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Bubbles driven by CO2 laser (~10µm λ0) are ≈170µm long

 3

Unique ATF’s CO2 laser system has λ0≈10 µm and TW-class pulses 

If compressed to ≈200 fs, it will drive plasma wakefields with bubbles as long as 170µm 

Enabling external injection of ATF’s e- beam into accelerating phase with ≈25 GeV/m

e- beam

Bubble

Plasma electrons
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Towards Sub-ps CO2 Pulses at ATF
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Pulse energy, J

2017
- mixed-isotope regen
- 66 % of energy in 1st pulse
- compressor efficiency 50 %

2018
- mixed-isotope regen and

final amplifier
- 87 % of energy in 1st pulse

2019
- 2× chirp (denser gratings)
- compressor efficiency 70 %

Recent CPA CO2 laser development

2017
<1 TW

2018
2.5 TW

2019
5 TW

λ = 10.3 μm

λ = 9.2 μm
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Currently, ATF CO2 laser encompasses ≈44 plasma 
wavelengths

W0 λ0 τ (FWHM) En ZR a0

CO2 20 µm 9.2 µm 2ps 4J 0,012cm 4.3

n0 (ions/e-s) Skin depth
c/ωp

Particles 
per cell

H2 plasma 7.5x1017 cm-3 6.14 µm 2 x 2

dt = 0.03 

Simulation done in 2D geometry 

With ADK model of ionization with mobile ions

Moving window (0.21cm long / 0.36cm wide)

Longitudinally: 
9400 cells 
(60 per λ0)

Transversely: 
5500 cells 

(30 per W0)

Hydrogen 
plasma

Propagation direction [cm]

0.470.22

CO2 
pulse

0.270.0 0.52
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Self-modulation stokes shift appears in field spectra

Plasma electron density

Electric field in transverse
(polarization) direction

Fundamental Stokes Anti-stokes
k0 k0 - kp k0 + kp

4.2 kp 4.2 kp 5.2 kp
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(Spectra of the field in polarization 
direction taken for each transverse 
slice, ri, and then averaged over ri, 

within black box region)
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Self-modulation is followed by non-linear “hosing-like” phenomena

Plasma electron density

Electric field in transverse
(polarization) direction

Fundamental Stokes Anti-stokes
k0 k0 - kp k0 + kp

4.2 kp 4.2 kp 5.2 kp
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The “hosing-like” phenomena contributed 
to peaks between fundamental and stokes/

anti-stokes shifts (clearer at end of run)

J. Yan et al. IEEE proceedings AAC 2018
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Back of laser is guided in plasma depleted channel

Plasma electron density

Electric field in transverse
(polarization) direction

Channel

Fundamental Stokes Anti-stokes
k0 k0 - kp k0 + kp

4.2 kp 4.2 kp 5.2 kp
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Inside the plasma channel depleted of ions 
and e-s the laser wavenumber shifts are small
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ATF e- beam can be used as probe

W0 λ0 τ (FWHM) En ZR a0

CO2 20 µm 9.2 µm 2ps 4J 0,012cm 4.3

n0 (ions/e-s) Skin depth
c/ωp

Particles 
per cell

H2 plasma 7.5x1017 cm-3 6.14 µm 2 x 2

Time step: dt = 0.03 

Simulation done in 2D geometry 

With ADK model of ionization with mobile ions

Moving window (0.21cm long / 0.36cm wide)

Longitudinally: 
9400 cells 
(60 per λ0)

Transversely: 
5500 cells 

(30 per W0)

Hydrogen 
plasma

Propagation direction [cm]

0.470.22

CO2 
pulse

0.270.0 0.52

Electron beam probe

n0b Q σz σx/σy En ppc

e- beam 4.4x1013cm-3 1nC 30fs 1mm 60 MeV 2x2
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“hosing-like” interaction leads to 
irregular beam perturbations, as 
hosing evolves in time and along 
the laser (from wave-breaking 
slice towards laser tail)

B

A In region of laser self-modulation 
e-beam shows structures at ≈ λp

e- beam modulations are characteristic of each interaction regime

C Probe beam is modulated at ≈ λ0

J. Yan et al. IEEE proceedings AAC 2018

e- beam probe

ABC

BC A BC A
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Experimental Layout

CO2 
mirror

CO2 
parabola

CO2 Diagnostics

Spectrometer Electron beam 
probe

Green 
Probe

Spectrometer

BPM
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Primary systems enabling the experiment have been 
completed: 
• Gas delivery system — Complete and Tested 
• Differential Pumping — Complete and Tested  
• CO2 Laser Delivery — Complete 
• Radiation Safety Study of the Experiment — Complete 

Systems required for data acquisition are currently being 
tested and set up: 
• BPM Systems and Imaging —To be tested 
• YAG Transport Path — To be completed 

Status of the Experimental Preparation

We are almost there!
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Enabling Laser e-beam Integration: Laser Transport

LWFA Chamber
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Enabling Laser e-beam Integration: Differential Pumping

Chamber:
Helium 

0.03 Torr

P= 0.03 TorrP= 3.7e-5 Torr
P= 3.5e-8 Torr

P= 1e-8 φ 6.35x140 mmφ 6.35x200 mmφ 6.35x60 
mm

P= 3.7e-5 Torr P= 0.03 Torr

P= 0.02 Torr

P= 3.4e-8 Torr

Simulation results courtesy of Leybold 

Electron 
Beamline: 
1e-8 Torr
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LWFA Experimental Chamber

CO2 In

CO2 Out

BPM 3
BPM 2

e-beam
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Differential Pumping Stages

Stage 1Stage 2

Beam line

Beam line

Pump 1

Pump 2

Pump 3
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Experimental Hall

Laser Transport



code features

· Scalability to ~ 1.6 M cores 
· SIMD hardware optimized 
· Parallel I/O 
· Dynamic Load Balancing 
· QED module 
· Particle merging 
· GPGPU support 
· Xeon Phi support

Current ATF parameters were explored with OSIRIS 
CORI@NERSC

Ricardo Fonseca: ricardo.fonseca@tecnico.ulisboa.pt 
Frank Tsung: tsung@physics.ucla.edu 
Adam Tableman: tableman@physics.ucla.edu 

http://epp.tecnico.ulisboa.pt/  
http://plasmasim.physics.ucla.edu/

osiris framework

· Massivelly Parallel, Fully Relativistic  
Particle-in-Cell (PIC) Code  

· Visualization and Data Analysis 
Infrastructure 

· Developed by the osiris.consortium 
⇒  UCLA + IST
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Thank you!
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Extra slides
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Self-trapped plasma electrons reach 60 MeV

Peak around 4 MeVAccelerated electrons
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ATF’s 5 TW Long-Wave IR (9.2 μm) Laser ATF’s know-how
- First mixed-isotope 

picosecond CO2 laser
- First gas laser with CPA
- Solid-state seed laser

Ti:Sapphire
am

plifier

OPA Osc

Regenerative CO2
amplifier (10 bar)

Compressor (~3 m)

Stretcher

Final CO
2 am

plifier (8 bar)

5 TW

15 μJ
0.4 ps
@ 9.2 μm

[2 μJ]
[120 ps]

10 mJ
60 ps

20 J
60 ps

14 J
16O: 57%
18O: 43%

16O: 53%
18O: 47%

2 ps



L. Diana Amorim, 8 Nov 2018, APS DPP Oregon 23

11.010.510.09.59.0
Wavelength, µm

Mixed-isotope, high-pressure CO2 amplifiers Regen
10 bar
CO2: 0.3
N2: 0.1
He: 9.6
18O: 43 %

Final
8.25 bar
CO2: 0.5
N2: 0.25
He: 7.5
18O: 47 %

~Flattop
~1 THz bandwidth
------------------------------
good for amplification
of a 2 ps pulse

Gain:
1 %/cm (regen)
2 %/cm (final)

16O =12C =16O   “626”
16O =12C =18O   “628”
18O =12C =18O   “828” 

Mixed-isotope (43 % 18O)
“626”: 32.5 %
“628”: 49.0 %
“828”: 18.5 %

9.22

Statistical
equilibrium
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6040200
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11.010.510.09.59.0
Wavelength, µm

Old configuration (2010~2018)

Mixed-isotope regen

Regular-CO2 final

Spectrum mismatch
∴ cannot run @ 9.2 μm

Shift
∴ spectrum narrowing
∴ pulse broadening

Strong modulation
∴ pulse splitting

3.5 ps

66 % of total energy

λ = 10.3 μm
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6040200
Time, ps

New configuration (since 2018)

1.94 ps

87 % of total energy
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11.010.510.09.59.0
Wavelength, µm

Mixed-isotope regen

Mixed-isotope final

Perfect overlap
Small modulation
Broad spectrum

λ = 9.2 μm
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Time, ps

1.94 ps
Simulation
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-4 -2 0 2
Delay, ps

2.60 ps

Experiment
Simulation

Pulse measurement procedure

Expected pulse structure
Expected and measured
autocorrelation

! = #. %&'!()* = 1.94 ./
*01 = 2.60 ./

50:50 splitter

AGSePyrocamera

9.2 µm

4.6 µm

Lens

Single-shot
autocorrelator

“De-convolution”


