

A three-dimensional ponderomotive guiding center solver in Osiris

Anton Helm¹

ahelm@ipfn.tecnico.ulisboa.pt

R. Fonseca^{1,2}, J. Vieira¹, L. Silva¹

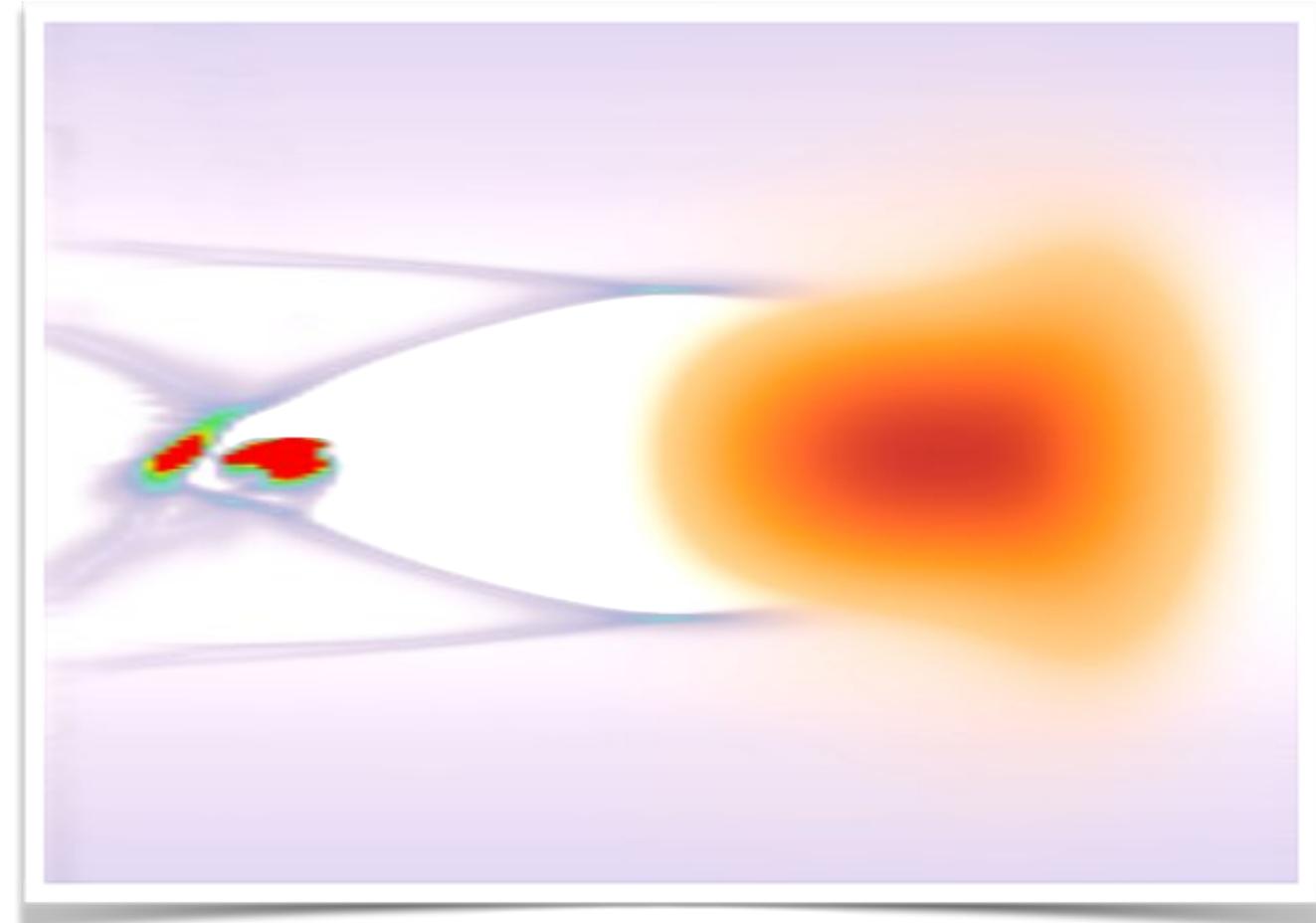
¹ GoLP / Instituto de Plasmas e Fusão Nuclear
Instituto Superior Técnico, Lisbon, Portugal

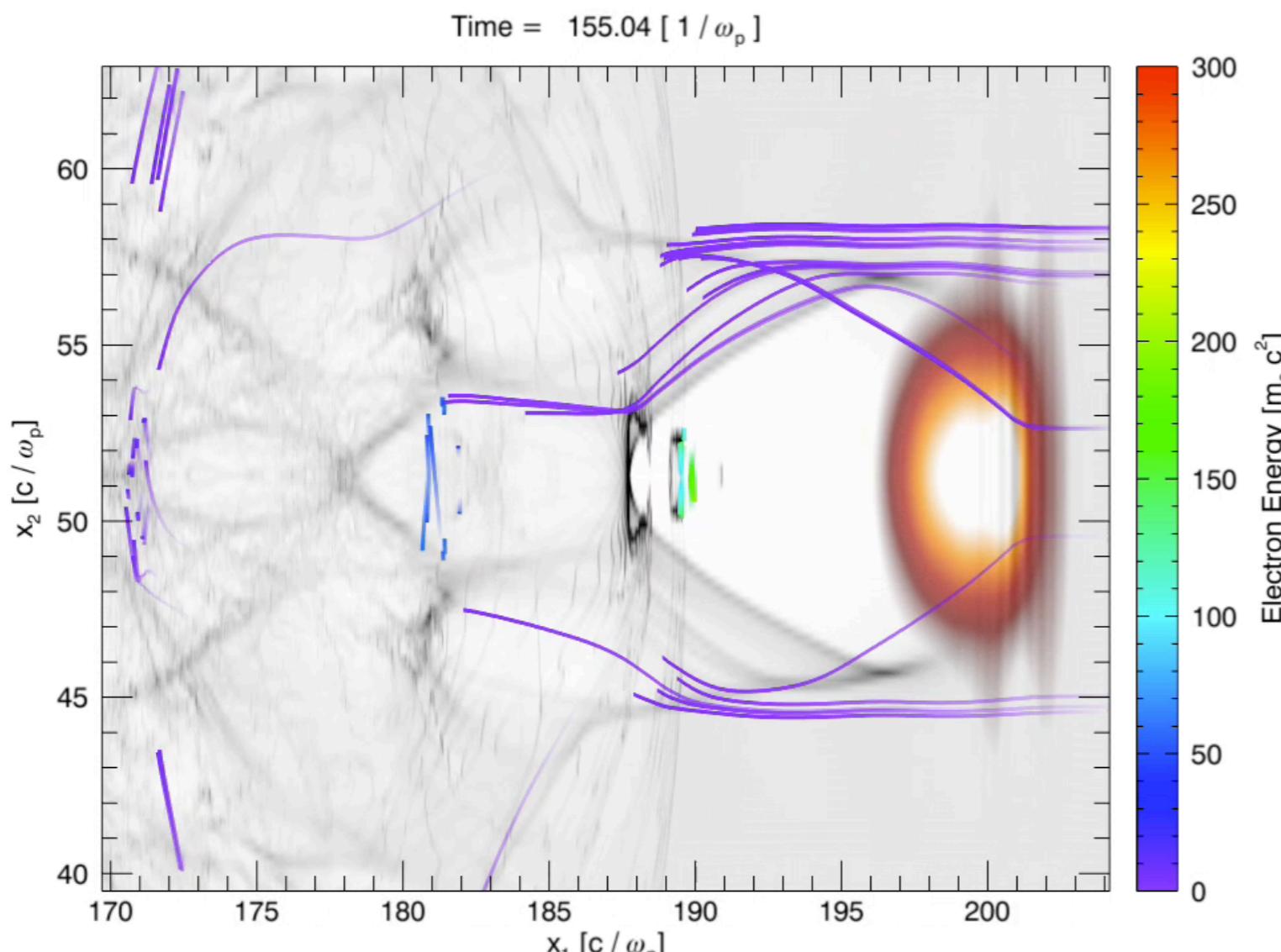
²ISCTE - Instituto Universitário de Lisboa,
Lisbon, Portugal

epp.tecnico.ulisboa.pt || golp.tecnico.ulisboa.pt

ipfn
INSTITUTO DE PLASMAS
E FUSÃO NUCLEAR

Supported by the
Seventh Framework
Program of the
European Union





scale disparity in modeling

multi-scale problems

- ◆ large disparity of spatial/temporal scales

sample problem: 50 GeV LWFA stage

- ◆ $\lambda_0 \sim 1 \mu\text{m} / \lambda_p \sim 17 \mu\text{m}$
- ◆ $L \sim 1.5 \text{ m}$

computational requirements (moving window)

- ◆ $\sim 10^9$ grid cells
- ◆ $\sim 10^{10}$ particles
- ◆ $\sim 10^6 - 10^7$ iterations

requirement for reduced models

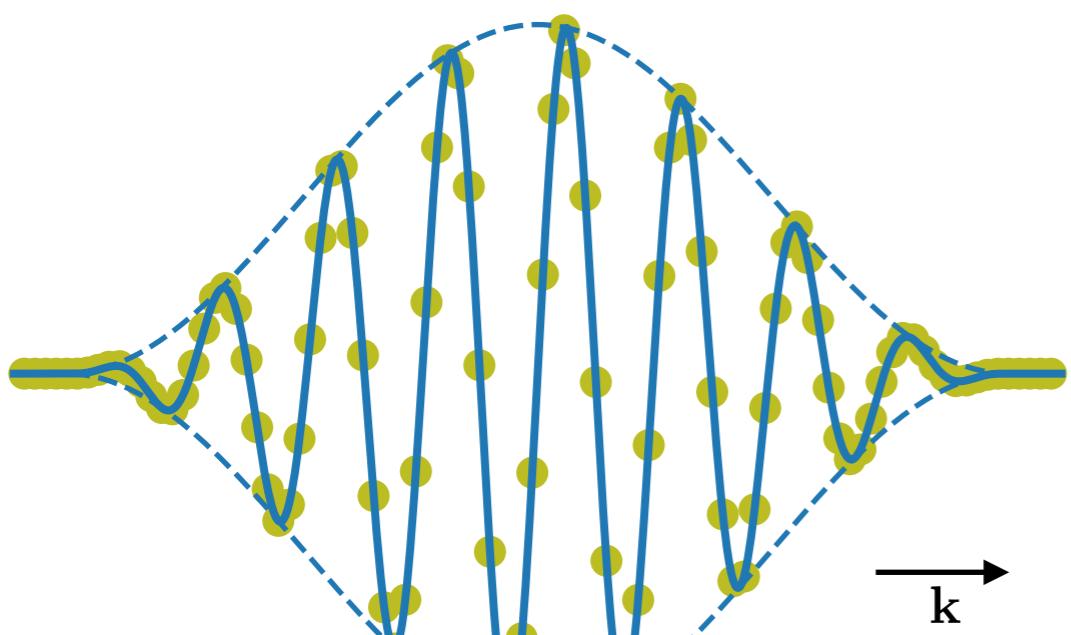
particle-in-cell (PIC)

spatial resolution:
laser wavelength

ponderomotive guiding center (PGC)

$$\frac{\partial \mathbf{E}}{\partial \tau} = c \nabla \times \mathbf{B} - 4\pi \mathbf{j}$$

$$\frac{\partial \mathbf{B}}{\partial \tau} = -c \nabla \times \mathbf{E}$$

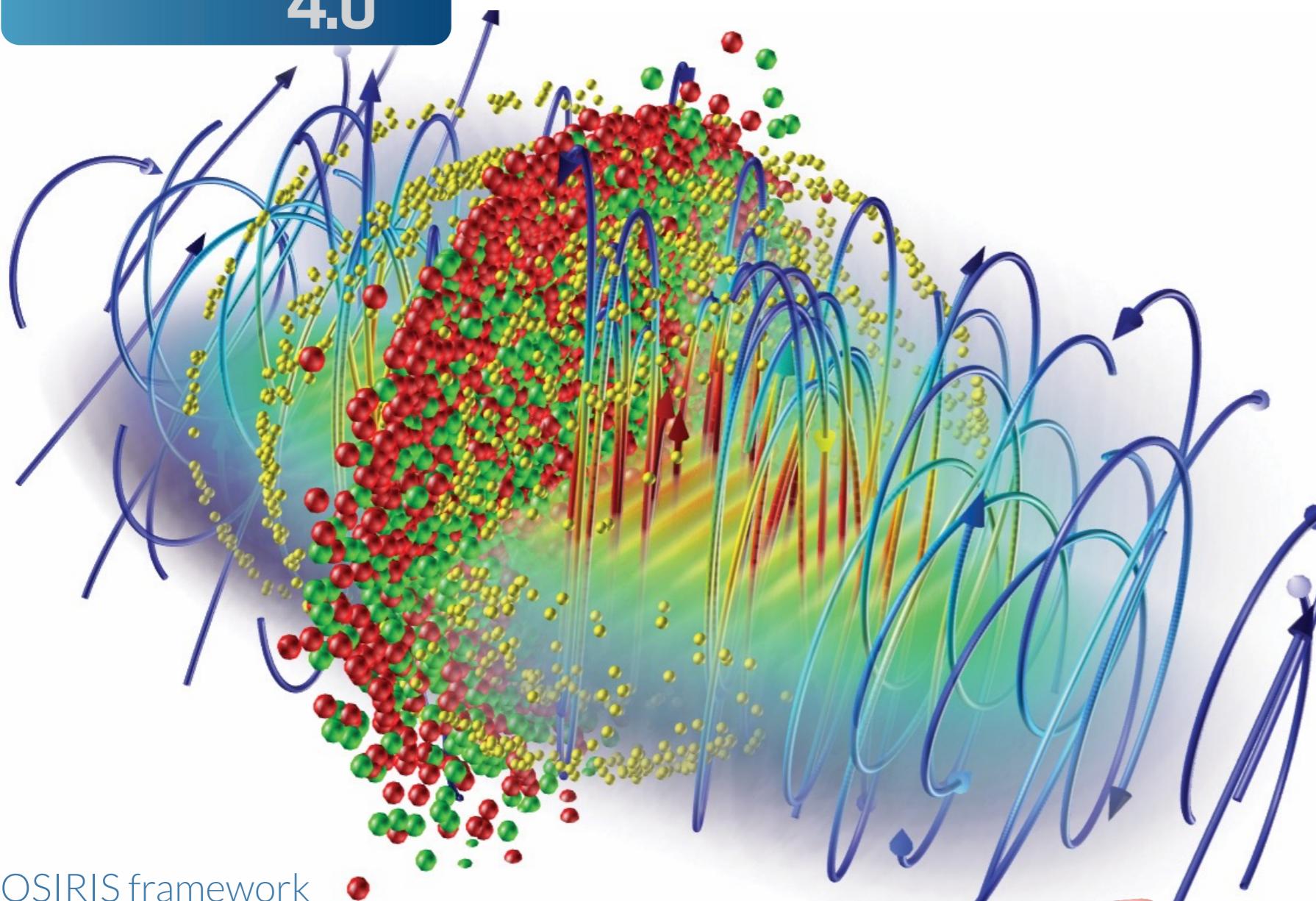


- ♦ resolve laser wavelength over propagation distance
- ♦ particle advancing is based on Lorentz force

$$\text{speedup} \sim (\lambda_p / \lambda_0)^2$$

- ♦ requires model for laser envelope propagation
- ♦ push particles using self consistent plasma fields and ponderomotive force

Osiris 4.0



OSIRIS framework

- Massively Parallel, Fully Relativistic Particle-in-Cell Code
- Parallel scalability to 2 M cores
- Explicit SSE / AVX / QPX / Xeon Phi / CUDA support
- Extended simulation/physics models

Committed to open science

Open-access model

- 40+ research groups worldwide are using OSIRIS
- 300+ publications in leading scientific journals
- Large developer and user community
- Detailed documentation and sample inputs files available

Using OSIRIS 4.0

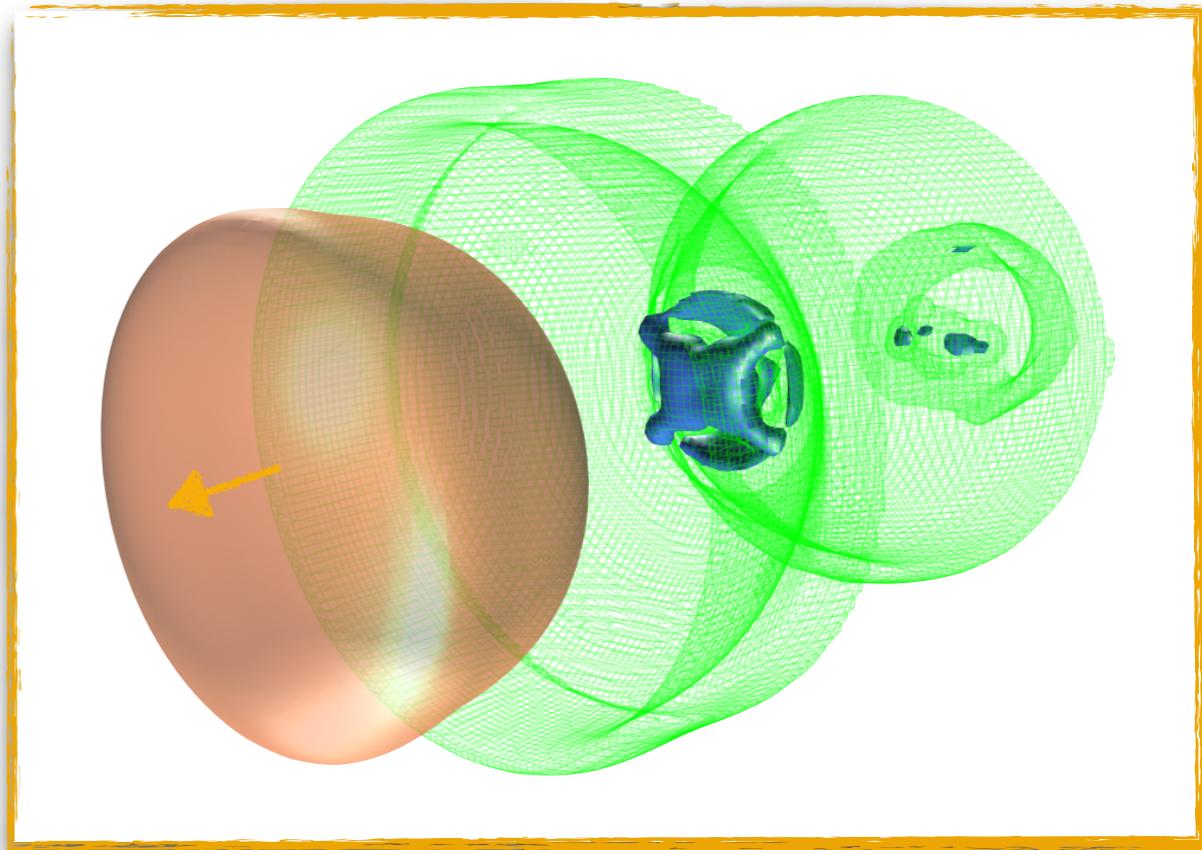
- The code can be used freely by research institutions after signing an MoU
- Find out more at:

<http://epp.tecnico.ulisboa.pt/osiris>

Ricardo Fonseca: ricardo.fonseca@tecnico.ulisboa.pt

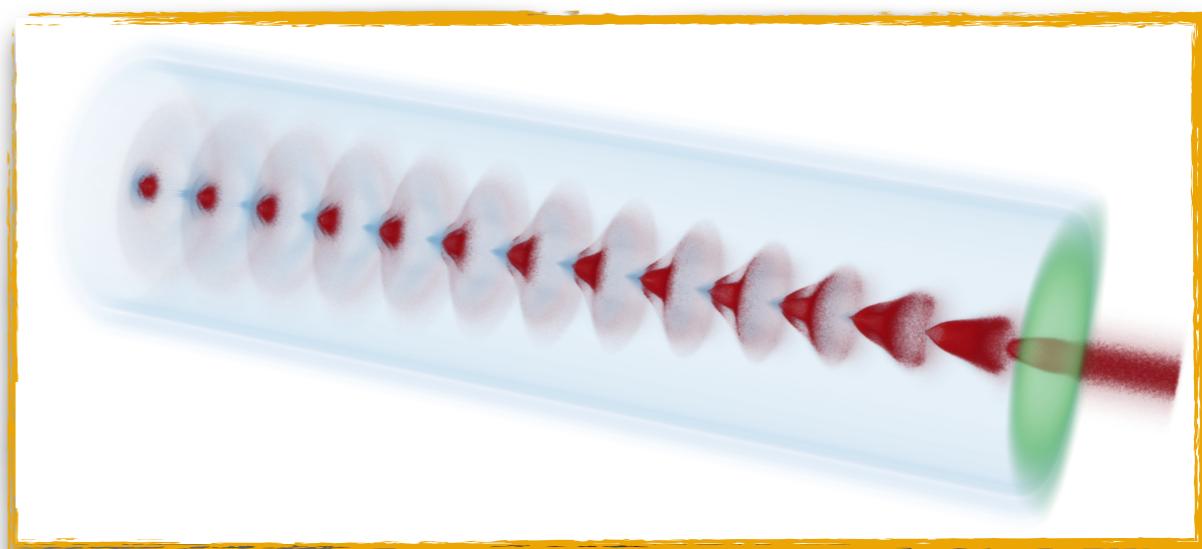
Physical features:

- moving window frame
- 2d cartesian
- 2d cylindrical cartesian
- 3d cartesian
- different laser pulse shapes
- different boundary conditions for transversal direction
- field ionization based on ADK model



Numerical stability and stability control:

- stability condition for envelope equation
- up to 4th order interpolation and deposition schemes
- smoothing for stability control



Parallel performance:

- shared memory parallelization
- distributed memory parallelization
- scalable up to 10^5 cores

Incorporation of PGC into Osiris

numerical stability and control of numerical noise

Parallel scalability of PGC

incorporation of shared and distributed memory parallelization

Physical applicability for PGC

down-ramp injection with PGC and full scale modeling of self-modulation instability

Incorporation of PGC into PIC cycle

PGC extension

- ◆ time-averaged equation for laser evolution*,** in a co-moving frame

$$2i\omega_0\partial_\tau a = \left(1 + \frac{\partial_\xi}{i\omega_0}\right) (\chi a + \nabla_\perp^2 a)$$

♦ particle advancing

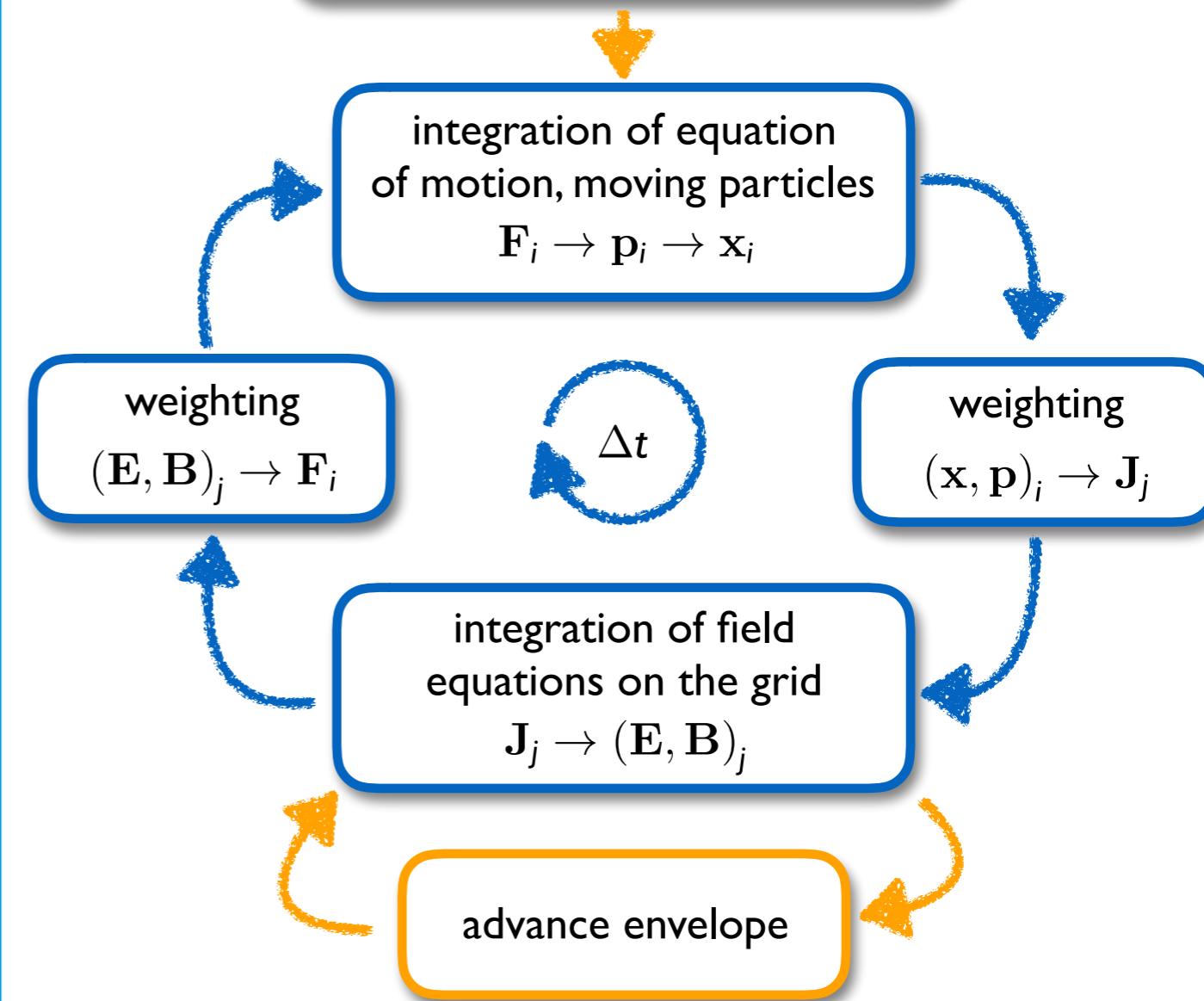
$$\mathbf{F}_p = -\frac{1}{4} \frac{q^2}{\langle m \rangle} \nabla |a|^2$$

♦ coupling parameters

$$\chi = - \sum_i \frac{q_i \rho_i}{\langle m_i \rangle}$$

extended PIC algorithm

extend equation of motion to include ponderomotive force



* P. Mora and T. M. Antonsen, PRL 53, R2068 (1996)

** P. Mora and T. M. Antonsen, AIP 4, 217 (1997)

Incorporation of PGC into PIC cycle

PGC extension

- ♦ time-averaged equation for laser evolution*,** in a co-moving frame

$$2i\omega_0 \partial_\tau a = \left(1 + \frac{\partial_\xi}{i\omega_0}\right) (\chi a + \nabla_\perp^2 a)$$

laser frequency

laser envelope

- ♦ particle advancing

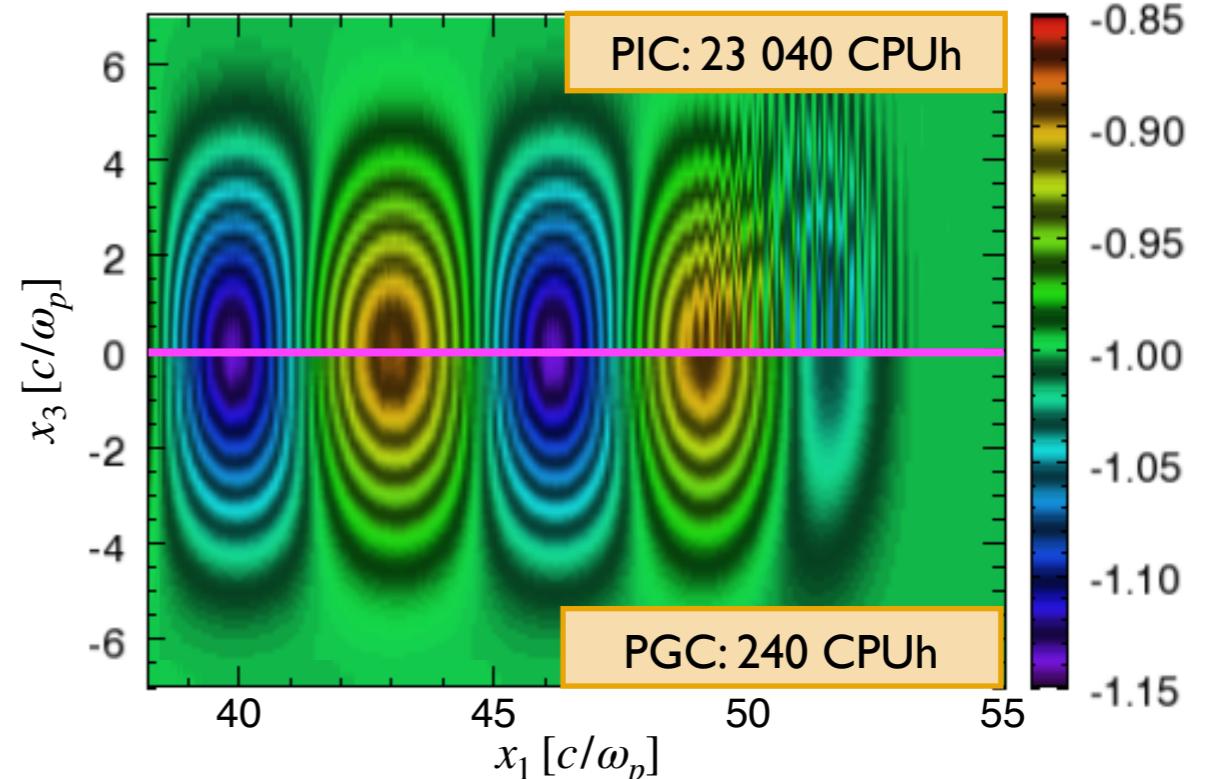
$$\mathbf{F}_p = -\frac{1}{4} \frac{q^2}{\langle m \rangle} \nabla |a|^2$$

- ♦ coupling parameters

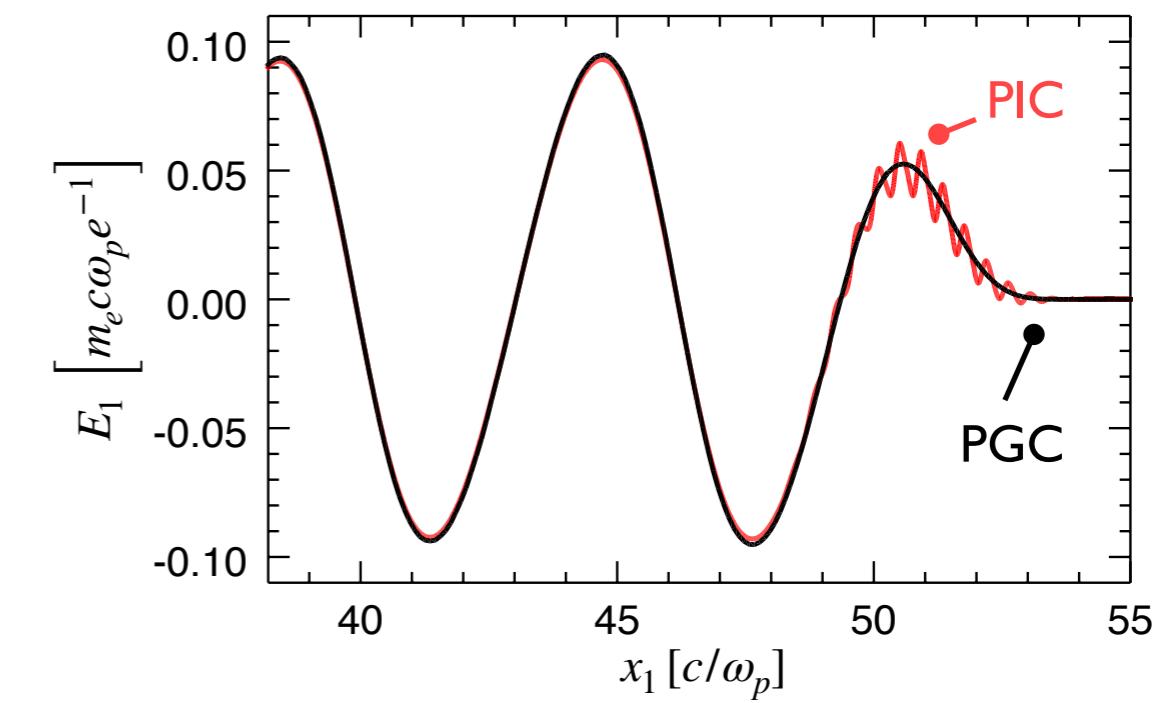
$$\chi = - \sum_i \frac{q_i \rho_i}{\langle m_i \rangle}$$

$$\langle m \rangle = \sqrt{m_0^2 + \mathbf{p}^2 + (q|a|)^2 / 2}$$

electron density (slice)



accelerating field



* P. Mora and T. M. Antonsen, PRL 53, R2068 (1996)

** P. Mora and T. M. Antonsen, AIP 4, 217 (1997)

Courant-Friedrichs-Lowy (CFL)

$$\Delta t \leq \sqrt{1/(1/\Delta x)^2 + (1/\Delta y)^2 + (1/\Delta z)^2}$$

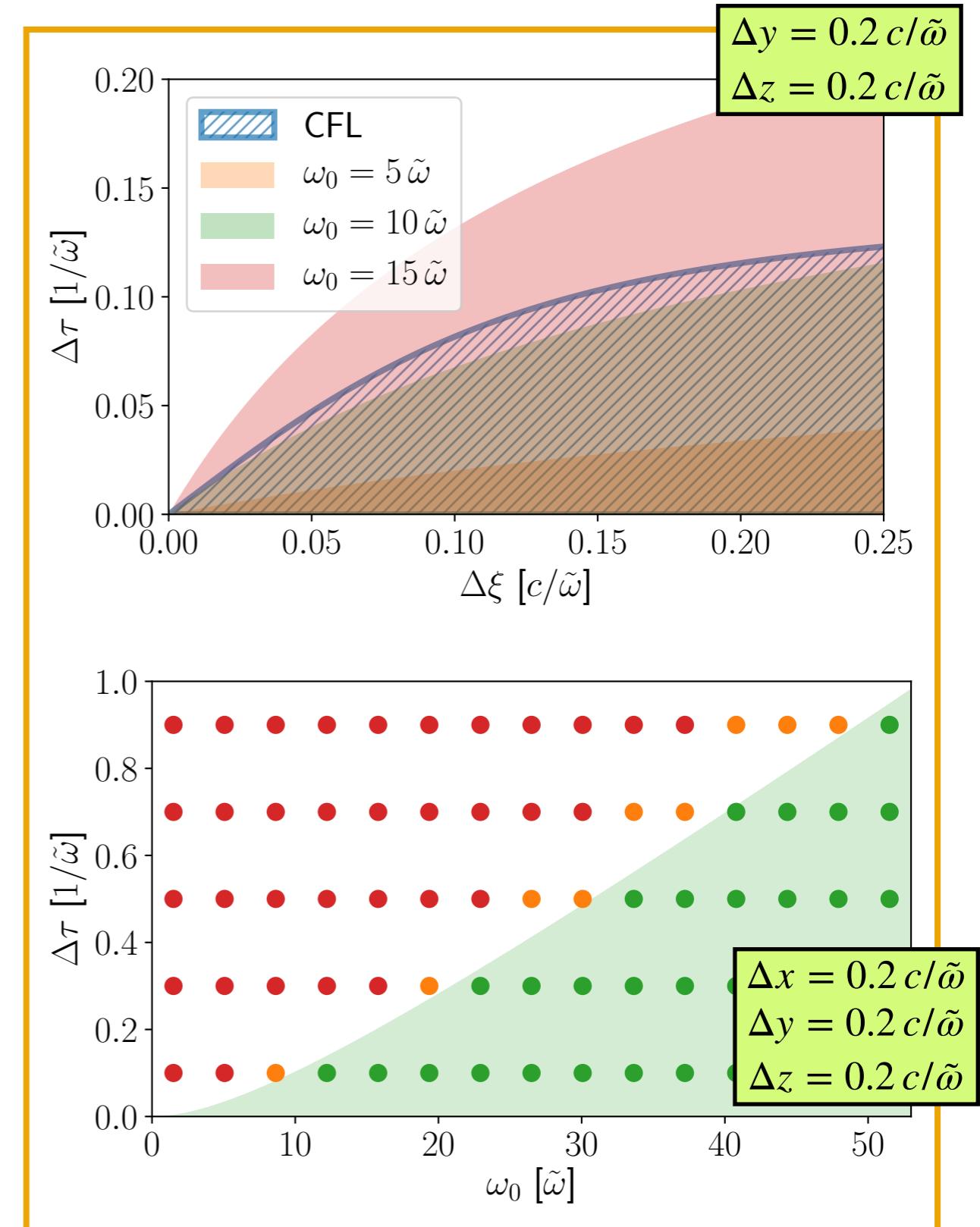
- ◆ necessary condition for stability of Maxwell solver
- ◆ does not depend on physical parameters

vacuum stability condition

- ◆ implicit solver for advancing of the envelope
- ◆ von-Neumann analysis for stability condition
- ◆ stability condition for the vacuum case

$$\Delta\tau^2 \leq \frac{\Delta y^4 \Delta z^4 \Delta\xi^2 \omega_0^4}{4 (\Delta z^2 + \Delta y^2 (1 + \Delta\xi \omega_0))^2 - \Delta y^4 \Delta\xi^2 \omega_0^2}$$

- ◆ stability depends on the laser frequency
- ◆ for higher frequencies the envelope equation becomes "more stable"



numerical error

$$2i\omega_0 \partial_\tau \epsilon_{ijk}^n = \left(1 + \frac{\partial_\xi}{i\omega_0}\right) \left(\chi \epsilon_{ijk}^n + \nabla_\perp^2 \epsilon_{ijk}^n\right)$$

◆ plasma parameter:

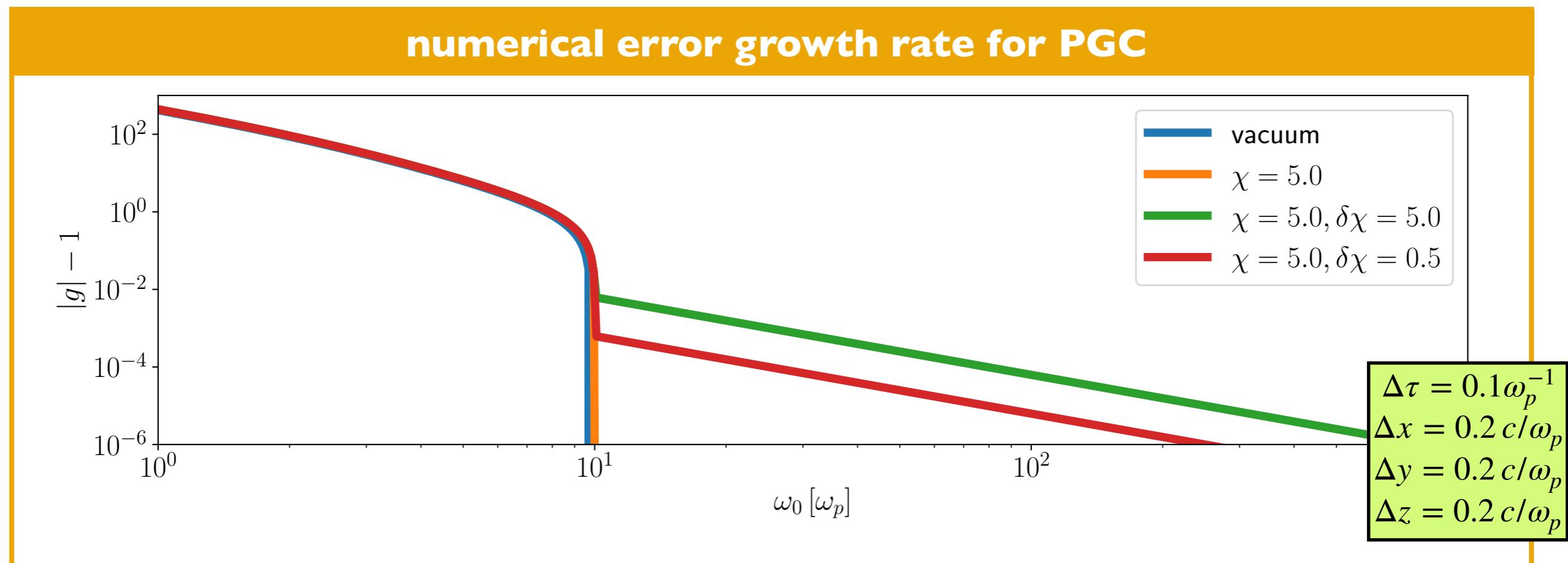
$$\chi \equiv \chi_{ijk} \sim \mathcal{O}(\rho)$$

◆ numerical stable:

$$|g| = |\epsilon^{n+1}/\epsilon^n| \leq 1$$

◆ plasma gradients:

$$\delta\chi \equiv \chi_{(i+1),j,k} - \chi_{(i-1),j,k}$$

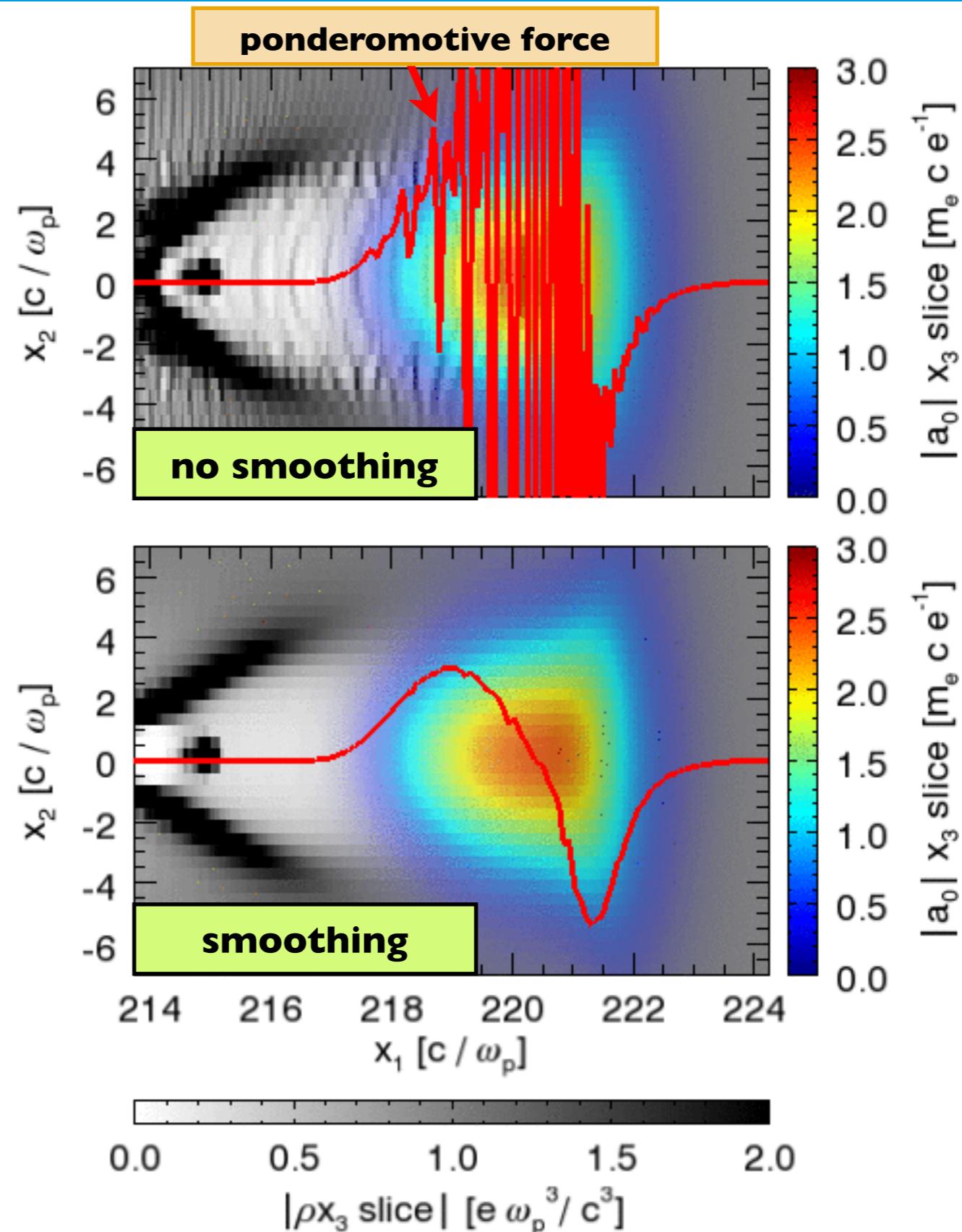


particle interpolation order

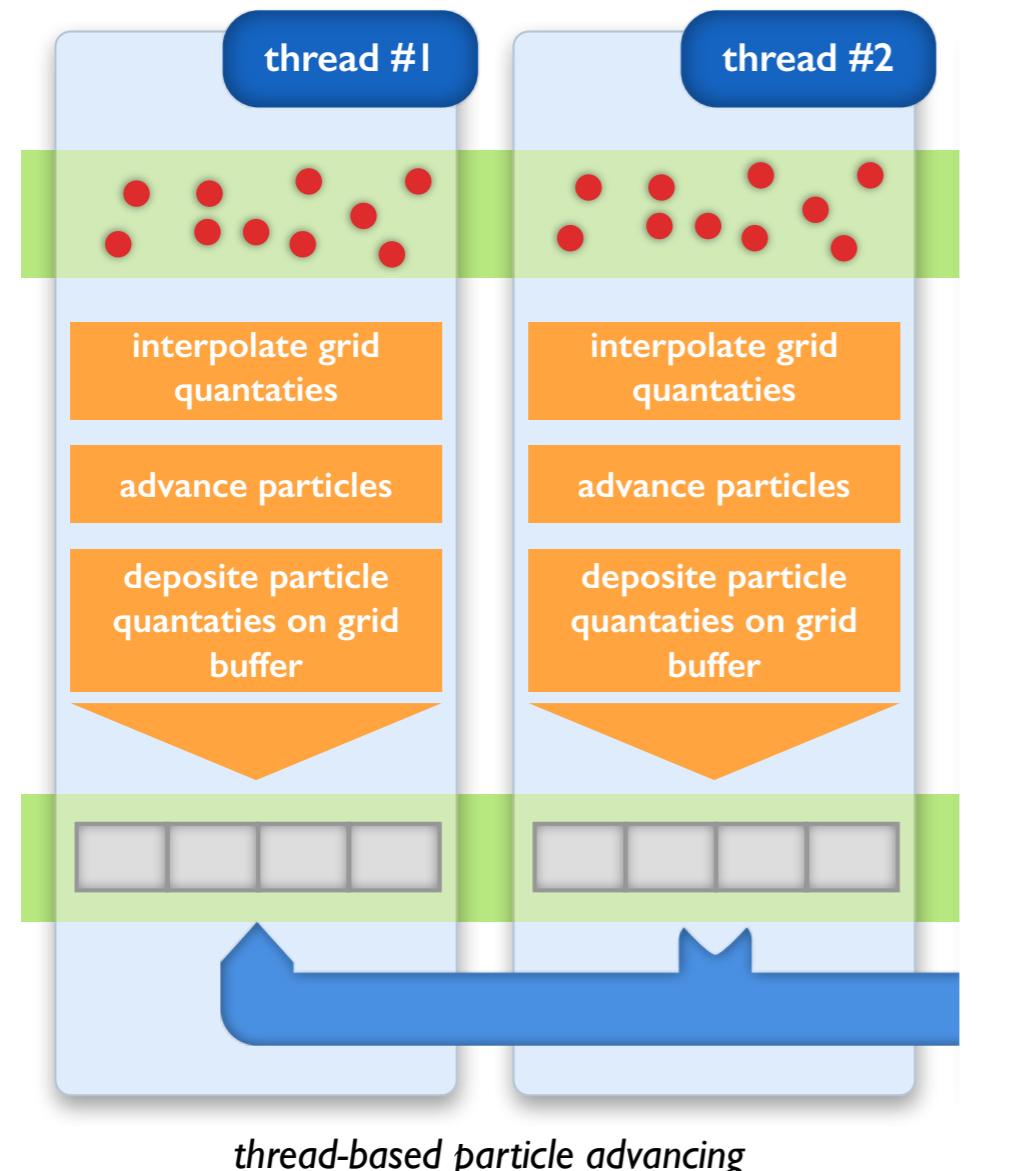
- ◆ current implementation matches interpolation order of PIC cycle (up to 4th order)
- ◆ field interpolation increases precision of ponderomotive force influence
- ◆ chi deposition increases stability especially in longitudinal direction

smoothing of PGC quantities

- ◆ allows explicit control of numerical noise
- ◆ includes several filters to control the noise level and cutoff of the noise
- ◆ smoothable quantities:
 - ▶ plasma parameter chi
 - ▶ ponderomotive force
 - ▶ laser envelope

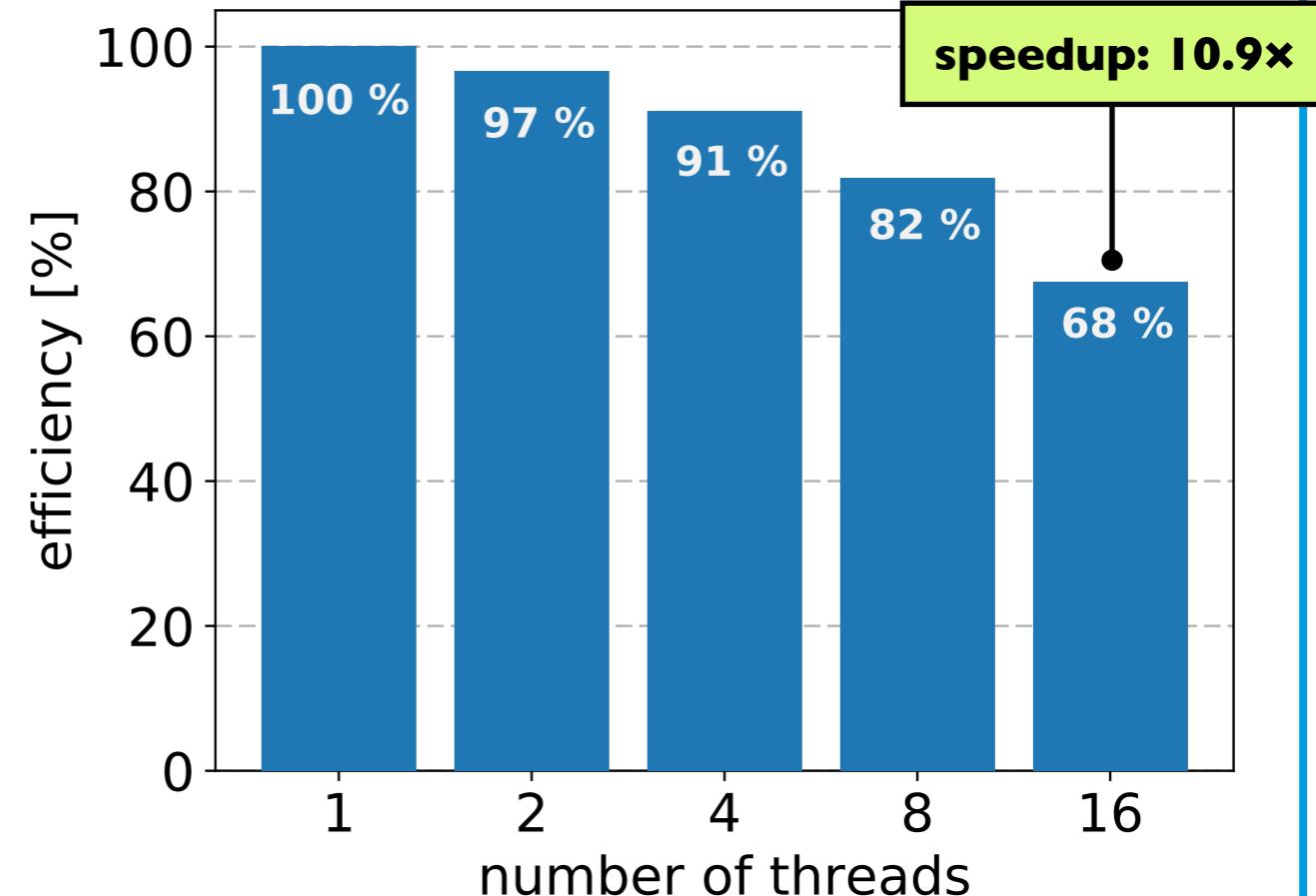


shared memory parallelization



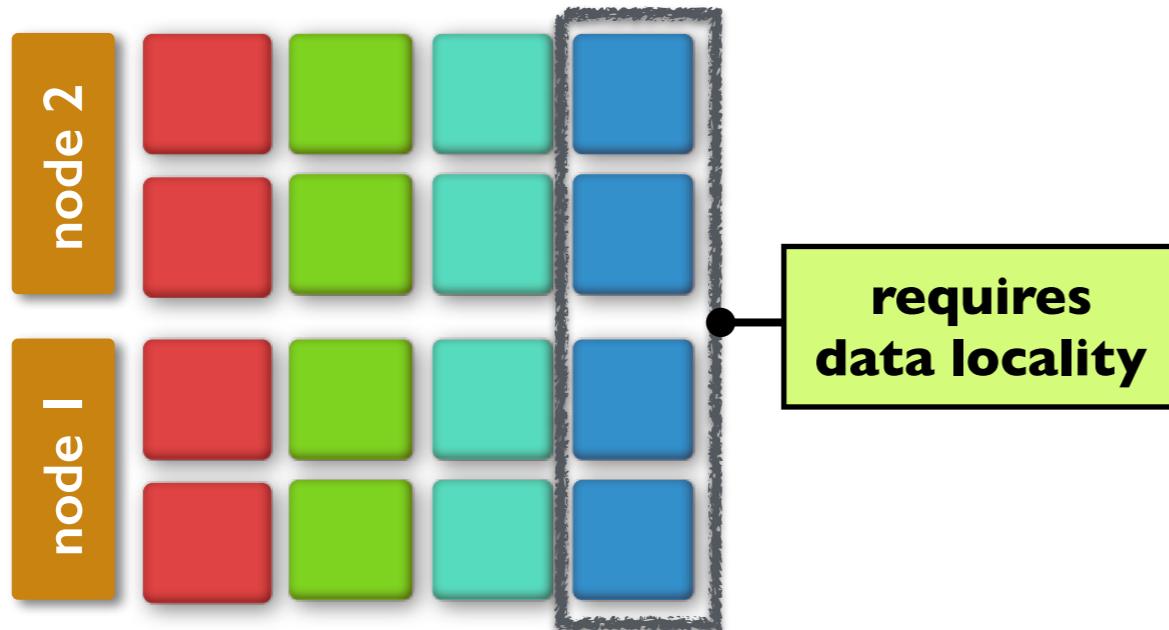
- ✓ data sharing between threads is fast
- ✓ envelope solver can be parallelized easily
- ✗ lack of scalability between memory and cores
- ✗ memory is limited to cores and does not scale

thread-based strong scaling



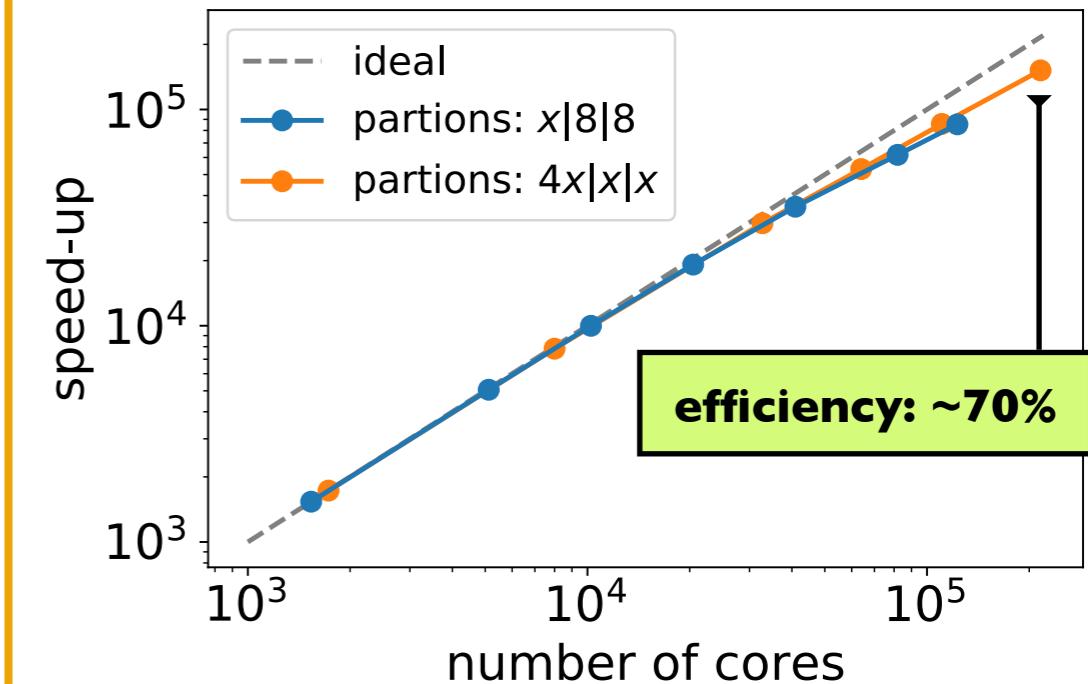
- ◆ JUQUEEN (IBM BlueGene/Q) - 16 cores per node
- ◆ number of cores: 32 / 64 / 128 / 256 / 512
- ◆ 500 time steps - 608x152x152 cells and 8 ppc
- ◆ using distributed parallelization in longitudinal direction
- ✓ scaling over one order of cores using shared memory parallelization

distributed memory parallelization

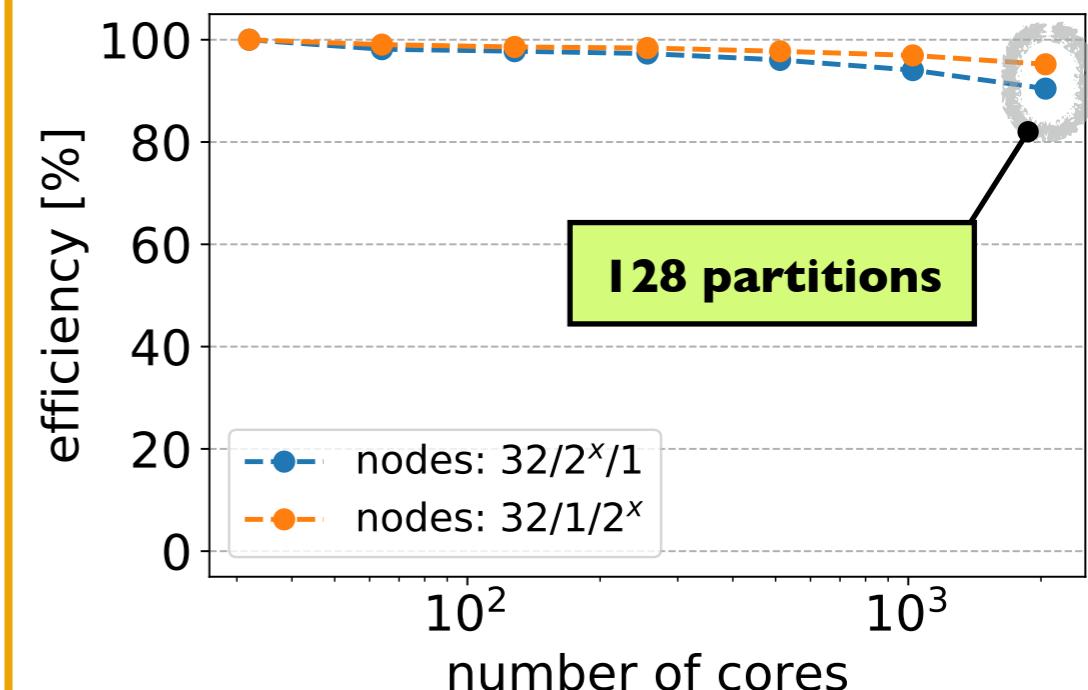


- ◆ advancing the envelope requires data locality in transversal direction due to implicit finite difference scheme
- ◆ data locality can be achieved through a transpose operation
- ◆ scaling tests were carried out on JUQUEEN
 - ▶ 16 cores per node / no threading (IBM BlueGene/Q)
- ◆ strong scaling: $15360 \times 240 \times 240$ with 8 ppc and 500 steps
- ◆ weak scaling: 10 cells in x_2 and 50 cells in x_3
- ✓ PGC scales from 1536 to 216000 with >70% efficiency

strong scaling

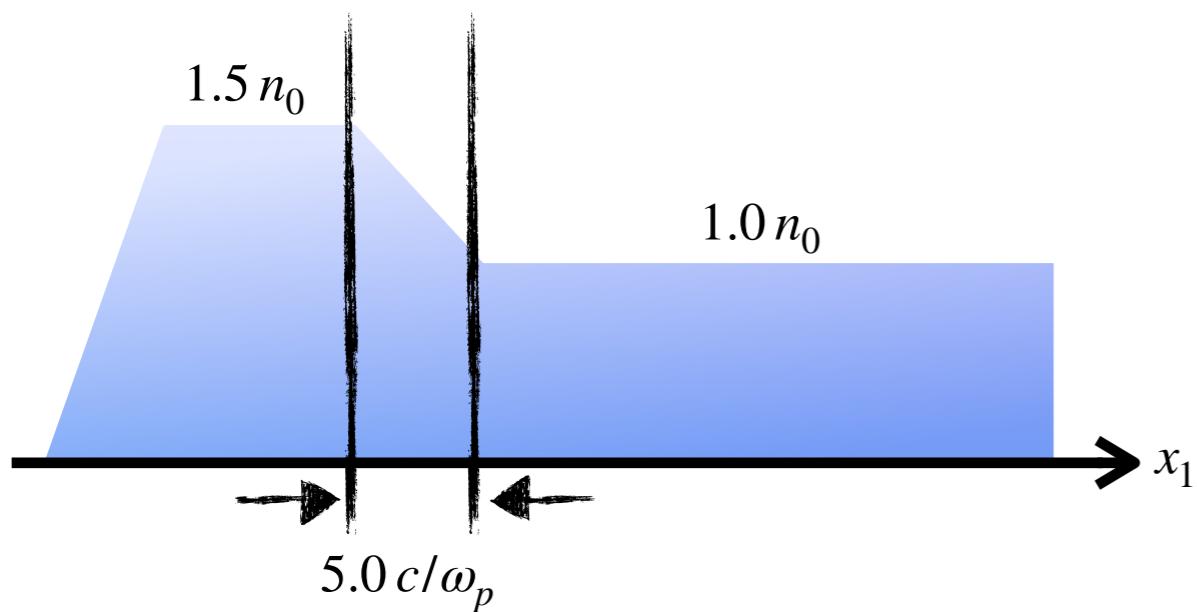


weak scaling



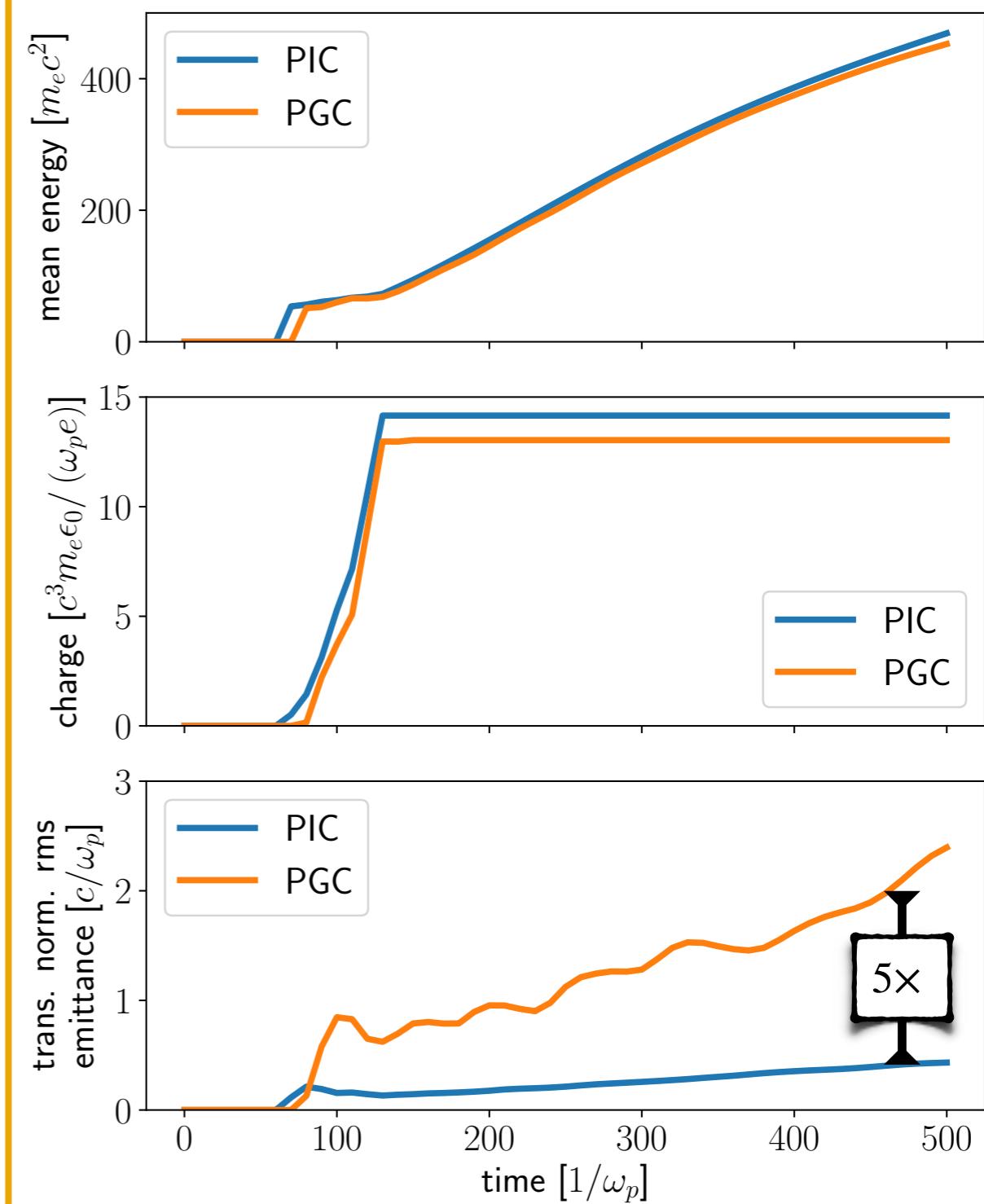
down ramp injection case

density profile:

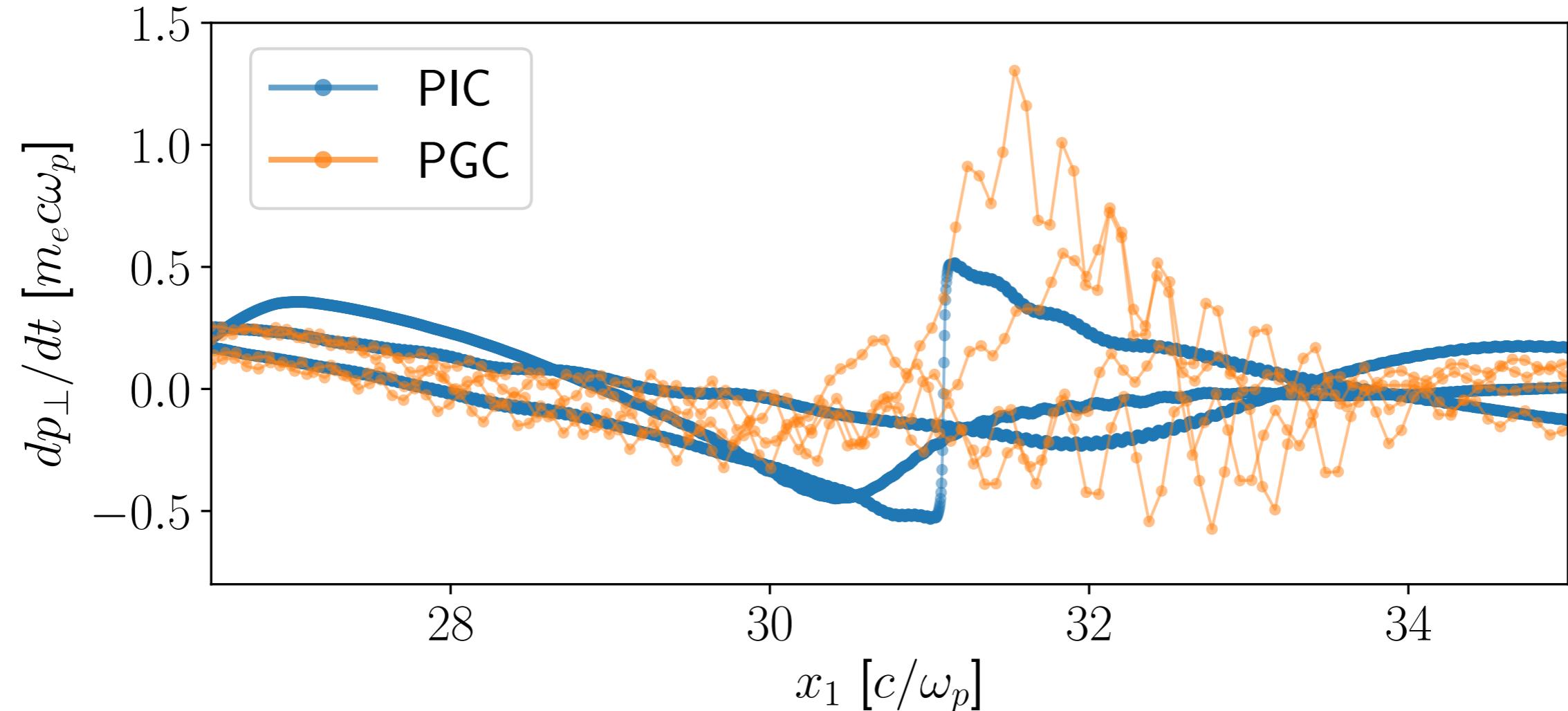


- ◆ PGC allows to perform parametric studies with a fraction of computational costs compared to PIC
- ◆ attractive tool for design studies like EuPRAXIA
- ◆ comparison of PGC vs. PIC:
 - ▶ identical transversal resolution
 - ▶ longitudinal resolution: $\Delta\xi_{\text{PIC|PGC}} = \lambda_{0|p} / 62$
 - ▶ injected electron bunch with $\gamma > 50$
 - ▶ mean energy and charge are in agreement
 - ▶ emittance 5x higher for PGC

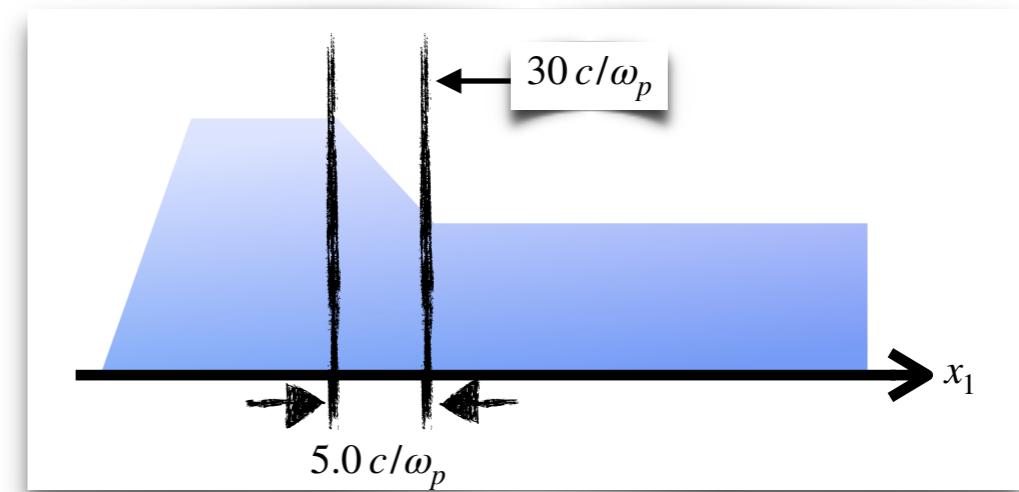
injected beam properties



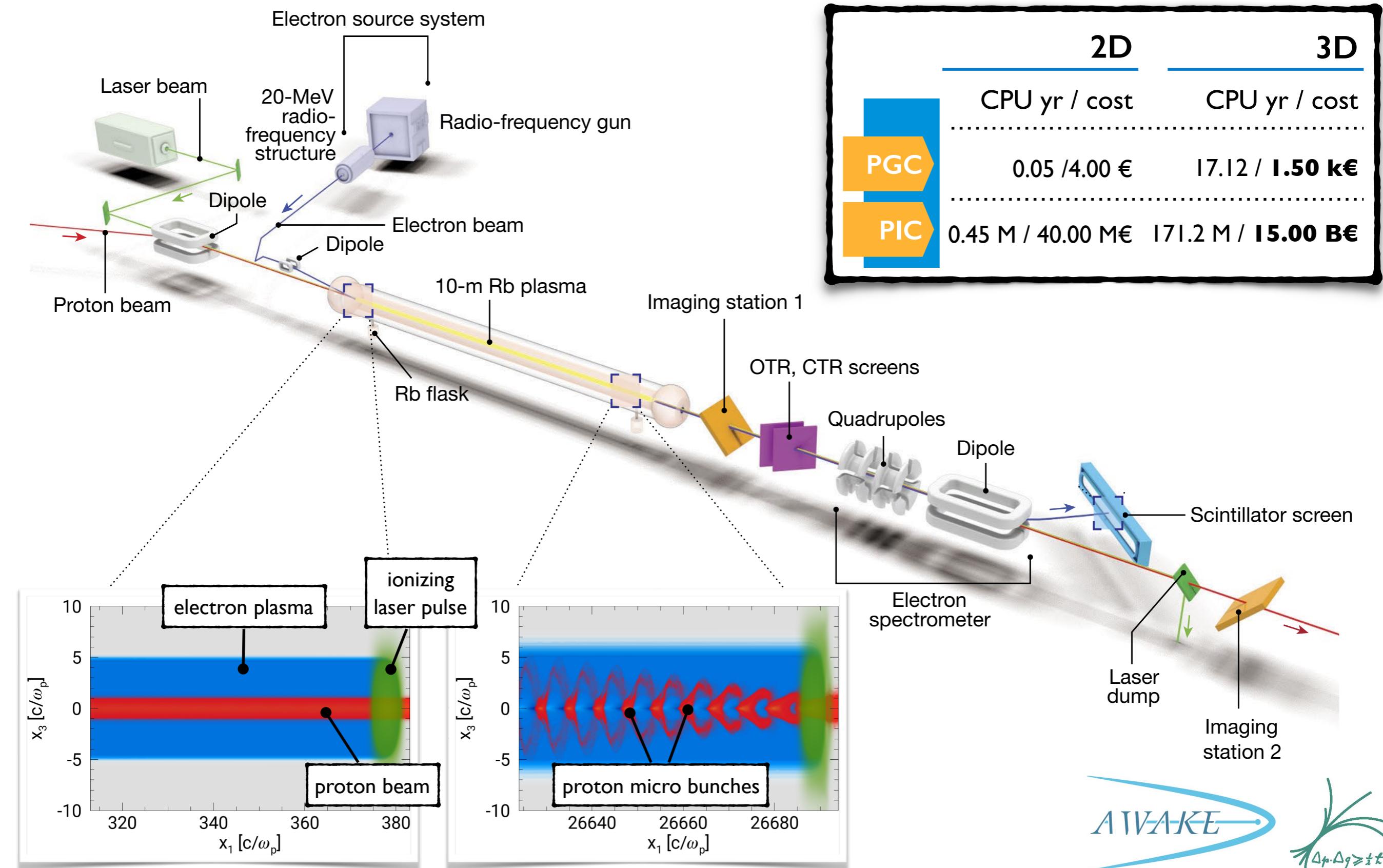
Temporal resolution leads to higher emittance

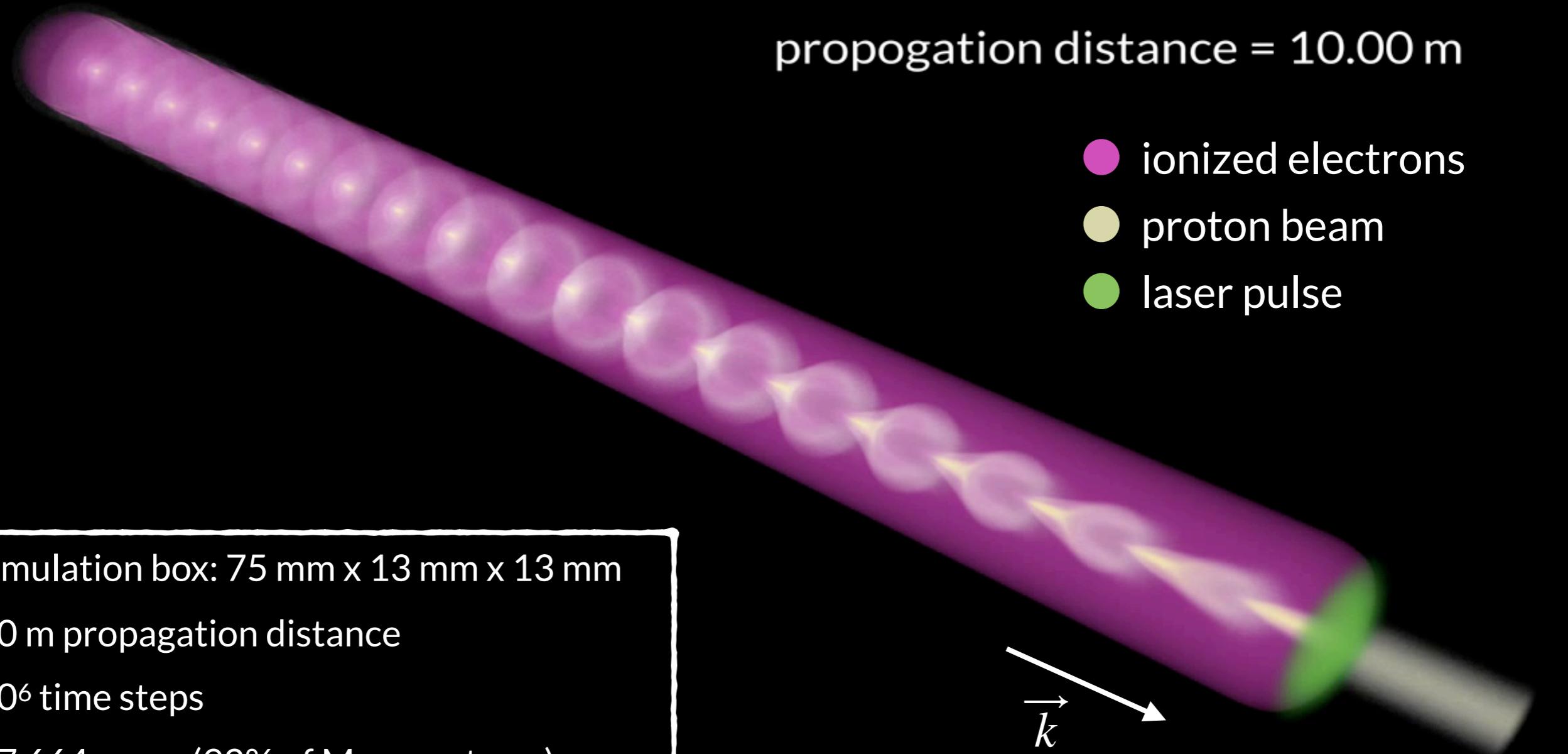


- ◆ fields structure is described on long scales associated to plasma scales
- ◆ plasma scales are resolved by PGC
- ◆ temporal resolution for PGC case is reduced by λ_p/λ_0



Acceleration of electrons in the plasma wakefield of a proton bunch*





- simulation box: 75 mm x 13 mm x 13 mm
- 10 m propagation distance
- 10^6 time steps
- 17 664 cores (92% of Marenostrum)
- ~3M CPUh

Numerical stability and control

- in general PGC is unconditionally unstable if plasma gradients are present
- control can be provided by applying smoothing filters

Scale disparity can be overcome with reduced models for LWFA

- important for parametric studies of LWFA
- for cases where $\omega_0/\omega_p \gg 1$

Parallel scalability

- using shared memory parallelization, PGC can scaled over one order of magnitude
- using distributed memory parallelization, PGC can be scaled over 10^5 cores
- PGC and parallel scalability is required for full study of experiments like AWAKE

Simulation results obtained on JUQUEEN (JSC), Cori (NERSC/LBNL) and Marenostrum (BSC)

Work partially supported by Portuguese FCT (Fundação para a Ciência e a Tecnologia) through grant PD/BD/105882/2014 (PD-FAPPLAuSE) and PTDC/FIS-PLA/2940/2014