the vacuum contribution–
and the first maximum of the correlation function. More
precisely, we investigate the aforementioned positions as a
function of expansion duration �t for different widths w,
for the particular case of � = 1/2. The results are shown
in Fig. 10: we find that the influence of the width w is
negligible with regards to the slope of the curves, render-
ing position vs. expansion duration a robust observable.
Also in Fig. 10, the rescaled density contrast correlation
function Gnn(t, L) is shown for different widths w. The
resolution w determines the short-length L < 0.1R be-
havior of the two-point correlator indicating the need for
robust features.

Moreover, let us report that we have also investigated
the amplitudes of the maximum and the minimum and
their ratio, but did not find a similar form of robustness.
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FIG. 5. Upper row: acquired phase after expansion as a func-
tion of wave number k (cf. Eq. (73)). The effect of e-fold
number is noticeable for coasting and accelerating universes,
and has almost no repercussion for a decelerated expansion.
Within an accelerating universe the phase difference for differ-
ent momenta decreases with e-fold number, while its frequency
increases. An increase in frequency is also seen for a coasting
universe, but the phase difference remains at ⇡. In particular,
for � = 1 there are phase jumps at certain momenta k which
are not triggered by particle production, �k = 0. Middle
row: spectra right at the end of expansion. While for low
e-fold number the shape of expansion (encoded in �) does
not affect much the shape of the spectra, this changes when
increasing e-folds. In any case, the power spectrum acquires
higher values when acceleration is lower, with a big impact for
larger e-fold number (3 orders of magnitude for � = 1/2 when
e-fold number goes from 2 to 10). Another thing to note is
that the peak of the spectrum remains roughly at the same
place for a decelerating situation when increasing e-folds, and
drifts to lower momentum for both, a coasting and an accel-
erated universe. Bottom row: evolution of the spectra after
expansion has ceased, for a chosen � for each e-fold number,
depicting in this way an overview of the situation. The value
of the spectrum evolves in time with a frequency set by the
dispersion relation !k = k, and an initial phase given in the
upper row. When � = 1 one obtains nodes at �k = 0, related
to the phase jumps in the upper row. When � = 3/2 one can
appreciate the highly oscillatory nature of the spectrum (inset
in lower right corner) related to highly oscillating phases.

and their evolution after expansion has ceased, for a
Gaussian window function of width w

2 = 0.02�t
2. For a

spatially flat scenario, this translates to a regularization
in momentum space by

W̃
⇤(k)W̃ (k) = e

�w
2
k
2

. (76)

While the position of correlation peaks in the two-point

functions is a robust feature with respect to the choice
of w, their magnitude and range is not. This becomes
especially important for larger number of e-folds.

In the position space representation of Figure 6, par-
ticle production is visible as combination of correlations
and anti-correlations at intermediate distances, which,
for a massless field, move to larger distances with the
velocity of light after the expansion has stopped. The
particular shape of the correlation function necessarily
depends somewhat on the form of the test function.

V. CONCLUSION AND OUTLOOK

Motivated by the application to Bose-Einstein conden-
sates as quantum simulators, we have discussed mode
equations and particle production for a massless relativis-
tic scalar field in d = 2 + 1 dimensional cosmologies. Our
results are mainly analytical and encompass positive, van-
ishing and negative spatial curvature. Depending on the
form of the expansion, which can be accelerating, coasting
or decelerating, and the number of e-folds, this leads to a
rather rich phenomenology of observables in terms of dif-
ferent power spectra and two-point correlation functions.
We have concentrated here in particular on equal-time
correlation functions of fields and their time derivatives
or conjugate momenta.

In the future, it could be interesting to investigate also
composite operators such as the energy-momentum tensor
and its renormalization, and to extend the analysis to
other types of matter fields, such as fermions or gauge
fields. Also the physics of (cosmological) spacetime hori-
zons and related phenomena involving the dynamics of
entanglement are worth further study.

Of particular interest is also investigation of the physics
discussed here with quantum simulators as they can be re-
alized, e.g., with ultracold atoms (see also our companion
papers [33] and [37]). Furthermore, one may investigate
other nontrivial spacetime geometries in d = 2 + 1 space-
time dimensions and try to establish one-to-one corre-
spondences to table-top experiments. In this way, effects
of quantum fields in curved spacetime become accessible
in the laboratory.
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different numbers of e-folds. In contrast, for � � 1 correlations are “elongated” in space. Additionally, for �  1, an increase in
e-fold number enhances correlations, while for an accelerating universe, the magnitude of correlations seems to decrease with
e-fold number. Finally, an important feature seen in the time evolution plots is the propagation of correlations at twice the
speed of light c = 1, indicated through vertical lines. We use dashed vertical lines to indicate peaks which are separated by 0.4c,
and dotted ones for peaks separated by c.

under the Länderbezogenes Kooperationsprogramm mit
Mexiko: CONACYT Promotion, 2018 (57437340). APL
is supported by the MIU (Spain) fellowship FPU20/05603
and the MICINN (Spain) project PID2019-107394GB-I00
(AEI/FEDER, UE).
Author contributions: All authors contributed equally
to this work.

Appendix A: Mode functions and Bogoliubov
coefficients for different expansion histories

In this appendix we collect analytic expressions for
mode functions and Bogoliubov coefficients for different
cosmological expansion histories. A distinction is made
between three temporal regions,

• Region I: early times t  ti, constant scale factor
a = ai,

• Region II: intermediate times ti < t < tf, evolving
scale factor a = a(t),

• Region III: late times tf  t, constant scale factor
a = af.

Expansion histories differ by the time dependent scale
factor a(t) in the intermediate region II. Note that the
following expressions are general for all three types of
spatial curvature  and hence are given in terms of h(k).

1. Power-law expansion with exponent � = 1/2

We start with a power-law form of the scale factor as
a functions of time corresponding to � = 1/2 in (43),
setting t0 = 0

a(t) = Q

p
|t|, (A1)

and focus on the solutions to the mode equation (39) for
the three regions.

Region I. In Region I, the general solution for the
mode equation (39) is a superposition of plane waves with
positive and negative frequencies,

v
I
k
(t) = A

I
k
e
�i!

I
kt +B

I
k
e
i!

I
kt, (A2)

where A
I
k

and B
I
k

are some coefficients and the frequency
is given by

!
I
k
=

p
�h(k)

ai
=

s
�h(k)

Q2ti
. (A3)

We define the a-particles as corresponding to the positive
frequency modes, such that B

I
k
= 0 and

v
I
k
(t) =

e
�i!

I
kt

ai

q
2!I

k

, (A4)

where A
I
k
= 1/

⇣
ai

q
2!I

k

⌘
is a consequence of the nor-

malization condition (40), which in case of plane waves
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FIG. 4. Different contributions to the power spectrum Sk as a function of the radial wave number k. Left column: Contributions
to the spectrum right at the end of expansion. It is noticeable that the time-dependent term �Nk has a larger weight than Nk.
Right column: In the upper row, the spectrum is plotted for different e-fold numbers, whereas in the lower row, it is done so
at different hold times after the expansion has ceased. We observe that increasing n leads to enhanced particle production.
The hold time behavior, dependent exclusively on �Nk, shows how the power is distributed through time, favoring the lower
momentum modes.

which specifies explicitly a phase that each k-mode ac-
quires after expansion,

✓k = Arg(ck). (73)

Given that the power spectrum Sk(t) encodes the effect
of particle production per mode, we focus on a rather
detailed analysis of this object, in the case of vanishing
spatial curvature.

We begin with Fig. 3, where we show the evolution of
Sk(t) for some selected modes during and after expansion.
The aim of this figure is to show the shape of different
modes which are either inside the Hubble horizon, outside
of it, or change region during expansion. The range of
modes that change in region is greater for larger e-fold
number, and this is also explicitly depicted within.

In Fig. 4 we analyze the shape of the three different con-
tributions in (71) to Sk(t), and show them in dependence
of the number of e-folds of the expansion (upper row), as
well as the hold time (time after expansion, lower row).
Here, we concentrate on vanishing spatial curvature and
a coasting universe with � = 1. The oscillations visible
after the expansion has ceased (green and black curves
in the lower row) can be understood as the analog of
Sakharov oscillations in the present context.

In Fig. 5 we turn first to the phase that each k-mode
acquires after expansion, defined in Eq. (73), for different
types of expansion (decelerating, coasting, accelerating)
and different numbers of e-folds. As seen in Eq. (72) these
phases enter the spectrum through �Nk(t) in Eq. (69),
and also determine the starting point for the oscillatory

evolution of the spectrum after the end of expansion. In
the middle and lower row of Figure 5 we also discuss Sk(t)
right when the expansion has ceased (t = tf) and its time
evolution in a static situation after the expansion. The
details of the corresponding analytical calculations can
be found in the Appendix.

Additionally, for the mixed statistical equal-time corre-
lation function one has

G
��̇

(t, L) = G
�̇�

(t, L)

=
1

2
h{�(t, u,'), �̇(t, u0

,'
0)}i

c

=

Z

k

F(k, L)
1

a
2
f
Im

⇥
cke

2i!kt
⇤
.

(74)

As they stand, the three two-point correlation functions
in Eqs. (64), (70) and (74) show ultraviolet divergences.
These can be cured through the use of test or window func-
tions, which act as a regulator. The correlation function
of “smeared out” fields becomes

G(t, L) =
af

m

Z

k

F(k, L)T (t, k)W̃ ⇤(k)W̃ (k), (75)

where T (t, k) specifies the correlation function or spec-
trum in momentum space before regularization, and W̃ (k)
denotes the window function in momentum space. With
Eq. (75) at hand, all two-point correlation functions can
be calculated.

In Fig. 6 we show field-field and time derivative of
fields correlation functions right at the end of expansion
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