Quantum field simulation of dynamics in curved spacetime and cosmological particle production

Stefan Floerchinger (Uni Jena)

QuantHEP München, September 4, 2024

Collaboration & Publications

- Celia Viermann, Marius Sparn, Nikolas Liebster, Maurus Hans, Elinor Kath, Álvaro Parra-López, Mireia Tolosa-Simeón, Natalia Sánchez-Kuntz, Tobias Haas, Helmut Strobel, Stefan Floerchinger, Markus K. Oberthaler, Quantum field simulator for dynamics in curved spacetime [Nature 611, 260 (2022)]
- Mireia Tolosa-Simeón, Álvaro Parra-López, Natalia Sánchez-Kuntz, Tobias Haas, Celia Viermann, Marius Sparn, Nikolas Liebster, Maurus Hans, Elinor Kath, Helmut Strobel, Markus K. Oberthaler, Stefan Floerchinger, Curved and expanding spacetime geometries in Bose-Einstein condensates [Phys. Rev. A 106, 033313 (2022)]
- Natalia Sánchez-Kuntz, Álvaro Parra-López, Mireia Tolosa-Simeón, Tobias Haas, Stefan Floerchinger, Scalar quantum fields in cosmologies with $2+1$ spacetime dimensions [Phys. Rev. D 105, 105020 (2022)]
- Mireia Tolosa-Simeón, Michael M. Scherer, S. Floerchinger, Analog of cosmological particle production in Dirac materials, [Phys. Rev. B (2024)]
- Christian F. Schmidt, Álvaro Parra-López, Mireia Tolosa-Simeón, Marius Sparn, Elinor Kath, Nikolas Liebster, Jelte Duchene, Helmut Stobel, Markus K. Oberthaler, Stefan Floerchinger, Cosmological particle production in a quantum field simulator as a quantum mechanical scattering problem, [arXiv:2406.08094]

$Evolution$ of cosmic large-scale structure

pringel, Frenk & White, Nature 440 $[Springel, Frenk & White, Nature 440, 1137 (2006)]$ Einstein–de Sitter universe can give a good account of observations of

Quantum origin of fluctuations

- Universe was almost homogeneous at early times
- small fluctuations magnified by gravitational attraction
- primordial quantum fluctuations from inflation [Mukhanov & Chibisov (1981), Hawking (1982), Starobinsky (1982), Guth & Pi (1982), Bardeen, Steinhardt & Turner (1983), Fischler, Ratra & Susskind (1985)]

Ultracold quantum gases

- can be very well controlled experimentally
- $\mathcal{L}_{\mathcal{L}}$ as a function of the BCS-BEC crossover as a function of temperature T/EF and coupling 1/kFa, $\mathcal{L}_{\mathcal{L}}$ \bullet develop and test quantum field theory.
- pictures show schematically the evolution from the BCS limit with large Cooper pairs to the BEC limit \bullet finite density, finite temperature
- \bullet out-of-equilibrium $t_{\rm max}$ the system is superfluid (blue region).
- \bullet quantum information of the pseudogap at unitarity are discussed at unitarity are in the text.

Non-relativistic quantum fields

• Bose-Einstein condensate in two dimensions [Gross (1961), Pitaevskii (1961)]

$$
\Gamma[\Phi] = \int \mathrm{d}t \, \mathrm{d}^2 x \Bigg\{ \hbar \Phi^*(t, \mathbf{x}) \left[i \frac{\partial}{\partial t} - V(t, \mathbf{x}) \right] \Phi(t, \mathbf{x})
$$

$$
- \frac{\hbar^2}{2m} \nabla \Phi^*(t, \mathbf{x}) \nabla \Phi(t, \mathbf{x}) - \frac{\lambda(t)}{2} \Phi^*(t, \mathbf{x})^2 \Phi(t, \mathbf{x})^2 \Bigg\}
$$

- low energy theory for bosonic atoms
- \bullet optical trap potential $V(t, \mathbf{x})$
- coupling strength $\lambda(t)$

Feshbach resonance

- allow to control scattering length or effective s-wave interaction strength through magnetic field *B*
- can be made time-dependent by varying magnetic field

$$
\frac{\lambda(t)}{2} \Phi^*(t, \mathbf{x})^2 \Phi(t, \mathbf{x})^2
$$

Experimental realization

[Markus K. Oberthaler group, Uni Heidelberg]

Superfluid and small excitations

Complex non-relativistic field can be decomposed

$$
\Phi = e^{iS_0} \left(\sqrt{n_0} + \frac{1}{\sqrt{2}} \left[\phi_1 + i \phi_2 \right] \right)
$$

• real fields ϕ_1 and ϕ_2 describe excitations on top of the superfluid

- low energy field $\phi_2(t, \mathbf{x})$
- stationary superfluid density $n_0(x)$ and vanishing superfluid velocity

$$
\mathbf{v} = \frac{\hbar}{m} \boldsymbol{\nabla} S_0 = 0
$$

Sound waves / phonons

- small energy excitations are sound waves or phonons
- **•** propagate with finite velocity, similar to light
- local speed of sound

$$
c_S(t, \mathbf{x}) = \sqrt{\frac{\lambda(t) n_0(\mathbf{x})}{m}}
$$

• sound waves propagate along

$$
ds^{2} = -dt^{2} + \frac{1}{c_{S}(t, \mathbf{x})^{2}}(d\mathbf{x} - \mathbf{v}dt)^{2} = 0
$$

• acoustic metric for vanishing fluid velocity $v = 0$

$$
g_{\mu\nu} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & \frac{1}{c_S(t,x)^2} & 0 \\ 0 & 0 & \frac{1}{c_S(t,x)^2} \end{pmatrix}
$$

Relativistic scalar field

Low energy theory for phonons (with $\phi = \phi_2/\sqrt{2m}$)

$$
\Gamma[\phi]=\int\mathrm{d}t\,\mathrm{d}^2x\,\sqrt{g}\left\{-\frac{1}{2}g^{\mu\nu}\,\partial_{\mu}\phi\,\partial_{\nu}\phi\right\}
$$

- metric determinant $\sqrt{g} = \sqrt{-\text{det}(g_{\mu\nu})}$
- acoustic metric depends on space and time like the space-time metric in general relativity
- phonons behave like a real, massless, relativistic scalar field in a curved spacetime !
- quantum simulator for QFT in curved space

Density profiles

• assume specifically for $r = |\mathbf{x}| < R$

$$
n_0(r) = \bar{n}_0 \times \left[1 - \frac{r^2}{R^2}\right]^2
$$

- experimental realization with optical trap and digital micromirror device
- **•** approximate realization in harmonic trap

Acoustic spacetime geometry

• variable transform to $0 \le u < \infty$

leads to Friedmann-Lemaitre-Robertson-Walker metric

$$
ds^{2} = -dt^{2} + a^{2}(t) \left(\frac{du^{2}}{1 - \kappa u^{2}} + u^{2} d\varphi^{2} \right)
$$

• negative spatial curvature

$$
\kappa = -4/R^2
$$

o scale factor

$$
a(t) = \sqrt{\frac{m}{\bar{n}_0} \frac{1}{\lambda(t)}}
$$

Hyperbolic geometry

Experimental realization in a Bose-Einstein condensate

Geometries with constant spatial curvature

Propagating sound waves

Expansion and particle production

g time-dependent scattering length induces time-dependent metric

Time-dependent scattering length induces time-dependent metric

\n
$$
ds^{2} = -dt^{2} + a^{2}(t) \left(\frac{du^{2}}{1 - \kappa u^{2}} + u^{2} d\varphi^{2} \right)
$$
\n• particle concept works well in regions 1 and III but not in region

\n• vacuum state in region 1 leads to state with particles in region 1

\n• expanding space leads to particle production

\n• analytic calculations possible for power law scale factors

- **•** particle concept works well in regions I and III but not in region II
- vacuum state in region I leads to state with particles in region III
- expanding space leads to particle production
- analytic calculations possible for power law scale factors

$$
a(t) = \text{const} \times t^{\gamma}
$$

Laplace operator

Laplace-Beltrami operator with spatial curvature

$$
\Delta = \begin{cases}\n|\kappa| \left[\frac{1}{\sin \theta} \partial_{\theta} \left(\sin \theta \, \partial_{\theta} \right) + \frac{1}{\sin^{2} \theta} \partial_{\varphi}^{2} \right] & \text{for } \kappa > 0 \\
\partial_{u}^{2} + \frac{1}{u} \partial_{u} + \frac{1}{u^{2}} \partial_{\varphi}^{2} & \text{for } \kappa = 0 \\
|\kappa| \left[\frac{1}{\sinh \sigma} \partial_{\sigma} \left(\sinh \sigma \, \partial_{\sigma} \right) + \frac{1}{\sinh^{2} \sigma} \partial_{\varphi}^{2} \right] & \text{for } \kappa < 0\n\end{cases}
$$

e eigenfunctions

$$
\mathcal{H}_{km}(u,\varphi) = \begin{cases} Y_{lm}(\theta,\varphi) & \text{for } \kappa > 0 \quad \text{with} \quad l \in \mathbb{N}_0, m \in \{-l, ..., l\} \\ X_{km}(u,\varphi) & \text{for } \kappa = 0 \quad \text{with} \quad k \in \mathbb{R}_0^+, m \in \mathbb{Z} \\ W_{lm}(\sigma,\varphi) & \text{for } \kappa < 0 \quad \text{with} \quad l \in \mathbb{R}_0^+, m \in \mathbb{Z} \end{cases}
$$

e eigenvalues with $k = |\kappa|l$

$$
h(k) = \begin{cases} -k(k+\sqrt{|\kappa|}) & \text{for } \kappa > 0\\ -k^2 & \text{for } \kappa = 0\\ -\left(k^2 + \frac{1}{4}|\kappa|\right) & \text{for } \kappa < 0 \end{cases}
$$

Eigenfunctions

• positive spatial curvature $\kappa > 0$: spherical harmonics

$$
Y_{lm}(\theta,\varphi)=\sqrt{\frac{(l-m)!}{(l+m)!}}\,e^{im\varphi}\,P_{lm}(\cos\theta),
$$

• vanishing spatial curvature $\kappa = 0$: Bessel functions

$$
X_{km}(u,\varphi) = e^{im\varphi} J_m(ku),
$$

• negative spatial curvature $\kappa < 0$: sperical harmonics with complex angular momentum

$$
W_{lm}(\sigma,\varphi) = (-i)^m \frac{\Gamma(id+1/2)}{\Gamma(id+m+1/2)} e^{im\varphi} P_{il-1/2}^m(\cosh \sigma),
$$

Mode functions and Bogoliubov transforms

• field gets expanded in modes

$$
\phi(t, u, \varphi) = \int_{k,m} \left[\hat{a}_{km} \mathcal{H}_{km}(u, \varphi) v_k(t) + \hat{a}_{km}^\dagger \mathcal{H}_{km}^*(u, \varphi) v_k^*(t) \right]
$$

• temporal mode functions satisfy

$$
\ddot{v}_k(t) + 2\frac{\dot{a}(t)}{a(t)}\dot{v}_k(t) + \frac{k^2 + |\kappa|/4}{a^2(t)}v_k(t) = 0
$$

- vacuum state only unique for $\dot{a}(t)=0$ where $v_k(t)\sim e^{-i\omega_k t}$
- **•** Bogoliubov transforms between different choices of \hat{a}_{km} and vacuum states

Bogoliubov transforms

• in region I one has positive frequency modes v_k and corresponding operators. Define vacuum

$$
\hat{a}_{km}|\Omega\rangle=0
$$

 \bullet similar in region III positive frequency modes u_k with

$$
\hat{b}_{km}|\Psi\rangle=0
$$

• Bogoliubov transform mediates between them

$$
u_k = \alpha_k v_k + \beta_k v_k^*, \qquad \quad v_k = \alpha_k^* u_k - \beta_k u_k^*
$$

• operators are related by

$$
\hat{b}_{km}=\alpha^*_k\hat{a}_{km}-\beta^*_k(-1)^m\hat{a}^\dagger_{k,-m}
$$

- condition $|\alpha_k|^2 |\beta_k|^2 = 1$
- $\mathsf{constant}\; \mathsf{term}\; \mathsf{in}\; \mathsf{spectrum}\; N_k = |\beta_k|^2$
- $\textsf{oscilating term}\ \Delta N_k = \mathsf{Re}[\alpha_k\beta_k e^{2i\omega_kt}]$

Cosmology in d = 2 + 1 *spacetime dimensions*

• analytic solutions for many choices of

 $a(t) = \text{const} \times t^{\gamma}$

• correlation function in momentum space proportional to

$$
S_k(t) = \frac{1}{2} + N_k + A_k \cos(\theta_k + 2\omega_k t)
$$

• depends on number of *e*-folds, exponent γ and time after expansion ceases

Observation of particle production

• rescaled density contrast

$$
\delta_c(t, \mathbf{x}) = \sqrt{\frac{n_0(\mathbf{x})}{\bar{n}_0^3}} [n(t, \mathbf{x}) - n_0(\mathbf{x})]
$$

$$
\sim \partial_t \phi(t, \mathbf{x})
$$

• allows to access correlation functions of relativistic scalar field by observation of density fluctuations

Density contrast correlation function

• correlation function

 $\langle \delta_c(\mathbf{x}) \delta_c(\mathbf{y}) \rangle$

• before and after expansion

Time dependent correlation functions after expansion

- cillatior
. 2 1 analgous to baryon accoustic or Sakharov oscillations in cosmology
- analyses to baryon accousite or bannarov osemations in a
optical resolution important for detailed shape

Expansion history

Oscillations in Fourier space

• Fourier spectrum of excitations

$$
S_k(t) = \frac{1}{2} + N_k + A_k \cos(2\omega_k(t - t_{\rm f}) + \vartheta_k)
$$

- \bullet decelerated, coasting and accelerated expansion
- good agreement with analytic theory (solid lines)

Quantum recurrences

- uniform expansion with $a(t) = Qt$ is special
- shows quantum recurrences of the incoming vacuum state at special values of wavenumber *k*

$$
k_n = \frac{a_{\mathsf{f}} - a_{\mathsf{i}}}{\Delta t} \left[\left(\frac{n\pi}{\ln\left(a_{\mathsf{f}}/a_{\mathsf{i}}\right)} \right)^2 + \frac{1}{4} \right]^{\frac{1}{2}},
$$

with integer $n = 1, 2, 3, \ldots$

- at these points one has trivial Bogoliubov coefficient $\beta_k = 0$
- can be seen experimentally as a discontinuity in the phase !

The scattering analogy

overlap between negative and positive frequency modes \bullet evolution $\frac{1}{\sqrt{2}}$. Graphical indication of the scattering analogy. • evolution equation

$$
\ddot{v}_k(t) + 2\frac{\dot{a}(t)}{a(t)}\dot{v}_k(t) + \frac{k^2 + |\kappa|/4}{a^2(t)}v_k(t) = 0
$$

A. Description of the scattering analogy can be rewritten with rescaled mode function and conformal time a non-vanishing Bogoliubov coefficient *k*. The negative

$$
\psi_k(\eta) = \sqrt{a(t)}v_k(t), \qquad dt = a(t)d\eta
$$

tential *V* (⌘), whereas the incoming wave of the scattering results in stationary Schrödinger equation
————————————————————

$$
\frac{d^2}{d\eta^2}\psi_k(\eta)+\left[E-V(\eta)\right]\psi_k(\eta)=0
$$

 \overline{a} the context of one-dimensional scattering problems problems problems \overline{a} with $V(\eta) = \dot{a}^2/4 + \ddot{a}a/2$ and $E = -h(k) = k^2$

Some example potentials

 $\hat{a}(\alpha) = \dot{a}^2/4 + \ddot{a} a/2$ has Dirac peaks when \dot{a} has discontinuity potential $V(\eta)=\dot{a}^2/4+\ddot{a}a/2$ has Dirac peaks when \dot{a} has discontinuity

- as a function of cosmic time, *a*(*t*), is non-trivial since the coasting universe $\emph{a} \sim \emph{t}$ leads to square barrier
- "radiation dominated" universe $a \sim t^{2/3}$ has only Dirac peaks $r_{\rm IS}$
- situations as we will see in the next section. particular anti-bounce leads to square well tuned. Depending on the functional form of *a*(⌘), one may even be able to set both singular contri-

Resulting particle spectra

• resulting particle spectra

$$
S_k(t) = \frac{1}{2} + N_k + \Delta N_k^0 \cos(2\omega_k(t - t_{\rm f}) + \vartheta_k)
$$

a reflection amplitude has zero crossings that explain phase jumps

Periodic universes

- combination of expanding and contracting phases where $a \sim t^{2/3}$
- · potential landscape with attractive and repulsive Dirac peaks
- . can be solved with transfer matrix method

Relativistic fermions in materials

• low energy theory of Dirac materials

$$
\Gamma[\Psi] = \int dt d^2x \left\{ -\bar{\Psi} \left[\gamma^0 \partial_t + v_F(t) \gamma \cdot \nabla + \Delta(t) \Gamma \right] \Psi \right\}
$$

- \bullet time dependent Fermi velocity $v_F(t)$
	- change in twist angle for bilayer graphene
	- change in pressure
	- light pulses
- **•** time-dependent gap or mass parameter $\Delta(t)\Gamma$ can be
	- breaking spatial inversion $\Gamma = 1$
	- Kekulé modulation of hoping $\Gamma = \gamma^3 \cos(\alpha) + \gamma^5 \sin(\alpha)$
	- Haldane mass breaking time parity $\Gamma=\gamma^{35}$
- **•** can be manipulated with fast electronics

Fermions in curved spacetime

• action for Dirac fermions in general spacetime

$$
\Gamma[\Psi] = \int dt d^2x \sqrt{g} \left\{ - \bar{\Psi} \left[\gamma^{\alpha} e_{\alpha}^{\ \mu} \partial_{\mu} (\partial_{\mu} + \Omega_{\mu}) + m \Gamma \right] \Psi \right\}
$$

• tetrad field
$$
e_{\alpha}^{\ \mu}
$$
 inverse to $e^{\alpha}_{\ \mu}$ so that

$$
g_{\mu\nu}(x) = e^{\alpha}_{\ \mu}(x) e^{\beta}_{\ \nu}(x) \eta_{\alpha\beta}
$$

• spin connection
$$
\Omega_{\mu}=\omega_{\mu\alpha\beta}[\gamma^{\alpha},\gamma^{\beta}]/8
$$
 with

$$
\omega_{\mu\alpha\beta} = -\eta_{\alpha\gamma} \left[\partial_{\mu} e^{\gamma}{}_{\nu} - \Gamma^{\rho}_{\mu\nu} e^{\gamma}{}_{\rho} \right] e_{\beta}{}^{\nu}
$$

and Levi-Civita connection $\Gamma^\rho_{\mu\nu}$

- **·** local Lorentz transformations
- general coordinate transformations

Weyl scaling transformation

• transform Dirac fields (with conformal weight $\Delta_{\Psi} = (d-1)/2 = 1$)

$$
\Psi(x) \to e^{-\zeta(x)} \Psi(x), \qquad \bar{\Psi}(x) \to e^{-\zeta(x)} \bar{\Psi}(x)
$$

• transform tetrad field

$$
e^{\alpha}_{\ \mu}(x) \to e^{\zeta}(x) e^{\alpha}_{\ \mu}(x)
$$

and accordingly metric like

$$
g_{\mu\nu}(x) \to e^{2\zeta(x)} g_{\mu\nu}(x)
$$

• spin connection transforms like

$$
\omega_{\mu\alpha\beta} \rightarrow \omega_{\mu\alpha\beta} + \left[e_{\alpha\mu} e_{\beta}^{\ \nu} - e_{\beta\mu} e_{\alpha}^{\ \nu} \right] \partial_{\nu}\zeta
$$

gap term is **not** invariant

$$
m\Gamma = e^{\zeta(x)}m\Gamma
$$

- allows to transform a time-dependent mass term into a constant mass term
- only ratio $\Delta(t)/v_F(t)$ matters for particle production

Fermionic particle production

• time dependence of ratio Δ/v_F

 \bullet leads to particle production

Conclusion

- Bose-Einstein condensates can act as quantum simulators for quantum fields in curved spacetime
- symmetric spaces with constant curvature can be realized with specific density profiles
- experimental realization achieved in two spatial dimensions
- time-dependent coupling allows to simulate expansion or contraction
- particle production
- Sacherov oscillations after expansion allow detailed investigations
- scattering analogy picture allows to gain insights into many possible "cosmologies"
- fermion production in expanding geometry could be realized with Dirac materials
- extensions to three dimensions, other geometries, different field content, and more, to come
- Geometric fields (metric, tetrad, spin connection, Weyl gauge fields, …) allow to study very interesting regime of non-equilibrium physics

Backup

Symmetries and Wigners classification

Particles as representations of space-time symmetries [Eugene P. Wigner (1939)]

- translations in space and time \leftrightarrow momentum, energy, mass
- rotations and Lorentz boosts \leftrightarrow spin / helicity
- what happens when translational symmetries get broken?

Baryon acoustic oscillations

$Hyperbolic geometry in Minkowski space$

- start with Minkowski space $ds^2 = dX^2 + dY^2 dZ^2$
- ϵ consider hyperboloid ("mass shell") $X^2+Y^2-Z^2=-R^2/4$
- **•** stereographic projection to Poincaré disc

Horizon crossing

• power law expansion

 $a(t) = \text{const} \times t^{\gamma}$

• can be decelerating, coasting or accelerating

Bogoliubov dispersion relation

Quadratic part of action for excitations

$$
S_2 = \int dt \ d^3x \left\{ -\frac{1}{2}(\phi_1, \phi_2) \begin{pmatrix} -\frac{\nabla^2}{2m} + 2\lambda n_0 & \partial_t \\ -\partial_t & -\frac{\nabla^2}{2m} \end{pmatrix} \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} \right\}
$$

· Dispersion relation

$$
\omega = \sqrt{\left(\frac{\mathbf{p}^2}{2m} + 2\lambda\phi_0^2\right)\frac{\mathbf{p}^2}{2m}}
$$

becomes linear for

$$
\mathbf{p}^2 \ll 4\lambda mn_0 = \frac{2}{\xi^2}
$$

$Renormalization$ in two dimensions

[S. Floerchinger, C. Wetterich, Superfluid Bose gas in two dimensions, PRA 79, 013601 (2009)]

· scale-dependent coupling in two dimensions imensions

$$
k\frac{\partial}{\partial k}\lambda=\frac{\lambda^2}{4\pi}
$$

sound velocity and critical temperature

Temperature dependence

- initial state not necessarily vacuum
- allow finite temperature T , leads to enhanced fluctuations

Phases

More e-folds

Correlation functions

• correlation functions in position space with Gaussian window function for UV regularization

Power spectra

Horizons and inflation

