

An experimental study of transverse and longitudinal wakefields driven by a self-modulating proton bunch

Marlene Turner for the AWAKE collaboration

Outline

- Introduction to the **AWAKE** Experiment
- Wakefield Measurements
 - Concept, Challenges
- Results
- Conclusion & Summary

2

Introduction to AWAKE

- AWAKE stands for: Advanced (Proton Driven Plasma) WAKefield Experiment.
- AWAKE is a **R&D project** to study proton driven plasma wakefields at CERN.

Final Goal: Design high quality & high energy

electron accelerator.

Why protons?

Highly-relativistic proton bunches (e.g. at CERN) have the potential to drive wakefields that can accelerate a witness bunch to TeV energies in a single plasma.

Caldwell A., *Nature Physics* volume 5, pages 363–367 (2009)

10m Rb vapor cell developed by MPP

M. Turner AWAKE collaboration

Seeded Self-Modulation

AWAKE Run 1, Phase 1 (2016, 2017)

CERN

A WAKE

Seeded Self-Modulation

AWAKE Run 1, Phase 1 (2016, 2017)

as discussed in the plenary session on Monday (Proton Bunch Self-Modulation and Electron Acceleration in AWAKE by P. Muggli, 12:00)

proton bunch self-modulation and resulting wakefield amplitude growth has been experimentally demonstrated:

AWAKE Collaboration Phys. Rev. Lett. 122, 054802 M. Turner *et al.* (AWAKE Collaboration); Phys. Rev. Lett. 122, 054801

M. Turner for the AWAKE collaboration

5

CERN

AWAKE

time

~ laser pulse location

Electron Acceleration

AWAKE Run 1, Phase 2 (2018)

electron delay ~100-800 ps wrt to the ionizing laser pulse

 Short plasma density ramp at the entrance of the plasma

 \Rightarrow change of wakefield phase

2) During the SSM the proton bunch distribution evolves

6

Electron Acceleration

AWAKE Run 1, Phase 2 (2018)

- electron acceleration in wakefields driven by a self-modulating proton bunch
- finite electron energy spread
- GeV acceleration (up to ~2 GeV, from ~20 MeV)

electron delay ~100-800 ps wrt to the ionizing laser pulse

Measurement Concept

all simulations performed with LCODE (2D cylindrical, quasistatic)

wakefields amplitudes along the 10m plasma in AWAKE

Measurement Concept

all simulations performed with LCODE (2D cylindrical, quasistatic)

wakefields amplitudes along the 10m plasma in AWAKE

Seed Position Scan longitudinal wakefields

Preliminary

waterfall plot of the measured electron energy spectrum as a function of the laser pulse seed position

M. Turner 10

Seed Position Scan transverse wakefields

A IVAKE CERN

Measurement setup:

M. Turner, PhD Thesis (2018).
M. Turner et al., J. Phys.: Conf. Ser.874 012031 (2017).
M. Turner (AWAKE Collaboration), Phys. Rev. Lett. 122, 054801 (2019).

M. Turner 12

Seed Position Scan transverse wakefields

CERN

AWAKE

Electron Delay Scan

longitudinal wakefields

change the delay (0-800 ps) between the electron bunch and the laser pulse:

measured peak electron energy follows the same shape as the integrated longitudinal wakefield amplitude!

Ongoing studies...

electron acceleration dynamics

defocused proton trajectories

electron dynamics complicated as wakefields phase is evolving along the plasma due to the self-modulation process

where do protons exit? which ones are the outermost on the screen?

M. Turner 15 for the AWAKE collaboration

Conclusions & Summary

- AWAKE is a **proton driven** plasma wakefield experiment.
- The **self-modulating** proton bunch resonantly drives wakefields in the 10 m long plasma.
- We probe and study the **longitudinal wakefields** by externally injecting electrons.
- We probe and study the **transverse wakefields** by looking at the transverse proton bunch distribution downstream the plasma.
- The measured **dependencies** (on seed position and electron delay) scale with the simulated wakefield amplitudes, confirming the expected physics scalings.