FEW-CYCLE SHADOWGRAPHY OF PLASMA WAVE TRAINS

Hao Ding,
A. Döpp, M. F. Gilljohann, J. Götzfried, S. Schindler,
L. Wildgruber, G. Cheung, S. M. Hooker, and S. Karsch

Laser Plasma Accelerator Workshop
5-10 May 2019, MedILS, Split
Wakefield excitation in 1D fluid theory

Plasma density \(n/n_0 \)

\[a_0 = 0.5 \]
\[a_0 = 1 \]
\[a_0 = 2 \]
\[a_0 = 3 \]
\[a_0 = 4 \]

Laser envelope \([a_0]\)

Position \([\lambda_p]\)
Experimental setup

- Vacuum, 10^{-5} mbar
- ATLAS, 2 J, 30 fs
- OAP, $f = 2.5$ m
- Hollow core fiber
- Iris
- Lens & CCD
- Nomarski interferometer
- Beam splitter
- Plan-apo objective
- Gas jet
- FROG
- CCD
- Delay stage

Legend:
- Vacuum window
- Glass wedge pair
- Silver mirror
- Flip silver mirror
- Chirped mirror
- Covcave mirror

H. Ding - LPAW 2019
ATLAS main beam

ionisation front

colliding beam

plasma wave train

collision front

not a shock front

S. Schindler's poster
M. Förster's poster
Multiple plasma waves in a single shot

Image of the focus is saturated to show the low intensity satellites.
Laser driven nonlinear plasma wave train

- in-situ density measurement with Nomarski interferometer
- 13% elongation of the main wave train, compared with cold plasma wavelength
- the secondary waves, or low power shots have the cold plasma wavelength
Laser intensity estimate?

- 1D models seem not able to explain the observed wave lengthening
- PIC simulation suggests $a_0 \sim 4$

Influence of the transverse intensity gradient

- a tightly focused spot -> strong transverse ponderomotive force ->
- full cavitation behind the driver
- electrons do not see the intensity peak of the laser pulse
Summary

• we measure lengthening of a nonlinear plasma wave train
• qualitative estimate of the laser intensity
• not only the peak intensity, but also the aspect ratio of the pulse plays an important role
Summary

• we measure lengthening of a nonlinear plasma wave train
• qualitative estimate of the laser intensity
• not only the peak intensity, but also the aspect ratio of the pulse plays an important role

Thanks !