# Quantum field simulation of dynamics in curved spacetime and cosmological particle production

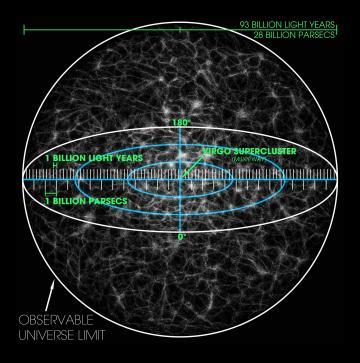
Stefan Floerchinger (Uni Jena)

QuantHEP München, September 4, 2024

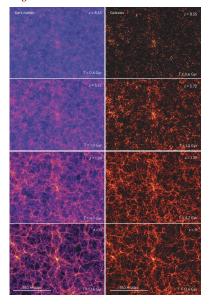


#### Collaboration & Publications

- Celia Viermann, Marius Sparn, Nikolas Liebster, Maurus Hans, Elinor Kath, Álvaro Parra-López, Mireia Tolosa-Simeón, Natalia Sánchez-Kuntz, Tobias Haas, Helmut Strobel, Stefan Floerchinger, Markus K. Oberthaler, Quantum field simulator for dynamics in curved spacetime [Nature 611, 260 (2022)]
- Mireia Tolosa-Simeón, Álvaro Parra-López, Natalia Sánchez-Kuntz, Tobias Haas, Celia Viermann, Marius Sparn, Nikolas Liebster, Maurus Hans, Elinor Kath, Helmut Strobel, Markus K. Oberthaler, Stefan Floerchinger, Curved and expanding spacetime geometries in Bose-Einstein condensates [Phys. Rev. A 106, 033313 (2022)]
- Natalia Sánchez-Kuntz, Álvaro Parra-López, Mireia Tolosa-Simeón, Tobias Haas, Stefan Floerchinger,
   Scalar quantum fields in cosmologies with 2+1 spacetime dimensions
   [Phys. Rev. D 105, 105020 (2022)]
- Mireia Tolosa-Simeón, Michael M. Scherer, S. Floerchinger, Analog of cosmological particle production in Dirac materials, [Phys. Rev. B (2024)]
- Christian F. Schmidt, Álvaro Parra-López, Mireia Tolosa-Simeón, Marius Sparn, Elinor Kath, Nikolas Liebster, Jelte Duchene, Helmut Stobel, Markus K. Oberthaler, Stefan Floerchinger, Cosmological particle production in a quantum field simulator as a quantum mechanical scattering problem, [arXiv:2406.08094]



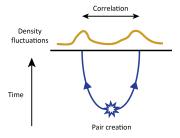
### $Evolution\ of\ cosmic\ large-scale\ structure$



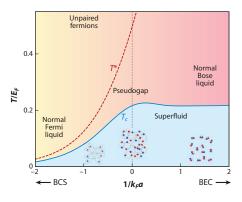
[Springel, Frenk & White, Nature 440, 1137 (2006)]

#### Quantum origin of fluctuations

- Universe was almost homogeneous at early times
- small fluctuations magnified by gravitational attraction
- primordial quantum fluctuations from inflation
   [Mukhanov & Chibisov (1981), Hawking (1982), Starobinsky (1982), Guth & Pi (1982),
   Bardeen, Steinhardt & Turner (1983), Fischler, Ratra & Susskind (1985)]



### Ultracold quantum gases



- can be very well controlled experimentally
- develop and test quantum field theory
- finite density, finite temperature
- out-of-equilibrium
- quantum information

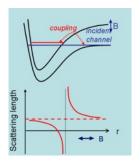
### Non-relativistic quantum fields

 Bose-Einstein condensate in two dimensions [Gross (1961), Pitaevskii (1961)]

$$\Gamma[\Phi] = \int dt d^2x \left\{ \hbar \Phi^*(t, \mathbf{x}) \left[ i \frac{\partial}{\partial t} - V(t, \mathbf{x}) \right] \Phi(t, \mathbf{x}) - \frac{\hbar^2}{2m} \nabla \Phi^*(t, \mathbf{x}) \nabla \Phi(t, \mathbf{x}) - \frac{\lambda(t)}{2} \Phi^*(t, \mathbf{x})^2 \Phi(t, \mathbf{x})^2 \right\}$$

- low energy theory for bosonic atoms
- ullet optical trap potential  $V(t,\mathbf{x})$
- ullet coupling strength  $\lambda(t)$

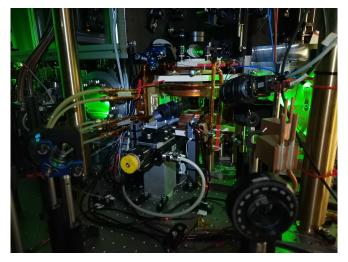
#### Feshbach resonance



- $\bullet$  allow to control scattering length or effective s-wave interaction strength through magnetic field B
- can be made time-dependent by varying magnetic field

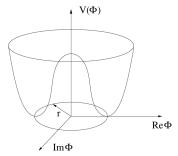
$$\frac{\lambda(t)}{2}\Phi^*(t,\mathbf{x})^2\Phi(t,\mathbf{x})^2$$

### $Experimental\ realization$



 $[\mathsf{Markus}\ \mathsf{K}.\ \mathsf{Oberthaler}\ \mathsf{group},\ \mathsf{Uni}\ \mathsf{Heidelberg}]$ 

### Superfluid and small excitations



• Complex non-relativistic field can be decomposed

$$\Phi = e^{iS_0} \left( \sqrt{n_0} + \frac{1}{\sqrt{2}} \left[ \phi_1 + i\phi_2 \right] \right)$$

- ullet real fields  $\phi_1$  and  $\phi_2$  describe excitations on top of the superfluid
- low energy field  $\phi_2(t, \mathbf{x})$
- ullet stationary superfluid density  $n_0(\mathbf{x})$  and vanishing superfluid velocity

$$\mathbf{v} = \frac{\hbar}{m} \nabla S_0 = 0$$

### Sound waves / phonons

- small energy excitations are sound waves or phonons
- propagate with finite velocity, similar to light
- local speed of sound

$$c_S(t, \mathbf{x}) = \sqrt{\frac{\lambda(t) n_0(\mathbf{x})}{m}}$$

sound waves propagate along

$$ds^{2} = -dt^{2} + \frac{1}{c_{S}(t, \mathbf{x})^{2}} (d\mathbf{x} - \mathbf{v}dt)^{2} = 0$$

ullet acoustic metric for vanishing fluid velocity  ${f v}=0$ 

$$g_{\mu\nu} = \begin{pmatrix} -1 & 0 & 0\\ 0 & \frac{1}{c_S(t,\mathbf{x})^2} & 0\\ 0 & 0 & \frac{1}{c_S(t,\mathbf{x})^2} \end{pmatrix}$$

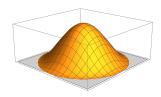
#### Relativistic scalar field

• Low energy theory for phonons (with  $\phi = \phi_2/\sqrt{2m}$ )

$$\Gamma[\phi] = \int \mathrm{d}t \, \mathrm{d}^2 x \, \sqrt{g} \left\{ -\frac{1}{2} g^{\mu\nu} \, \partial_\mu \phi \, \partial_\nu \phi \right\}$$

- metric determinant  $\sqrt{g} = \sqrt{-\det(g_{\mu\nu})}$
- acoustic metric depends on space and time like the space-time metric in general relativity
- phonons behave like a real, massless, relativistic scalar field in a curved spacetime!
- quantum simulator for QFT in curved space

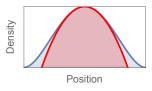
### $Density\ profiles$



ullet assume specifically for  $r = |\mathbf{x}| < R$ 

$$n_0(r) = \bar{n}_0 \times \left[1 - \frac{r^2}{R^2}\right]^2$$

- experimental realization with optical trap and digital micromirror device
- approximate realization in harmonic trap



## $A coustic\ spacetime\ geometry$

• variable transform to  $0 \le u < \infty$ 

$$u(r) = \frac{r}{1 - \frac{r^2}{R^2}}$$
 $u(r) = \frac{r}{1 - \frac{r^2}{R^2}}$ 
 $u(r) = \frac{r}{1 - \frac{r^2}{R^2}}$ 

• leads to Friedmann-Lemaitre-Robertson-Walker metric

$$ds^{2} = -dt^{2} + a^{2}(t) \left( \frac{du^{2}}{1 - \kappa u^{2}} + u^{2} d\varphi^{2} \right)$$

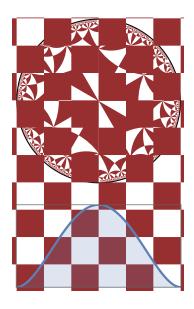
• negative spatial curvature

$$\kappa = -4/R^2$$

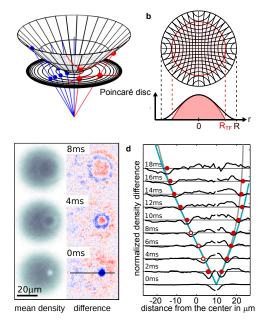
scale factor

$$a(t) = \sqrt{\frac{m}{\bar{n}_0} \frac{1}{\lambda(t)}}$$

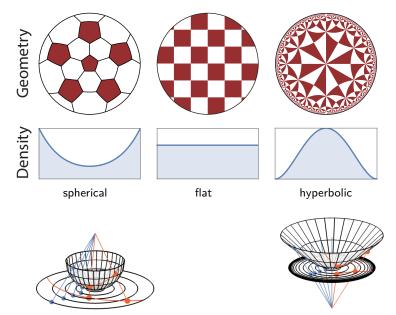
# $Hyperbolic\ geometry$



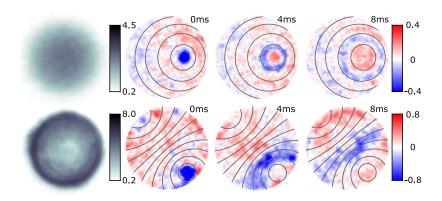
### $Experimental\ realization\ in\ a\ Bose\text{-}Einstein\ condensate$



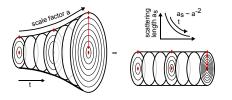
## $Geometries\ with\ constant\ spatial\ curvature$

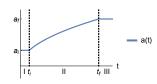


## Propagating sound waves



## Expansion and particle production





• time-dependent scattering length induces time-dependent metric

$$ds^{2} = -dt^{2} + a^{2}(t) \left( \frac{du^{2}}{1 - \kappa u^{2}} + u^{2} d\varphi^{2} \right)$$

- particle concept works well in regions I and III but not in region II
- vacuum state in region I leads to state with particles in region III
- expanding space leads to particle production
- analytic calculations possible for power law scale factors

$$a(t) = \operatorname{const} \times t^{\gamma}$$

# Laplace operator

Laplace-Beltrami operator with spatial curvature

$$\Delta = \begin{cases} |\kappa| \left[ \frac{1}{\sin \theta} \partial_{\theta} \left( \sin \theta \, \partial_{\theta} \right) + \frac{1}{\sin^{2} \theta} \partial_{\varphi}^{2} \right] & \text{for } \kappa > 0 \\ \partial_{u}^{2} + \frac{1}{u} \partial_{u} + \frac{1}{u^{2}} \partial_{\varphi}^{2} & \text{for } \kappa = 0 \\ |\kappa| \left[ \frac{1}{\sinh \sigma} \partial_{\sigma} \left( \sinh \sigma \, \partial_{\sigma} \right) + \frac{1}{\sinh^{2} \sigma} \partial_{\varphi}^{2} \right] & \text{for } \kappa < 0 \end{cases}$$

eigenfunctions

$$\mathcal{H}_{km}(u,\varphi) = \begin{cases} Y_{lm}(\theta,\varphi) & \text{for } \kappa > 0 \quad \text{with} \quad l \in \mathbb{N}_0, m \in \{-l,...,l\} \\ X_{km}(u,\varphi) & \text{for } \kappa = 0 \quad \text{with} \quad k \in \mathbb{R}_0^+, m \in \mathbb{Z} \\ W_{lm}(\sigma,\varphi) & \text{for } \kappa < 0 \quad \text{with} \quad l \in \mathbb{R}_0^+, m \in \mathbb{Z} \end{cases}$$

• eigenvalues with  $k = |\kappa| l$ 

$$h(k) = \begin{cases} -k(k + \sqrt{|\kappa|}) & \text{for } \kappa > 0 \\ -k^2 & \text{for } \kappa = 0 \\ -\left(k^2 + \frac{1}{4}|\kappa|\right) & \text{for } \kappa < 0 \end{cases}$$

### Eigenfunctions

• positive spatial curvature  $\kappa > 0$ : spherical harmonics

$$Y_{lm}(\theta,\varphi) = \sqrt{\frac{(l-m)!}{(l+m)!}} e^{im\varphi} P_{lm}(\cos\theta),$$

ullet vanishing spatial curvature  $\kappa=0$ : Bessel functions

$$X_{km}(u,\varphi) = e^{im\varphi} J_m(ku),$$

 $\bullet$  negative spatial curvature  $\kappa < 0$ : sperical harmonics with complex angular momentum

$$W_{lm}(\sigma,\varphi) = (-i)^m \frac{\Gamma(il+1/2)}{\Gamma(il+m+1/2)} e^{im\varphi} P_{il-1/2}^m \left(\cosh\sigma\right),$$

### Mode functions and Bogoliubov transforms

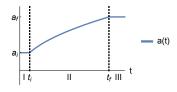
field gets expanded in modes

$$\phi(t, u, \varphi) = \int_{k,m} \left[ \hat{a}_{km} \mathcal{H}_{km}(u, \varphi) v_k(t) + \hat{a}_{km}^{\dagger} \mathcal{H}_{km}^*(u, \varphi) v_k^*(t) \right]$$

• temporal mode functions satisfy

$$\ddot{v}_k(t) + 2\frac{\dot{a}(t)}{a(t)}\dot{v}_k(t) + \frac{k^2 + |\kappa|/4}{a^2(t)}v_k(t) = 0$$

- ullet vacuum state only unique for  $\dot{a}(t)=0$  where  $v_k(t)\sim e^{-i\omega_k t}$
- Bogoliubov transforms between different choices of  $\hat{a}_{km}$  and vacuum states



### $Bogoliubov\ transforms$

ullet in region I one has positive frequency modes  $v_k$  and corresponding operators. Define vacuum

$$\hat{a}_{km}|\Omega\rangle = 0$$

ullet similar in region III positive frequency modes  $u_k$  with

$$\hat{b}_{km}|\Psi\rangle=0$$

Bogoliubov transform mediates between them

$$u_k = \alpha_k v_k + \beta_k v_k^*, \qquad v_k = \alpha_k^* u_k - \beta_k u_k^*$$

operators are related by

$$\hat{b}_{km} = \alpha_k^* \hat{a}_{km} - \beta_k^* (-1)^m \hat{a}_{k,-m}^{\dagger}$$

- condition  $|\alpha_k|^2 |\beta_k|^2 = 1$
- ullet constant term in spectrum  $N_k = |eta_k|^2$
- oscilating term  $\Delta N_k = \text{Re}[\alpha_k \beta_k e^{2i\omega_k t}]$

### Cosmology in d = 2 + 1 spacetime dimensions

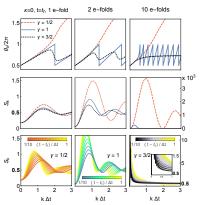
analytic solutions for many choices of

$$a(t) = \operatorname{const} \times t^{\gamma}$$

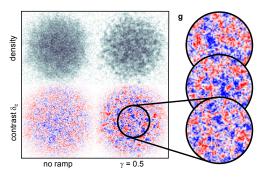
• correlation function in momentum space proportional to

$$S_k(t) = \frac{1}{2} + N_k + A_k \cos(\theta_k + 2\omega_k t)$$

 $\bullet$  depends on number of e-folds, exponent  $\gamma$  and time after expansion ceases



### Observation of particle production

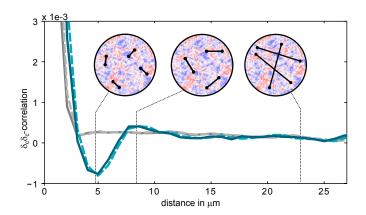


rescaled density contrast

$$\delta_c(t, \mathbf{x}) = \sqrt{\frac{n_0(\mathbf{x})}{\bar{n}_0^3}} [n(t, \mathbf{x}) - n_0(\mathbf{x})]$$
$$\sim \partial_t \phi(t, \mathbf{x})$$

 allows to access correlation functions of relativistic scalar field by observation of density fluctuations

### Density contrast correlation function

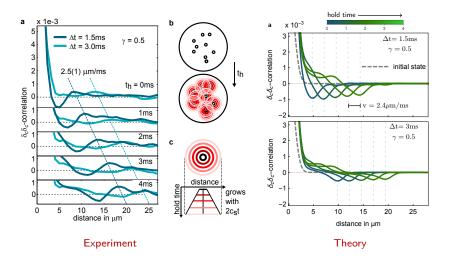


correlation function

$$\langle \delta_c(\mathbf{x}) \delta_c(\mathbf{y}) \rangle$$

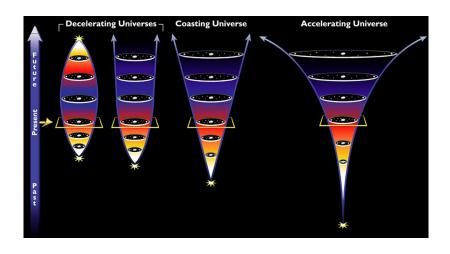
• before and after expansion

### Time dependent correlation functions after expansion

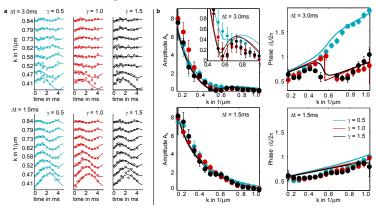


- analgous to baryon accoustic or Sakharov oscillations in cosmology
- optical resolution important for detailed shape

### Expansion history



### Oscillations in Fourier space



Fourier spectrum of excitations

$$S_k(t) = \frac{1}{2} + N_k + A_k \cos(2\omega_k(t - t_{\rm f}) + \vartheta_k)$$

- decelerated, coasting and accelerated expansion
- good agreement with analytic theory (solid lines)

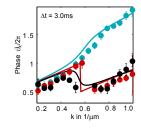
#### Quantum recurrences

- ullet uniform expansion with a(t)=Qt is special
- $\bullet$  shows quantum recurrences of the incoming vacuum state at special values of wavenumber k

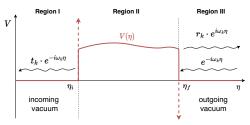
$$k_n = rac{a_{\mathrm{f}} - a_{\mathrm{i}}}{\Delta t} \left[ \left( rac{n\pi}{\ln\left(a_{\mathrm{f}}/a_{\mathrm{i}}
ight)} 
ight)^2 + rac{1}{4} 
ight]^{rac{1}{2}},$$

with integer  $n = 1, 2, 3, \ldots$ 

- ullet at these points one has trivial Bogoliubov coefficient  $eta_k=0$
- can be seen experimentally as a discontinuity in the phase!



### The scattering analogy



evolution equation

$$\ddot{v}_k(t) + 2\frac{\dot{a}(t)}{a(t)}\dot{v}_k(t) + \frac{k^2 + |\kappa|/4}{a^2(t)}v_k(t) = 0$$

• can be rewritten with rescaled mode function and conformal time

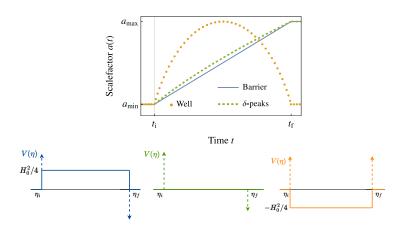
$$\psi_k(\eta) = \sqrt{a(t)}v_k(t), \qquad dt = a(t)d\eta$$

• results in stationary Schrödinger equation

$$\frac{d^2}{d\eta^2}\psi_k(\eta) + [E - V(\eta)]\psi_k(\eta) = 0$$

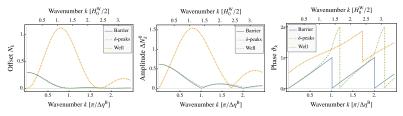
with 
$$V(\eta) = \dot{a}^2/4 + \ddot{a}a/2$$
 and  $E = -h(k) = k^2$ 

### Some example potentials



- ullet potential  $V(\eta)=\dot{a}^2/4+\ddot{a}a/2$  has Dirac peaks when  $\dot{a}$  has discontinuity
- $\bullet$  coasting universe  $a \sim t$  leads to square barrier
- ullet "radiation dominated" universe  $a \sim t^{2/3}$  has only Dirac peaks
- particular anti-bounce leads to square well

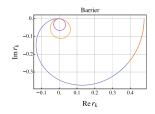
### Resulting particle spectra

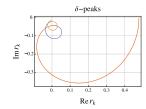


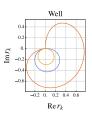
resulting particle spectra

$$S_k(t) = \frac{1}{2} + N_k + \Delta N_k^0 \cos(2\omega_k(t - t_{\mathrm{f}}) + \vartheta_k)$$

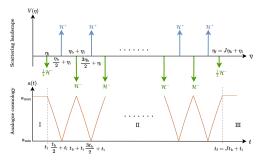
• reflection amplitude has zero crossings that explain phase jumps



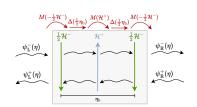


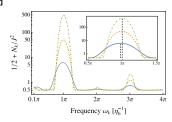


#### Periodic universes



- ullet combination of expanding and contracting phases where  $a\sim t^{2/3}$
- potential landscape with attractive and repulsive Dirac peaks
- can be solved with transfer matrix method





#### Relativistic fermions in materials

low energy theory of Dirac materials

$$\Gamma[\Psi] = \int dt d^2x \left\{ -\bar{\Psi} \left[ \gamma^0 \partial_t + v_F(t) \boldsymbol{\gamma} \cdot \boldsymbol{\nabla} + \Delta(t) \Gamma \right] \Psi \right\}$$

- time dependent Fermi velocity  $v_F(t)$ 
  - change in twist angle for bilayer graphene
  - · change in pressure
  - light pulses
- ullet time-dependent gap or mass parameter  $\Delta(t)\Gamma$  can be
  - breaking spatial inversion  $\Gamma = \mathbb{1}$
  - Kekulé modulation of hoping  $\Gamma=\gamma^3\cos(\alpha)+\gamma^5\sin(\alpha)$  Haldane mass breaking time parity  $\Gamma=\gamma^{35}$
- can be manipulated with fast electronics



### Fermions in curved spacetime

· action for Dirac fermions in general spacetime

$$\Gamma[\Psi] = \int dt d^2x \sqrt{g} \left\{ -\bar{\Psi} \left[ \gamma^{\alpha} e_{\alpha}^{\ \mu} \partial_{\mu} (\partial_{\mu} + \Omega_{\mu}) + m\Gamma \right] \Psi \right\}$$

ullet tetrad field  $e_{lpha}{}^{\mu}$  inverse to  $e^{lpha}{}_{\mu}$  so that

$$g_{\mu\nu}(x) = e^{\alpha}_{\ \mu}(x)e^{\beta}_{\ \nu}(x)\eta_{\alpha\beta}$$

• spin connection  $\Omega_{\mu}=\omega_{\mu\alpha\beta}[\gamma^{\alpha},\gamma^{\beta}]/8$  with

$$\omega_{\mu\alpha\beta} = -\eta_{\alpha\gamma} \left[ \partial_{\mu} e^{\gamma}_{\ \nu} - \Gamma^{\rho}_{\mu\nu} e^{\gamma}_{\ \rho} \right] e_{\beta}^{\ \nu}$$

and Levi-Civita connection  $\Gamma^{
ho}_{\mu\nu}$ 

- local Lorentz transformations
- general coordinate transformations

## Weyl scaling transformation

ullet transform Dirac fields (with conformal weight  $\Delta_\Psi=(d-1)/2=1)$ 

$$\Psi(x) \to e^{-\zeta(x)} \Psi(x), \qquad \bar{\Psi}(x) \to e^{-\zeta(x)} \bar{\Psi}(x)$$

transform tetrad field

$$e^{\alpha}_{\ \mu}(x) \rightarrow e^{\zeta}(x) e^{\alpha}_{\ \mu}(x)$$

and accordingly metric like

$$g_{\mu\nu}(x) \to e^{2\zeta(x)} g_{\mu\nu}(x)$$

spin connection transforms like

$$\omega_{\mu\alpha\beta} \to \omega_{\mu\alpha\beta} + \left[ e_{\alpha\mu} e_{\beta}^{\ \nu} - e_{\beta\mu} e_{\alpha}^{\ \nu} \right] \partial_{\nu} \zeta$$

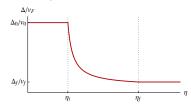
gap term is not invariant

$$m\Gamma = e^{\zeta(x)} m\Gamma$$

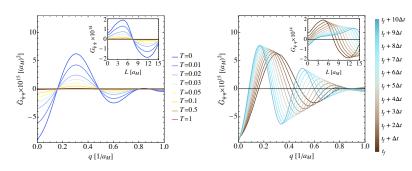
- allows to transform a time-dependent mass term into a constant mass term
- only ratio  $\Delta(t)/v_F(t)$  matters for particle production

### Fermionic particle production

ullet time dependence of ratio  $\Delta/v_F$ 

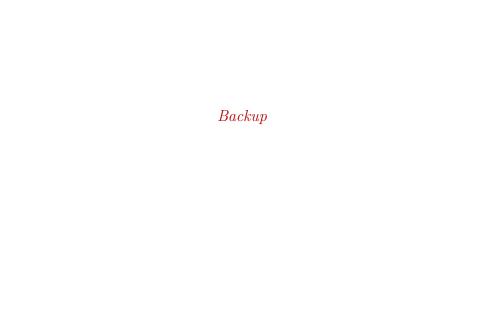


• leads to particle production



#### Conclusion

- Bose-Einstein condensates can act as quantum simulators for quantum fields in curved spacetime
- symmetric spaces with constant curvature can be realized with specific density profiles
- experimental realization achieved in two spatial dimensions
- time-dependent coupling allows to simulate expansion or contraction
- particle production
- Sacherov oscillations after expansion allow detailed investigations
- scattering analogy picture allows to gain insights into many possible "cosmologies"
- fermion production in expanding geometry could be realized with Dirac materials
- extensions to three dimensions, other geometries, different field content, and more, to come
- Geometric fields (metric, tetrad, spin connection, Weyl gauge fields, ...)
   allow to study very interesting regime of non-equilibrium physics

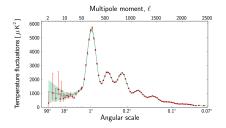


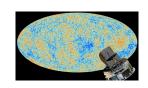
## Symmetries and Wigners classification

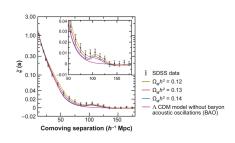
Particles as representations of space-time symmetries [Eugene P. Wigner (1939)]

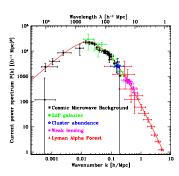
- translations in space and time → momentum, energy, mass
- ullet rotations and Lorentz boosts  $\longleftrightarrow$  spin / helicity
- what happens when translational symmetries get broken?

## $Baryon\ acoustic\ oscillations$

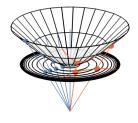








# $Hyperbolic\ geometry\ in\ Minkowski\ space$



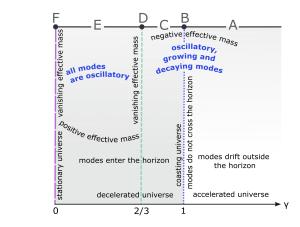
- $\bullet$  start with Minkowski space  $ds^2=dX^2+dY^2-dZ^2$
- $\bullet$  consider hyperboloid ("mass shell")  $X^2+\,Y^2-Z^2=-R^2/4$
- stereographic projection to Poincaré disc

## Horizon crossing

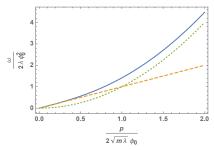
power law expansion

$$a(t) = \operatorname{const} \times t^{\gamma}$$

• can be decelerating, coasting or accelerating



## $Bogoliubov\ dispersion\ relation$



• Quadratic part of action for excitations

$$S_2 = \int dt \ d^3x \left\{ -\frac{1}{2}(\phi_1, \phi_2) \begin{pmatrix} -\frac{\mathbf{\nabla}^2}{2m} + 2\lambda n_0 & \partial_t \\ -\partial_t & -\frac{\mathbf{\nabla}^2}{2m} \end{pmatrix} \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} \right\}$$

Dispersion relation

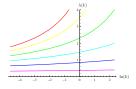
$$\omega = \sqrt{\left(\frac{\mathbf{p}^2}{2m} + 2\lambda\phi_0^2\right)\frac{\mathbf{p}^2}{2m}}$$

becomes linear for

$$\mathbf{p}^2 \ll 4\lambda m n_0 = \frac{2}{\xi^2}$$

#### Renormalization in two dimensions

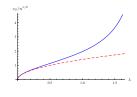
[S. Floerchinger, C. Wetterich, Superfluid Bose gas in two dimensions, PRA 79, 013601 (2009)]

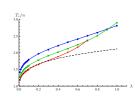


• scale-dependent coupling in two dimensions

$$k\frac{\partial}{\partial k}\lambda = \frac{\lambda^2}{4\pi}$$

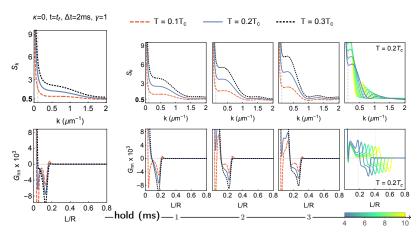
• sound velocity and critical temperature



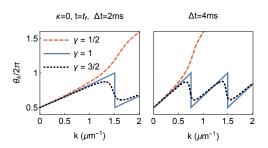


### $Temperature\ dependence$

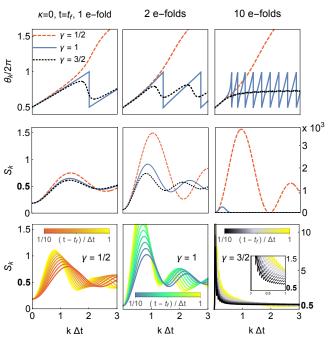
- initial state not necessarily vacuum
- ullet allow finite temperature T, leads to enhanced fluctuations



### Phases

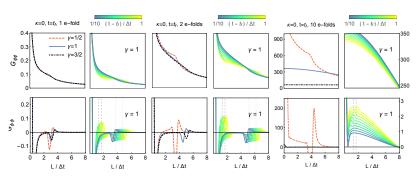


## More e-folds

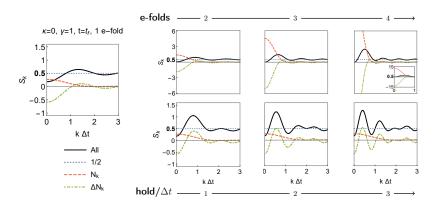


#### Correlation functions

 correlation functions in position space with Gaussian window function for UV regularization



## Power spectra



## Horizons and inflation

