

Institute for Theoretical Physics

Motivation: Strong Interaction in Standard Model of Particle Physics

... understanding the phase diagram and real time dynamics

[Credit: Peter Senger (p.senger@gsi.de)]

Lattice Gauge Theories beyond Euclidean Monte Carlo Approach

Path Integrals

Quantum Chromodynamics (QCD)

FLAG Review 2021

[Aoki et al. Eur.Phys.J.C 82 (2022) 10, 869]

Lattice Gauge Theories beyond Euclidean Monte Carlo Approach

$$\langle O[A, \psi, \bar{\psi}] \rangle = \frac{1}{Z} \int D[A]$$

Lattice Gauge Theories beyond Euclidean Monte Carlo Approach

$$\langle O[A,\psi,\bar{\psi}] \rangle = \frac{1}{Z} \int D[A]$$

Chiral symmetry, confinement, string breaking ...

Schwinger Model (QED2) Lagrangian with topological θ angle

$$\mathscr{L}_{QED2} = -\frac{1}{4} F_{\mu\nu}F^{\mu\nu} + \frac{g\theta}{4\pi}\varepsilon_{\mu\nu}F^{\mu\nu} + \mathrm{i}\bar{\psi}\gamma^{\mu}\left(\partial_{\mu} + \mathrm{i}gA_{\mu}\right)\psi - \frac{g\theta}{4\pi}\varepsilon_{\mu\nu}F^{\mu\nu} + \mathrm{i}\bar{\psi}\gamma^{\mu}\nabla_{\mu}F^{\mu\nu} + \mathrm{i}\bar{\psi}\gamma^{\mu}\nabla_{\mu}F^{\mu\nu} + \mathrm{i}\bar{\psi}\gamma^{\mu}\nabla_{\mu}F^{\mu\nu} + \mathrm{i}\bar{\psi}\varphi^{\mu}\nabla_{\mu}F^{\mu\nu} + \mathrm{i}\bar{\psi}\varphi^{\mu}\nabla_{\mu}F^$$

Lattice Schwinger Model Hamiltonian:

$$H_{QED2} = -i\sum_{n=1}^{N-1} \left(w - (-1)^n \frac{m}{2} \sin \theta \right) \left(\chi_n^{\dagger} \chi_{n+1} - \chi_{n+1}^{\dagger} \chi_n \right)$$
$$L_n = \sum_{k=1}^n \left(\chi_k^{\dagger} \chi_k - \frac{1 - (-1)^k}{2} \right) \text{ Gauss' law}$$

[Schwinger, Physical Review 125, 397 (1962)]

– mψψ

Schwinger Model (QED2) Lagrangian with topological θ angle

$$\mathscr{L}_{QED2} = -\frac{1}{4} F_{\mu\nu}F^{\mu\nu} + \frac{g\theta}{4\pi}\varepsilon_{\mu\nu}F^{\mu\nu} + \mathrm{i}\bar{\psi}\gamma^{\mu}\left(\partial_{\mu} + \mathrm{i}gA_{\mu}\right)\psi - \frac{g\theta}{4\pi}\varepsilon_{\mu\nu}F^{\mu\nu} + \mathrm{i}\bar{\psi}\gamma^{\mu}\nabla_{\mu}F^{\mu\nu} + \mathrm{i}\bar{\psi}\gamma^{\mu}\nabla_{\mu}F^{\mu\nu} + \mathrm{i}\bar{\psi}\gamma^{\mu}\nabla_{\mu}F^{\mu\nu} + \mathrm{i}\bar{\psi}\varphi^{\mu}\nabla_{\mu}F^{\mu\nu} + \mathrm{i}\bar{\psi}\varphi^{\mu}\nabla_{\mu}F^$$

Lattice Schwinger Model Hamiltonian:

$$H_{QED2} = -i\sum_{n=1}^{N-1} \left(w - (-1)^n \frac{m}{2} \sin \theta \right) \left(\chi_n^{\dagger} \chi_{n+1} - \chi_{n+1}^{\dagger} \chi_n \right)$$
$$L_n = \sum_{k=1}^n \left(\chi_k^{\dagger} \chi_k - \frac{1 - (-1)^k}{2} \right) \text{ Gauss' law}$$

- Technicalities starting from \mathscr{L}_{QED2} to get H_{QED2} :

 - Staggered fermion discretization

[Schwinger, Physical Review 125, 397 (1962)]

– mψψ

[Kogut, Susskind, Phys. Rev. D 11, 395 (1975)]

Schwinger Model (QED2) Lagrangian with topological θ angle

$$\mathscr{L}_{QED2} = -\frac{1}{4} F_{\mu\nu}F^{\mu\nu} + \frac{g\theta}{4\pi}\varepsilon_{\mu\nu}F^{\mu\nu} + \mathrm{i}\bar{\psi}\gamma^{\mu}\left(\partial_{\mu} + \mathrm{i}gA_{\mu}\right)\psi - \frac{g\theta}{4\pi}\varepsilon_{\mu\nu}F^{\mu\nu} + \mathrm{i}\bar{\psi}\gamma^{\mu}\nabla_{\mu}F^{\mu\nu} + \mathrm{i}\bar{\psi}\gamma^{\mu}\nabla_{\mu}F^{\mu\nu} + \mathrm{i}\bar{\psi}\gamma^{\mu}\nabla_{\mu}F^{\mu\nu} + \mathrm{i}\bar{\psi}\varphi^{\mu}\nabla_{\mu}F^{\mu\nu} + \mathrm{i}\bar{\psi}\varphi^{\mu}\nabla_{\mu}F^$$

Lattice Schwinger Model Hamiltonian:

$$H_{QED2} = -i\sum_{n=1}^{N-1} \left(w - (-1)^n \frac{m}{2} \sin \theta \right) \left(\chi_n^{\dagger} \chi_{n+1} - \chi_{n+1}^{\dagger} \chi_n \right)$$
$$L_n = \sum_{k=1}^n \left(\chi_k^{\dagger} \chi_k - \frac{1 - (-1)^k}{2} \right) \text{ Gauss' law}$$

Digital Quantum Simulations of QED2: non-exhaustive list

[Schwinger, Physical Review 125, 397 (1962)]

– mψψ

 $\bar{\Psi}_{x} U_{xy} \Psi_{y}$ \mathbf{U}_{4}^{\dagger} links sites

[Martinez et al. Nature 534, 516–519 (2016)] [Klco et al. Phys. Rev. A 98, 032331 (2018)] [Kokail et al. Nature 569, 355–360 (2019)] [Jong et al. Phys. Rev. D 106, 054508 (2022)] [Nguyen et al. Quantum 3, 020324 (2022)] [Chakraborty et al. Phys. Rev. D 105, (2022) 94503] [Farell et al., PRX Quantum 5, 020315(2024)] [Ghim et al., 2404.14788]

[Guo et al, 2407.15629] . . .

Schwinger Model (QED2) Lagrangian with topological θ angle

$$\mathscr{L}_{QED2} = -\frac{1}{4} F_{\mu\nu}F^{\mu\nu} + \frac{g\theta}{4\pi}\varepsilon_{\mu\nu}F^{\mu\nu} + \mathrm{i}\bar{\psi}\gamma^{\mu}\left(\partial_{\mu} + \mathrm{i}gA_{\mu}\right)\psi - \frac{g\theta}{4\pi}\varepsilon_{\mu\nu}F^{\mu\nu} + \mathrm{i}\bar{\psi}\gamma^{\mu}\nabla_{\mu}F^{\mu\nu} + \mathrm{i}\bar{\psi}\gamma^{\mu}\nabla_{\mu}F^{\mu\nu} + \mathrm{i}\bar{\psi}\gamma^{\mu}\nabla_{\mu}F^{\mu\nu} + \mathrm{i}\bar{\psi}\varphi^{\mu}\nabla_{\mu}F^{\mu\nu} + \mathrm{i}\bar{\psi}\varphi^{\mu}\nabla_{\mu}F^$$

Lattice Schwinger Model Hamiltonian:

$$H_{QED2} = -i\sum_{n=1}^{N-1} \left(w - (-1)^n \frac{m}{2} \sin \theta \right) \left(\chi_n^{\dagger} \chi_{n+1} - \chi_{n+1}^{\dagger} \chi_n \right)$$
$$L_n = \sum_{k=1}^n \left(\chi_k^{\dagger} \chi_k - \frac{1 - (-1)^k}{2} \right) \text{ Gauss' law}$$

Tensor Network approaches: alternative to/augmenting quantum simulations

[Schwinger, Physical Review 125, 397 (1962)]

 $\bar{\Psi}_{x} U_{xy} \Psi_{y}$

links

sites

– mψψ

[Banlus et al. Physical Review D 93, (2016) 094512] [Buyens et al. Physical Review D 94, (2016) 085018] [Buyens et. al. Physical Review X 6, 041040 (2016)] [Butt et al. Physical Review D 101, (2020) 094509] [Funcke et al. Phys. Rev. D 101, (2020) 054507] . . .

 \mathbf{U}_{4}^{\dagger}

Jordan-Wigner transformation (space discrete, time continuous):

$$H_{QED2} = H_{ZZ} + H_{\pm} + H_Z$$

$$H_{ZZ} = \frac{J}{2} \sum_{n=2}^{N-1} \sum_{1 \le k < \ell \le n} Z_k Z_\ell$$

$$w = \frac{1}{2a}, J = \frac{g^2}{2}$$

• $v(n; n_+, n_-)$ only term affected by static charges

$$H_{\pm} = \frac{1}{2} \sum_{n=1}^{N-1} \left(w - (-1)^n \frac{m}{2} \sin \theta \right) \left(X_n X_{n+1} + Y_n Y_{n+1} \right)$$

$$H_Z = \frac{m\cos\theta}{2} \sum_{n=1}^{N} (-1)^n Z_n + J \sum_{n=1}^{N-1} v(n; n_+, n_-) \sum_{\ell=1}^{n} Z_\ell$$

[Chakraborty et al. Physical Review D 105, (2022) 94503]

 ^{2}a

+1/

Jordan-Wigner transformation (space discrete, time continuous):

$$H_{QED2} = H_{ZZ} + H_{\pm} + H_Z$$

$$H_{ZZ} = \frac{J}{2} \sum_{n=2}^{N-1} \sum_{1 \le k < \ell \le n} Z_k Z_\ell$$

$$w = \frac{1}{2a}, J = \frac{g^2}{2}$$

→ $v(n; n_+, n_-)$ only term affected by static charges

$$H_{\pm} = \frac{1}{2} \sum_{n=1}^{N-1} \left(w - (-1)^n \frac{m}{2} \sin \theta \right) \left(X_n X_{n+1} + Y_n Y_{n+1} + Y_n Y_n + Y_n$$

$$H_Z = \frac{m\cos\theta}{2} \sum_{n=1}^{N} (-1)^n Z_n + J \sum_{n=1}^{N-1} v(n; n_+, n_-) \sum_{\ell=1}^{n} Z_\ell$$

Suzuki-Trotter decomposition

[Trotter, Proc. Am. Math. Soc. 10 (1959), Suzuki Commun. Math. Phys. 51 (1976)]

 ^{2}a

[Chakraborty et al. Physical Review D 105, (2022) 94503]

Fixed-Q Adiabatic State Preparation

+1,

ſ

Jordan-Wigner transformation (space discrete, time continuous):

$$H_{QED2} = H_{ZZ} + H_{\pm} + H_Z$$

H =	<u> </u>	\mathbf{N}^{-1}	$\mathbf{\Sigma}$	7.7.
TIZZ	2			
		<i>n</i> =2 1	$l \leq k < \ell \leq$	n

n=1

$$w = \frac{1}{2a}, J = \frac{g^2}{2}$$

→ $v(n; n_+, n_-)$ only term affected by static charges

$$H_{\pm} = \frac{1}{2} \sum_{n=1}^{N-1} \left(w - (-1)^n \frac{m}{2} \sin \theta \right) \left(X_n X_{n+1} + Y_n Y_{n+1} + Y_n Y_{n+1} - \frac{m \cos \theta}{2} \sum_{n=1}^{N} (-1)^n Z_n + J \sum_{n=1}^{N-1} v(n; n_+, n_-) \sum_{n=1}^{n} Z_n Y_n + J \sum_{n=1}^{N-1} v(n; n_+, n_-) \sum_{n=1}^{n} Z_n Y_n + J \sum_{n=1}^{N-1} v(n; n_+, n_-) \sum_{n=1}^{N-1} Z_n Y_n + J \sum_{n=1}^{N-1} v(n; n_+, n_-) \sum_{n=1}^{N-1} Z_n Y_n + J \sum_{n=1}^{N-1} v(n; n_+, n_-) \sum_{n=1}^{N-1} Z_n Y_n + J \sum_{n=1}^{N-1} v(n; n_+, n_-) \sum_{n=1}^{N-1} Z_n Y_n + J \sum_{n=1}^{N-1} v(n; n_+, n_-) \sum_{n=1}^{N-1} Z_n Y_n + J \sum_{n=1}^{N-1} v(n; n_+, n_-) \sum_{n=1}^{N} Z_n Y_n + J \sum_{n=1}^{N-1} v(n; n_+, n_-) \sum_{n=1}^{N} Z_n Y_n + J \sum_{n=1}^{N-1} v(n; n_+, n_-) \sum_{n=1}^{N-1} Z_n Y_n + J \sum_{n=1}^{N-1} v(n; n_+, n_-) \sum_{n=1}^{N-1} Z_n Y_n + J \sum_{n=1}^{N-1} v(n; n_+, n_-) \sum_{n=1}^{N-1} Z_n Y_n + J \sum_{n=1}^{N-1} v(n; n_+, n_-) \sum_{n=1}^{N-1} Z_n Y_n + J \sum_{n=1}^{N-1} v(n; n_+, n_-) \sum_{n=1}^{N-1} Z_n Y_n + J \sum_{n=1}^{N-1} v(n; n_+, n_-) \sum_{n=1}^{N-1} Z_n Y_n + J \sum_{n=1}^{N-1} v(n; n_+, n_-) \sum_{n=1}^{N-1} Z_n Y_n + J \sum_{n=1}^{N-1} v(n; n_+, n_-) \sum_{n=1}^{N-1} Z_n Y_n + J \sum_{n=1}^{N-1} v(n; n_+, n_-) \sum_{n=1}^{N-1} Z_n Y_n + J \sum_{n=1}^{N-1} v(n; n_+, n_-) \sum_{n=1}^{N-1} Z_n Y_n + J \sum_{n=1}^{N-1} v(n; n_+, n_-) \sum_{n=1}^{N-1} Z_n Y_n + J \sum_{n=1}^{N-1} v(n; n_+, n_-) \sum_{n=1}^{N-1} Z_n Y_n + J \sum_{n=1}^{N-1} v(n; n_+, n_-) \sum_{n=1}^{N-1} Z_n Y_n + J \sum_{n=1}^{N-1} v(n; n_+, n_-) \sum_{n=1}^{N-1} Z_n Y_n + J \sum_{n=1}^{N-1} v(n; n_+, n_-) \sum_{n=1}^{N-1} Z_n Y_n + J \sum_{n=1}^{N-1} v(n; n_+, n_-) \sum_{n=1}^{N-1} Z_n Y_n + J \sum_{n=1}^{N-1} v(n; n_+, n_-) \sum_{n=1}^{N-1} Z_n Y_n + J \sum_{n=1}^{N-1} v(n; n_+, n_-) \sum_{n=1}^{N-1} V_n + J \sum_{n=1}^{N-1} v(n; n_+, n_-) \sum_{n=1}^{N-1} V_n + J \sum_{n=1}^{N-1} v(n; n_+, n_-) \sum_{n=1}^{N-1} v(n; n_+, n_-) \sum_{n=1}^{N-1} V_n + J \sum_{n=1}^{N-1} v(n; n_+, n_-) \sum_{n=1}$$

n=1

Suzuki-Trotter decomposition

[Trotter, Proc. Am. Math. Soc. 10 (1959), Suzuki Commun. Math. Phys. 51 (1976)]

- Quantum simulations require efficient quantum state preparation algorithms

-*a*

[Chakraborty et al. Physical Review D 105, (2022) 94503]

Fixed-Q Adiabatic State Preparation

+1,

 $\ell = 1$

[Jordan, Lee, Preskill, Science 336 (2012) 1130-1133] [Jordan, Lee, Preskill, Quant.Inf.Comput. 14 (2014) 1014-1080] [Preskill, Quantum 2 (2018) 79]

Jordan-Wigner transformation (space discrete, time continuous):

$$H_{QED2} = H_{ZZ} + H_{\pm} + H_Z$$

H =	<u> </u>	\mathbf{N}^{-1}	$\mathbf{\Sigma}$	7.7.
TIZZ	2			
		<i>n</i> =2 1	$l \leq k < \ell \leq$	n

n=1

$$= \frac{1}{2a}, \quad J = \frac{g^2 a}{2}$$

→ $v(n; n_+, n_-)$ only term affected by static charges

$$H_{\pm} = \frac{1}{2} \sum_{n=1}^{N-1} \left(w - (-1)^n \frac{m}{2} \sin \theta \right) \left(X_n X_{n+1} + Y_n Y_{n+1} \right)$$
$$H_Z = \frac{m \cos \theta}{2} \sum_{n=1}^{N} (-1)^n Z_n + J \sum_{n=1}^{N-1} v(n; n_+, n_-) \sum_{n=1}^{n} Z_\ell$$

n=1

Suzuki-Trotter decomposition

[Trotter, Proc. Am. Math. Soc. 10 (1959), Suzuki Commun. Math. Phys. 51 (1976)]

- Quantum simulations require efficient quantum state preparation algorithms

 $\ell = 1$

[Jordan, Lee, Preskill, Science 336 (2012) 1130-1133] [Jordan, Lee, Preskill, Quant.Inf.Comput. 14 (2014) 1014-1080] [Preskill, Quantum 2 (2018) 79]

[Choi et al. PRL 127(4 (2021) 040505]

Adiabatic State Preparation (I)

- Ground state preparation for H_{QED2}
 - **1.** Initial state $|\psi_0\rangle$: ground state of $H_A(0) \equiv H_0$
 - 2. "Evolve" $H_A(t)$: $H_A(T) \equiv H_{QED2}$
 - **3.** Ground state at time *T* approximated by

$$|\psi_T\rangle = \mathscr{T}\{e^{-i\int_0^T dt \, H_A(t)}\} |\psi_0\rangle \approx \underbrace{U(T)U(T-\delta t)\cdots}_{M \text{ steps}}$$

•
$$U(\tau) = e^{-iH_A(\tau)\delta t}$$
, $\delta t = \frac{T}{M}$, T finite, \int discretized

→ Applied to QED2

[Chakraborty et al. Physical Review D 105, (2022) 094503] [Ghim, Honda, arXiv:2404.14788]

ETHzürich

 $U(2\delta t)U(\delta t) |\psi_0\rangle$

S

zed

Adiabatic State Preparation (I)

- Ground state preparation for H_{QED2}
 - 1. Initial state $|\psi_0\rangle$: ground state of $H_A(0) \equiv H_0$
 - 2. "Evolve" $H_A(t)$: $H_A(T) \equiv H_{QED2}$
 - **3.** Ground state at time *T* approximated by

$$|\psi_T\rangle = \mathscr{T}\{e^{-i\int_0^T dt \, H_A(t)}\} |\psi_0\rangle \approx \underbrace{U(T)U(T-\delta t)\cdots}_{M \text{ steps}}$$

•
$$U(\tau) = e^{-iH_A(\tau)\delta t}$$
, $\delta t = \frac{T}{M}$, T finite, \int discretized

- Applied to QED2

[Chakraborty et al. Physical Review D 105, (2022) 094503] [Ghim, Honda, arXiv:2404.14788]

ETHzürich

$$|\psi_0\rangle$$
 $\left\{ \begin{array}{c|c} & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & &$

Adiabatic Theorem: $H_A(t)$ gapped, unique ground state \implies $|\psi_T\rangle = \lim_{T \to \infty} \mathcal{T}\{e^{-i\int_0^T dt H_A(t)}\} |\psi_0\rangle$

 $U(2\delta t)U(\delta t) |\psi_0\rangle$

3

zed

Symmetries of the QED2 Hamiltonian

Charge conservation:

$$Q = \frac{g}{2} \sum_{n} Z_{n} \qquad \left[Q, H_{QEDZ} \right]$$

- Schwinger Model is toy model of QCD, exhibits confinement and string breaking
- Full (θ, m) phase diagram inaccessible to conventional MC simulations

- Schwinger model is known to have a phase transition for $\theta = \pi$ and $m/g > m_c/g \approx 0.33$
- QED2 has a ground state in nonzero charge sector for $\theta \in [0.8\pi, 1.5\pi]$ and certain values of m
- String breaking not accessible with state preparation algorithms that keep Q fixed

[Coleman, Annals of Physics 101 (1976) 239]

[Coleman, Jackiw, Susskind, Annals of Physics 93 (1975) 267]

[Thompson, Siopsis, Quantum Science&Technology (2021)7]

Adiabatic State Preparation (II)

Fixed-Q ASP Algorithm (A1): single charge sector of H_{OED2}

$$\begin{split} H_{A1}(t) &= H_{QED2} \Big|_{m=m(t), w=w(t), \theta=\theta(t)} \\ m(t) &= m_0 \left(1 - \frac{t}{T}\right) + m \frac{t}{T}; \quad w(t) = w \frac{t}{T}; \quad \theta(t) =$$

Charge remains constant:

$$\bullet \quad [Q, H_{A1}(t)] = 0, \forall t$$

Challenging to determine the ground state for all (θ, m)

Adiabatic State Preparation (III)

• Multi-Q algorithm: arbitrary charge sector of H_{OED2}

$$H_{A2}(t) = \left(1 - \frac{t}{T}\right)\beta\sum_{n=1}^{N}f(n)X_n + \frac{t}{T}H_{QE}$$

• Several choices for f(n) probed, best thus far:

$$\beta \approx \frac{|E_0|}{N}$$

- Total charge no longer a symmetry of $H_{A2}(t)$
- Ground state of $H_{A2}(0)$ mixes states within different charge sectors

ETHzürich

Exact Diagonalization:

Multi-Q ASP Algorithm:

Comparison of State Preparation Algorithms (I)

Fixed-Q ASP Algorithm:

Exact Diagonalization:

Multi-Q ASP Algorithm:

We acknowledge use of the IBM Q for this work. The views expressed are those of the authors and do not reflect the official policy or position of IBM or the IBM Q team.

Comparison of State Preparation Algorithms (II)

ETH zürich

Relative error of the ground state energy (top) and the charge(bottom) as a function of the spectral gap $\Delta = E_1 - E_0$

$\langle Q \rangle_{A2}$ in the presence of static charges

String Breaking (I)

- Multi-charge ASP enables studies of confinement of charge in QED2
- $Q_{-} = -$ operator sensitive to the string breaking

Notation from [Buyens et. al. Physical Review X 6, 041040 (2016)] $V(d) = E_0(d) - E_0(0)$

String Breaking (II)

- Multi-charge ASP enables studies of confinement of charge in QED2

$$Q_{-} = \frac{g}{2} \sum_{n=1}^{N/2} Z_n \quad \leftarrow \text{ operator sensitive}$$

• $V(d) = E_0(d) - E_0(0) \leftarrow$ static charge-anticharge potential: not a good indicator of string breaking for $\theta \neq 0$

to the string breaking

- Real time dynamics of (lattice) gauge theories intractable from first principles
- Schwinger model QED2 toy model for strongly interacting quantum chromodynamics
- Digital quantum simulations of <u>QED2</u>:
 - Adiabatic state preparation inefficient for nonzero charge, inapplicable for string breaking
 - New procedure, Multi-Q ASP, allows for full exploration of the (θ, m) phase diagram [this work]

Summary & Outlook

[Banlus et al. Physical Review D 93, (2016) 094512] [Buyens et al. Physical Review D 94, (2016) 085018] [Butt et al. Physical Review D 101, (2020) 094509] [Funcke et al. Phys. Rev. D 101, (2020) 054507] [Martinez et al. Nature 534, 516–519 (2016)] [Klco et al. Phys. Rev. A 98, 032331 (2018)] [Kokail et al. Nature 569, 355–360 (2019)] [Jong et al. Phys. Rev. D 106, 054508 (2022)] [Nguyen et al. Quantum 3, 020324 (2022)] [Chakraborty et al. Phys. Rev. D 105, (2022) 94503] [Farell et al., PRX Quantum 5, 020315(2024)] [Ghim et al., 2404.14788] [Guo et al, 2407.15629] . . .

- Real time dynamics of (lattice) gauge theories intractable from first principles
- Schwinger model *QED2* toy model for strongly interacting quantum chromodynamics
- Digital quantum simulations of <u>QED2</u>:
 - Adiabatic state preparation inefficient for nonzero charge, inapplicable for string breaking
 - New procedure, Multi-Q ASP, allows for full exploration of the (θ, m) phase diagram [this work]
- In progress:
 - Theoretical understanding of the algorithm; applications to topological cond. matter;
 - Multi-Q ASP applied to study the confinement & string breaking in QED2

Summary & Outlook

[Banlus et al. Physical Review D 93, (2016) 094512] [Buyens et al. Physical Review D 94, (2016) 085018] [Butt et al. Physical Review D 101, (2020) 094509] [Funcke et al. Phys. Rev. D 101, (2020) 054507] [Martinez et al. Nature 534, 516–519 (2016)] [Klco et al. Phys. Rev. A 98, 032331 (2018)] [Kokail et al. Nature 569, 355–360 (2019)] [Jong et al. Phys. Rev. D 106, 054508 (2022)] [Nguyen et al. Quantum 3, 020324 (2022)] [Chakraborty et al. Phys. Rev. D 105, (2022) 94503] [Farell et al., PRX Quantum 5, 020315(2024)] [Ghim et al., 2404.14788] [Guo et al, 2407.15629] ...

This work was supported by a grant from the Swiss National Supercomputing Centre (CSCS) under project IDs eth8 and go24.

This work was supported by the Google Research Scholar Award in Quantum Computing.

Thank you!

IBM Quantum

We acknowledge use of the IBM Q for this work. The views expressed are those of the authors and do not reflect the official policy or position of IBM or the IBM Q team.