A three-dimensional ponderomotive guiding center solver in Osiris

Anton Helm
ahelm@ipfn.tecnico.ulisboa.pt

R. Fonseca, J. Vieira, L. Silva

1 GoLP / Instituto de Plasmas e Fusão Nuclear
Instituto Superior Técnico, Lisbon, Portugal

2 ISCTE - Instituto Universitário de Lisboa, Lisbon, Portugal

epp.tecnico.ulisboa.pt || golp.tecnico.ulisboa.pt
Scale disparities in LWFA modeling

- **multi-scale problems**
 - large disparity of spatial/temporal scales

- **sample problem: 50 GeV LWFA stage**
 - $\lambda_0 \sim 1 \mu m$, $\lambda_p \sim 17 \mu m$
 - $L \sim 1.5 m$

- **computational requirements**
 - (moving window)
 - $\sim 10^9$ grid cells
 - $\sim 10^{10}$ particles
 - $\sim 10^6 - 10^7$ iterations

requirement for reduced models
Envelope approximation reduces spatial resolution

particle-in-cell (PIC)

- **spatial resolution:**
 - laser wavelength

 ✦ resolve laser wavelength over propagation distance
 ✦ particle advancing is based on Lorentz force

ponderomotive guiding center (PGC)

\[
\frac{\partial E}{\partial \tau} = c \nabla \times B - 4\pi j
\]
\[
\frac{\partial B}{\partial \tau} = -c \nabla \times E
\]

- **spatial resolution:**
 - plasma skin depth

 ✦ requires model for laser envelope propagation
 ✦ push particles using self consistent plasma fields and ponderomotive force

speedup \[\sim (\lambda_p/\lambda_0)^2\]
Committed to open science

Open-access model
- 40+ research groups worldwide are using OSIRIS
- 300+ publications in leading scientific journals
- Large developer and user community
- Detailed documentation and sample inputs files available

Using OSIRIS 4.0
- The code can be used freely by research institutions after signing an MoU
- Find out more at: http://epp.tecnico.ulisboa.pt/osiris

OSIRIS framework
- Massively Parallel, Fully Relativistic Particle-in-Cell Code
- Parallel scalability to 2 M cores
- Explicit SSE / AVX / QPX / Xeon Phi / CUDA support
- Extended simulation/physics models

Ricardo Fonseca: ricardo.fonseca@tecnico.ulisboa.pt
Major features of PGC in OSIRIS

Physical features:
- moving window frame
- 2d cartesian
- 2d cylindrical cartesian
- 3d cartesian
- different laser pulse shapes
- different boundary conditions for transversal direction
- field ionization based on ADK model

Numerical stability and stability control:
- stability condition for envelope equation
- up to 4th order interpolation and deposition schemes
- smoothing for stability control

Parallel performance:
- shared memory parallelization
- distributed memory parallelization
- scalable up to 10^5 cores
Outline

- **Incorporation of PGC into Osiris**
 numerical stability and control of numerical noise

- **Parallel scalability of PGC**
 incorporation of shared and distributed memory parallelization

- **Physical applicability for PGC**
 down-ramp injection with PGC and full scale modeling of self-modulation instability
Incorporation of PGC into PIC cycle

PGC extension

- time-averaged equation for laser evolution* in a co-moving frame

\[2i\omega_0 \partial_\tau a = \left(1 + \frac{\partial_\tau}{i\omega_0} \right) (\chi a + \nabla^2 a) \]

laser frequency laser envelope

- particle advancing

\[F_p = -\frac{1}{4} q^2 \frac{1}{\langle m \rangle} \nabla |a|^2 \]

- coupling parameters

\[\chi = -\sum_i \frac{q_i \rho_i}{\langle m_i \rangle} \]

\[\langle m \rangle = \sqrt{m_0^2 + p^2 + (q|a|)^2} / 2 \]

extended PIC algorithm

extend equation of motion to include ponderomotive force

integration of equation of motion, moving particles

\[F_i \rightarrow p_i \rightarrow x_i \]

weighting

\[(E, B)_j \rightarrow F_i \]

integration of field equations on the grid

\[J_j \rightarrow (E, B)_j \]

weighting

\[(x, p)_i \rightarrow J_j \]

advance envelope

** P. Mora and T. M. Antonsen, AIP 4, 217 (1997)
Incorporation of PGC into PIC cycle

PGC extension

- time-averaged equation for laser evolution* in a co-moving frame

\[2i\omega_0 \partial_\tau a = \left(1 + \frac{\partial_\xi}{i\omega_0} \right) (\chi a + \nabla_\perp^2 a) \]

\(\omega \) - laser frequency
\(a \) - laser envelope

- particle advancing

\[\mathbf{F}_p = -\frac{1}{4} q^2 \langle m \rangle \nabla |a|^2 \]

- coupling parameters

\[\chi = -\sum_i \frac{q_i \rho_i}{\langle m_i \rangle} \]

\[\langle m \rangle = \sqrt{m_0^2 + p^2 + (q|a|)^2 / 2} \]

** P. Mora and T. M. Antonsen, AIP 4, 217 (1997)
Stability of the envelope solver depends on laser frequency

Courant-Friedrichs-Lewy (CFL)

\[\Delta t \leq \sqrt{\frac{1}{(1/\Delta x)^2} + (1/\Delta y)^2 + (1/\Delta z)^2} \]

- necessary condition for stability of Maxwell solver
- does not depend on physical parameters

vacuum stability condition

- implicit solver for advancing of the envelope
- von-Neumann analysis for stability condition
- stability condition for the vacuum case

\[\Delta \tau^2 \leq \frac{\Delta y^4 \Delta z^4 \Delta \xi^2 \omega_0^4}{4 \left(\Delta z^2 + \Delta y^2 (1 + \Delta \xi \omega_0) \right)^2 - \Delta y^4 \Delta \xi^2 \omega_0^2} \]

- stability depends on the laser frequency
- for higher frequencies the envelope equation becomes “more stable"
Plasma gradients lead to numerical instabilities

\[2i\omega_0 \partial_\tau e^n_{ijk} = \left(1 + \frac{\partial_\tau}{i\omega_0} \right) \left(\chi e^n_{ijk} + \nabla^2 e^n_{ijk} \right) \]

- numerical stable:
 \[|g| = |e^{n+1}/e^n| \leq 1 \]

- plasma parameter:
 \[\chi \equiv \chi_{ijk} \sim \mathcal{O}(\rho) \]

- plasma gradients:
 \[\delta\chi \equiv \chi_{(i+1),j,k} - \chi_{(i-1),j,k} \]

numerical error growth rate for PGC

- vacuum: \(\Delta\tau = 0.1\omega_p^{-1} \)
- \(\chi = 5.0 \):
 - \(\Delta x = 0.2 c/\omega_p \)
 - \(\Delta y = 0.2 c/\omega_p \)
 - \(\Delta z = 0.2 c/\omega_p \)

* A. Helm et al., to be submitted (2019)
Stability control for PGC

particle interpolation order
- current implementation matches interpolation order of PIC cycle (up to **4th order**)
- field interpolation increases preciseness of ponderomotive force influence
- chi deposition increases stability especially in longitudinal direction

smoothing of PGC quantities
- allows explicit control of numerical noise
- includes several filters to control the noise level and cutoff of the noise
- smoothable quantities:
 - plasma parameter chi
 - ponderomotive force
 - laser envelope
Shared memory parallelization for PGC

thread-based particle advancing

- ✔ data sharing between threads is fast
- ✔ envelope solver can be parallelized easily
- ❌ lack of scalability between memory and cores
- ❌ memory is limited to cores and does not scale

thread-based strong scaling

- ✦ JUQUEEN (IBM BlueGene/Q) - 16 cores per node
- ✦ number of cores: 32 / 64 / 128 / 256 / 512
- ✦ 500 time steps - 608x152x152 cells and 8 ppc
- ✦ using distributed parallelization in longitudinal direction
- ✔ scaling over one order of cores using shared memory parallelization

speedup: 10.9×
Parallelization is scalable over thousands of cores

distributed memory parallelization

- advancing the envelope requires data locality in transversal direction due to implicit finite difference scheme
- data locality can be achieved through a transpose operation
- scaling tests were carried out on JUQUEEN
 - 16 cores per node / no threading (IBM BlueGene/Q)
 - strong scaling: $15360 \times 240 \times 240$ with 8 ppc and 500 steps
 - weak scaling: 10 cells in x_2 and 50 cells in x_3
- PGC scales from 1536 to 216000 with >70% efficiency

strong scaling

- ideal
- $\text{partitions: } x|8|8$
- $\text{partitions: } 4|x|x$

efficiency: ~70%

weak scaling

- 128 partitions

- nodes: $32/2^x/1$
- nodes: $32/1/2^x$
PGC for parametric studies for down ramp injection

down ramp injection case

density profile:

- PGC allows to perform parametric studies with a fraction of computational costs compared to PIC
- attractive tool for design studies like EuPRAxia
- comparison of PGC vs. PIC:
 - identical transversal resolution
 - longitudinal resolution: $\Delta\xi_{\text{PIC}}|_{\text{PGC}} = \lambda_{0p} / 62$
 - injected electron bunch with $\gamma > 50$
 - mean energy and charge are in agreement
 - emittance 5x higher for PGC

injected beam properties

- mean energy $[m_ec^2]$
- charge $[c^3/m_e]$ (with p_e)
- trans. norm. rms emittance $[c/\omega_p]$
Temporal resolution leads to higher emittance

- Fields structure is described on long scales associated to plasma scales.
- Plasma scales are resolved by PGC.
- Temporal resolution for PGC case is reduced by $\frac{\lambda_p}{\lambda_0}$.
Acceleration of electrons in the plasma wakefield of a proton bunch*

Ionization seeding with PGC for self-modulation instability

- Simulation box: 75 mm x 13 mm x 13 mm
- 10 m propagation distance
- 10^6 time steps
- 17,664 cores (92% of Marenostrum)
- ~3M CPUh

Propagation distance = 10.00 m

- Ionized electrons
- Proton beam
- Laser pulse
Conclusions & acknowledgement

Numerical stability and control
- in general PGC is unconditionally unstable if plasma gradients are present
- control can be provided by applying smoothing filters

Scale disparity can be overcome with reduced models for LWFA
- important for parametric studies of LWFA
- for cases where $\frac{\omega_0}{\omega_p} \gg 1$

Parallel scalability
- using shared memory parallelization, PGC can scaled over one order of magnitude
- using distributed memory parallelization, PGC can be scaled over 10^5 cores
- PGC and parallel scalability is required for full study of experiments like AWAKE

Simulation results obtained on JUQUEEN (JSC), Cori (NERSC/LBNL) and Marenostrum (BSC)

Work partially supported by Portuguese FCT (Fundação para a Ciência e a Tecnologia) through grant PD/BD/105882/2014 (PD-F APPLAuSE) and PTDC/FIS-PLA/2940/2014