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Bubbles driven by COz2 laser (~10um Ao) are ~170um long

Unique ATF’'s COz2 laser system has Ao=~10 pm and TW-class pulses
If compressed to =200 fs, it will drive plasma wakefields with bubbles as long as 170um

Enabling external injection of ATF’s e- beam into accelerating phase with =25 GeV/m
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Towards Sub-ps CO2 Pulses at ATF

Recent CPA CO, laser development
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Currently, ATF CO2 laser encompasses ~44 plasma
wavelengths

ﬂ- Hﬂﬂ
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No (ions/e-s) Skin depth | Particles
c/wp per cell
m R 2% 2

dt =0.03

Hydrogen
plasma

I — —— Simulation done in 2D geometry
0.0 0.22 0.27 0.47 0.52

: L With ADK model of ionization with mobile ions
Propagation direction [cm]

Moving window (0.21cm long / 0.36cm wide)

Longitudinally: Transversely:
9400 cells 5500 cells

q\\\‘ (60 per o) (30 per Wo)
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Self-modulation stokes shift appears in field spectra

I | | | | | | T T I I [ I I I
Electric field in transverse
(polarization) direction

s

 _500

030 035 040
Propagation direction (z) [cm]

0.45

1500
1000

500

Fundamental Stokes Anti-stokes

-1000 4.2 ko 4.2 ko 5.2 ko

Transverse electric field [GV/m]

-1500

o
=
o

rrrrrrrrJ1ryrrrrrrirryrryrrrrrrryryrrrrToTTd

o o
o [o<]

o
I

I T T I T | T I L

-10

FFT signal amplitude [N.U.]
o
N

| I l - — I I — I |- I I

H, electron density [1017 cm‘3]

IIIIIIIIII]IIIIIIIIIIII[I I T |

2 3 4 5 6
Wavenumber (k) [w,/c]

6 5/9/19 SBU




Self-modulation is followed by non-linear “hosing-like” phenomena
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The “hosing-like” phenomena contributed
to peaks between fundamental and stokes/
anti-stokes shifts (clearer at end of run)
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ATF e- beam can be used as probe

ﬂ- Hﬂﬂ
- 20um 9.2 um 4J  0,012cm

“ﬂﬂﬂﬁ
4.4x1013cm-3 1nC 30fs 1mm 60 MeV 2x2

o (ions/e-s) Skin depth Particles
Cc/wp per cell

Hydrogen

Propagation direction [cm]

plasma
L T m 7.5x1017 cm-3 6.14 pm 2 X2
I I I I

0.22 0.27 0.47 0.52
Time step: dt = 0.03

* Simulation done in 2D geometry
e — With ADK model of ionization with mobile ions
Electron beam probe Moving window (0.21cm long / 0.36¢cm wide)
Longitudinally: Transversely:
9400 cells 5500 cells
(60 per Ao) (30 per Wo)
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e- beam modulations are characteristic of each interaction regime

Electron beam density [10"" cm™]
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Experimental Layout

Diagnostics

Electron beam

Spectrometer probe

\ /‘ " mirror ¢
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Status of the Experimental Preparation

Primary systems enabling the experiment have been
completed:

e (Gas delivery system — Complete and Tested

* Differential Pumping — Complete and Tested

 CO2 Laser Delivery — Complete

* Radiation Safety Study of the Experiment — Complete

Systems required for data acquisition are currently being

tested and set up:
* BPM Systems and Imaging —To be tested
 YAG Transport Path — To be completed

We are almost there!

A
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Enabling Laser e-beam Integration: Laser Transport
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Enabling Laser e-beam Integration: Differential Pumping

<
Electron
ine: P= 3.7e-5 Torr _

Beamline: P= 3 50-8 Torr ) P=0.03 Torr

1e-8 Torr _, | |

| -' Chamber:
1 | g — Helium
P= 1e-8 T ¢ 6.35x60 ¢ 6.35x200 mm ¢ 6.35x140 mm 0.03 Torr
mm
P= 3.4e-8 Torr 1 2254 nim x 254 _
P= 3 7e-5 Torr | to LP 0.03 Torr

P=0.02 Torr

1 TURBOVAC 450 i/iX (1)

®REQVAC 20 ifiX

1 ECODRY 65 plus no purge

1 SCROLLVACSC15D

‘\\\\w [l:eybold Simulation results courtesy of Leybold
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LWFA Experimental Chamber
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Experimental Hall
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Current ATF parameters were explored with OSIRIS
CORI@NERSC

osiris framework \ | :

Massivelly Parallel, Fully Relativistic
Particle-in-Cell (PIC) Code
Visualization and Data Analysis
Infrastructure

Developed by the osiris.consortium
= UCLA + IST

TECNICO
LISBOA

UCLA

Dynamic Load Balancing
Ricardo Fonseca: ricardo.fonseca@tecnico.ulisboa.pt QED module
Frank Tsung: tsung@physics.ucla.edu , ,
Adam Tableman: tableman@physics.ucla.edu ' Particle merging

GPGPU t
http://epp.tecnico.ulisboa.pt/ suppor

q\\\‘ http://plasmasim.physics.ucla.edu/ . Xeon Phi support

18 5/9/19 SBU

code features

Scalability to ~ 1.6 M cores

SIMD hardware optimized
Parallel I/O




Thank you!
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Extra slides
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q\\\\ Stony Brook

University

ATF’s 5 TW Long-Wave IR (9.2 ym) Laser ATF’s know-how

- First mixed-isotope
picosecond CO, laser
- First gas laser with CPA
Compressor (~3 m) - Solid-state seed laser

o

>

L \ o -
0 1%0: 57% \ [2 W] _g A
92 ‘ 180: 43% ! < [120 ps] =
) TR —— T L R R 1 _— =

3 &~¢" \\ 2 g
E: Regenerative CO J ®
)

? amplifier (10 bar; /"‘Z é‘-\\ * 1
a I_ _______ “::: _______ _) 15 IJJ - OPA OSC
S Stretcher 0.4 ps

= @ 9.2 um
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q\\\\ Stony Brook

University
Mixed-isotope, high-pressure CO, amplifiers Regen
10 bar
C0,:0.3
160 =12C =160 “626” N,: 0.1
160 =12C =180 “§28” He: 9.6
180 =12C =180 “g28" 20:43 %
L
| ' ]‘ | Final
Il | ﬂ 8.25 bar
'- A CO,: 0.5
1“ N,: 0.25
’ \ He: 7.5
: 180: 47 %
Gain: ) , o 18
1 %/cm (regen) M|xed-|sotope”éézll:”./c::;2 5CZ/)
2 %/cm (final) Statistical {,,628,,; 49:0%‘;

equilibrium
“828”7:18.5%

~Flattop ]

~1 THz bandwidth ——

T 1 T i T
good for amplification 90 9,22 95 10.0 105 11.0
ofa2 ps pulse Wavelength, pm
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q\\\\ Stony Brook

University

Old configuration (2010~2018)

Mixed-isotope regen
c - Shift
[ .. spectrum narrowing
§ e’ nd . pulse broadening
T . Il
£ Regular-CO, final —
S 2
Z
— Strong modulation
~ pulse splitting
1 1 1 1
9.0 9.5 10.0 10.5 11.0

Spectrum mismatch

s cannot run @ 9.2 pm Wavelength, um

» 66 % of total energy

3.5 ps A=10.3 um

I IAI

0 20 40 60
Time, ps

24 L. Diana Amorim, 8 Nov 2018, APS DPP Oregon



q\\\\ Stony Brook

University

New configuration (since 2018)

Mixed-isotope regen

Normalized gain

Perfect overlap
Small modulation
Broad spectrum—|

/ Mixed-isotope final

I
9.0 9.5 10.0

I
10.5 11.0

Wavelength, ym
~ 87 % of total energy
« 1.94 ps A=9.2 um
| — | T
0 20 40 60
Time, ps
25
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q\\\\ Stony Brook

University

Pulse measurement procedure

Power, TW

Single-shot
autocorrelator

Expected pulse structure

Pyrocamera

1.94 ps

Simulation

10 20
Time, ps

“De-convolution”

26

Autocorrelation signal, a.u.

1.0

0.8

0.6

0.4

0.2

0.0

50:50 splitter

Expected and measured
autocorrelation

——Experiment
----- Simulation
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