

June Beamtime Analysis

Hardware meeting 25th July 2024

Fabian Vogel

Setup

- SM1 M40 (irradiated in GIF++ for 3 years)
- 4 tracking MM (3 prec, 1 non-prec.)
- 2 scintillators for coincidence trigger
- 120 GeV pion/proton beam (d=10cm)

Measurement Schedule

Surface Scan (54 positions) of PCB3 at 5 voltages (490 V, 500 V, 510 V, 520 V, 530 V) (NB: ATLAS runs at 505V 100 m below surface ~ 490 V) → Covered by Valerio few weeks ago

Measurement Schedule

- Surface Scan (54 positions) of PCB3 at 5 voltages (490 V, 500 V, 510 V, 520 V, 530 V) (NB: ATLAS runs at 505 V 100 m below surface ~ 490 V) → Covered by Valerio few weeks ago
- Performance investigations under different angles of inclination:
 - → Perpendicular, 10, 15, 20, 24, 29 deg
 - → Voltages: 490 V, 500 V, 510 V, 520 V, 530 V
 - → Focus on comparison of Centroid and Clustertime corrected centroid reconstruction method

Reminder: Clustertime Correction Method

with θ being the angle of inclination

Method developed in PHD Flierl (LMU)

Reminder: Clustertime Correction Method

However: Analytic correction suffers from not yet resolved effects leading to wrong correction factors!

Method developed in PHD Flierl (LMU)

Analytic correction

Analytically "Corrected"

Improvement, but overcorrection by doing it purely analytical!

The easy, brute-force, better way

Pol1 Fit to correct for the correlation (just as correcting for detector misalignments!)

Correction parameters

Correlation parameter p_1 scales linearly with angle \rightarrow Extrapolatable! p_0 is only a shift of the residual \rightarrow easily correctable

Core Residuals

(σ_{core} of double gaussian)

Core Residuals

(σ_{core} of double gaussian)

Centroid

Time Corrected

Better than 200 µm even for 490V at 30 deg!

Summary

Position reconstruction under various angles was investigated:

- Good results <300 µm are obtained using the centroid method with good alignment routine even at 29 deg and 490 V
- Improvement of the resolution using a position reconstruction depending on the Clustertime
- It was shown that the analytical implementation is very error prone and the simpler correction using a pol1 fit should be used
- Resolutions of <200 µm for 490V are achieved (<150 µm for 530 V) at 29 deg of inclination
- Up to 15 deg <100 µm should be possible using this method

Backup: Residual Comparison

