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Many strides forward in quantum simulation of LGTs 
have been made 

Nice, but new challenge: proceed beyond single-flavor Abelian 1+1D 
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Confinement in 
superconducting qubits 

Coleman’s phase transition, thermalization, 
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Fractons in the multi-flavour Schwinger model
Pavel Popov, Valentin Kasper, Maciej Lewenstein, Erez Zohar, 
Paolo Stornati, and Philipp Hauke, arXiv:2405.00745   

Pavel Popov Paolo Stornati



Multiflavor models hosts rich physics 

Isospin, 
flavor symmetry 

Baryon decuplet 

Picture: Trassiorf, 
wikipedia

In context of quantum simulation & tensor networks, e.g., Funcke, Hartung, Jansen, Kühn, Pleinert, PoS LATTICE2022 (2023) 020,
Bañuls, Cichy, Cirac, Jansen, Kühn, Saito, arXiv:1611.00705   

Non-trivial extension, but easier than colour

N=3 severe sign problem 

[figure gluons] 



Multiflavor-flavor Schwinger model

Gauss’ law 

Lattice

Continuum 

(How much of the physics does the lattice model retain?)
(cutoff S, lattice spacing a)  
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Multiflavor Schwinger model as prototype model for 
topological gauge-theory phenomena

SuSy Yang-Mills has non-zero gluino condensate
(𝜆= Majorana field, superpartner of gluon) 

�̅�𝜆 ≠ 0

But: path-integral predicts (at small mass) with 𝑍 = ∑1 𝑍1  
         𝑍1 = 𝑧1 	𝑚1	$(

�̅�𝜆 = −𝜕3 ln 𝑍 H
3".

�̅�𝜆 = 0thus

How to reconcile? → need to admit for presence of fractional topological sectors  

Can we probe such fractons in a simpler theory (and on a quantum simulator)? 

topological sectors

�̅�𝜆 = − lim
3→.

𝑧#/$(
𝑧.

common lore: 
𝜈 integer

Shifman, Smilga, PRD 1994



Fractons in multiflavor Schwinger model
Similarly, for 𝑒67∫ 9%:% = const,  𝐴# defined up to different windings

Think of 

# of windings of 𝐴 define topological Pontryagin charge   

True if 
 

𝜈 = #
$!

 𝜈 = − #
$!

 

fracton anti-fracton Topological charge: 
2𝜋/(𝑔𝐿𝑁;)  

Shifman, Smilga, PRD 1994

How to reveal them? 

Existence of fractional windings is known, 
but usually they are confined



Fractional gauge fields through chiral condensate 
Think of 

True if 
 

Path-integral solution for 
chiral condensate 𝑍 = ∑1 𝑍1  with 𝑍1 = 𝑧1 	𝑚)1T𝜓𝜓 = −𝜕3 ln 𝑍 H
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deconfined 
fractons!

2𝜋/(𝑔𝐿𝑁.)  
Topological charge: 

(no individual fractional gauge-field configurations)

1
𝑁;

Do these fractons become relevant? 

Shifman, Smilga, PRD 1994



Fracton field configurations become visible in chiral condensate

continuum 

1 flavor

continuum 

Note: in QED (in contrast to SuSy YM) finite volume 
effect (but slow algebraic decrease)

Formulated positively: Finite volume reveals fractons

2 flavors, 
twisted boundaries 

→ drastically different behavior 
     for 1-flavor and 2-flavor model!

Shifman, Smilga, PRD 1994

2 flavors, 
periodic boundaries 

(at small L)

(breaks chiral 
 symmetry)

Popov, Kasper, Lewenstein, Zohar, Stornati, and Hauke, arXiv:2405.00745 

flavor twisted boundary conditions

breaks chiral symmetry

“torons”



Can we probe that on a quantum simulator? 

1 flavor

continuum 

continuum

numerics 
E-field cutoff = ±3, 𝑎 = 0.05 − 0.5,𝑚 = −1/4 𝑎 = 0.1 − 0.5, 𝑚 = 0 

E-field cutoff = ±3

numerics 

visible already in very coarse 
and highly truncated system! 
→ perfect playground for    
     quantum simulators! 

Shifman, Smilga, PRD 1994

2 flavors, 
periodic boundaries 

2 flavors, 
twisted boundaries 

Popov, Kasper, Lewenstein, Zohar, Stornati, and Hauke, arXiv:2405.00745 



Can we directly see the fractionality?
  

Lattice result 

𝐸.

𝐸#
𝐸)𝑍 =$

1

𝑒61<𝑍1

Periodic under 
𝜃 → 𝜃 + 2𝜋/𝜈 

𝜈 = 1/2 

Periodic bc 

𝐸=

Fidelity 
susceptibility

𝜈 = 1 

twisted bc 

𝐿	 = 4	sites	 + 	4	links 	
𝑆	 = 	2, 𝑒𝑎	 = 	1
.
1
= 	0.4 

• Consistent with small 𝑚 continuum prediction 

• Small sizes and cutoffs ideal for quantum simulators! 

Misumi, Tanizaki, Ünsal, JHEP 2019

• Physics retained, even in non-pertubative regime (3
>
~1) 



Implementing gauge theories with qudits 
Pavel P Popov, Meth, Lewenstein, Hauke, Ringbauer, Zohar, Kasper, 
Phys. Rev. Research 6, 013202 (2024)

Pavel Popov

Starting point: Qudits with cold atoms Kasper, González-Cuadra, Hegde, Xia, Dauphin, Huber, Tiemann, Lewenstein, 
Jendrzejewski, Hauke, Quantum Sci. Technol. 7 015008 (2022) 

For LGTs, see also, e.g., González-Cuadra, Zache, Carrasco, Kraus, Zoller, Phys. Rev. Lett. 129, 160501 (2022)



Lattice gauge theories require lots of degrees of freedom
 

gauge-field (from −cutoff to +cutoff)

matter 
could have 
• spin
• particle/antiparticle
• Flavour
• colour

Solution 1: find minimal models that contain interesting physics

Solution 2: go analog and use additional degrees of freedom

But: quantum computers are (conventionally) lattices of qubits

Google Quantum AI 

Solution 3: compress quantum information 



New development in quantum computing: 
qudit systems are now available  

A universal qudit quantum processor with trapped ions
Ringbauer, Meth, Postler, Stricker, Blatt, Schindler, Monz
Nature Physics 18, 1053 (2022)

Note: qdits developed also, e.g., for SC circuits, Rydbergs, …

?.Ca( ions: 7 levels free for universal computation

Also for quantum optimization, e.g.: 
Deller, Schmitt, Lewenstein, Lenk, Federer, Jendrzejewski, 
Hauke, Kasper, PRA, 2023; Garcia de Andoin, Bottarelli, Schmitt, 
Oregi, Hauke, Sanz, arXiv:2306.04414 (2023) 



Our model system: Abelian 2+1D 
𝐸𝒙,6: (from −cutoff to +cutoff)



Challenge for quantum simulation in 2+1D: 
fermionic statistics

Problem: Jordan-Wigner strings do not vanish in higher spatial 
dimensions → highly non-local interactions

E. Zohar and JI. Cirac, Physical Review B 98 (7), 075119 (2018) 

→ introduce hard-core bosons 𝜂𝒙, plus auxiliary fields

… some unitary transformations later

Solution: Absorb fermionic statistics into gauge fields  

Popov, Meth, Lewenstein, Hauke, Ringbauer, Zohar, 
Kasper, PRR 2024



Unitarily equivalent theory

Fulfils the Gauss’ law for the bosons

In 2+1D

In 1+1D

Local theory

Perfectly fine gauge theory 

Unitarily equivalent to original theory



Further reduce degrees of freedom: 
integrate out matter fields 

Note: in 1+1D can integrate out gauge fields 
𝐸% = 𝐸%0# + 𝑛% + 𝑠%

In 2+1D: charges do no longer uniquely define gauge fields

vacuum +

−

Particle-
antiparticle



Further reduce degrees of freedom: 
integrate out matter fields 

Note: in 1+1D can integrate out gauge fields 
𝐸% = 𝐸%0# + 𝑛% + 𝑠%

In 2+1D: charges do no longer uniquely define gauge fields

vacuum +

−

+

−or ?

Particle-
antiparticle



𝑛% = 𝐸% − 𝐸%0# − 𝑠%

Further reduce degrees of freedom: 
integrate out matter fields 

But: gauge fields uniquely define charges

vacuum

Continuity: what goes in comes out

⇒ no charges present 

Particle-
antiparticle



𝑛% = 𝐸% − 𝐸%0# − 𝑠%

Further reduce degrees of freedom: 
integrate out matter fields 

But: gauge fields uniquely define charges

vacuum +

−

+

−

Continuity: what goes in comes out

⇒ no charges present 

Particle-
antiparticle

⇒ two charges present 



Use this to remove charges from game

2+1D

1+1D

𝑃!,𝒙: projector onto E-field configurations 
 corresponding to physical subspace

flips E-field
But is only allowed to do so, if underlying 
is the correct charge configuration!  

Result: local Hamiltonian of only gauge fields, 
values from –cutoff to +cutoff

(in 1+1D: “complicated way to get PXP Hamiltonian”) 
Bernien et al., 
Surace et al., etc

Unitary transformation

→ qudits! 



Since interactions look complicated, we look at a 
variational algorithm

Evolution within variational manifold: 
Evolution equation for ⟩|𝜓(𝑡)  is traded for evolution equation for 𝜽(𝑡)





Use elementary operations in trapped ion qudits

Pavel P Popov, Meth, Lewenstein, Hauke, Ringbauer, Zohar, Kasper 
arXiv:2307.15173; PRR 2024



Numerical benchmarks 
2+1D, 4 qutrits in a plaquette; for each layer, 4 MS gates. 

Imaginary time 

1 layer

2 layers 3 layers

Pavel P Popov, Meth, Lewenstein, Hauke, Ringbauer, Zohar, Kasper 
arXiv:2307.15173; PRR 2024



Numerical benchmarks 
2+1D, 4 qutrits in a plaquette; for each layer, 4 MS gates. 

Real time 

2 layers
3 layers

4 layers

Pavel P Popov, Meth, Lewenstein, Hauke, Ringbauer, Zohar, Kasper 
arXiv:2307.15173; PRR 2024

Local observable



Conclusions



Take away messages
  Fascinating target within reach: fracton excitations 

Qudits open new ways for efficient quantum simulation, also in 
dimensions higher than 1+1D and for multiple flavors 

Ongoing work: extensions to non-Abelian

Quantum simulators open ways for new observables: witness entanglement 
Panizza, Costa de Almeida, Hauke, JHEP 2022

𝜌/0 =
𝒵#, 𝒵$

𝒵#% , 𝒵$%
entangled

𝑐& 𝒵#, 𝒵$𝑐& 𝒵#% , 𝒵$% 𝑐' 𝒵#, 𝒵$𝑐' 𝒵#% , 𝒵$%

𝑐& 𝑐'

separable

1 flavor

2 flavors, 
twisted boundaries 
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