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Background and Purposes

> Petawatt class lasers (1 ~ 100 PW) are useful for high-flux and high-energy laser wakefield accelerators
(LWFA).

> Limited by mirror damage threshold, petawatt lasers have ~ 1 m diameter. For LWFAs driven by
1/10/100 PW lasers, f ~ 10/100/1000 m.

» LWFA also requires flexible wy for matching different plasma densities with the matching condition
kpwo = 2y/ap [W. Lu et al., Phys. Rev. ST/AB 10, 061301 (2007)]. But changing the focusing system for
different wy is costly.

> Goal: a flexible way for changing wy without replacing the focusing system, and reduce f for large wy.

1 m diameter, F/2.5 A/40 OAP by REOSC-SAFRAN

Hervy et al 2015
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Figure 1: A typical OAP for petawatt laser costs ~ 1 million Euros. Ming Zeng, et al.



Former Active Plasma Lens Studies (courtesy D. Gordon)
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» Parabolic channel n(r) = ng + %r2 leads to ray equation % +Q%r =0, where Q2 = S An2p
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[R. Hubbard et al., Phys. Plasmas 9, 1431 (2002)].

> Ideal plasma lens which eliminates spherical aberrations [D.F. Gordon et al., Phys. Plasmas 25, 063101
(2018)].
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Figure 2: Schematic view of the plasma lenses [J.P. Palastro et al., Phys. Plasmas 22, 123101 (2015)].
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Our idea: A Plasma Eyepiece in a Telescope System

> Use a fixed small f-number focusing system to focus the laser beam in vacuum at zy. The laser beam
enters the plasma at z; and reaching a local maximum beam size at z>.

» The plasma acts as an eyepiece in a telescope. Adjust d = z; — zy and plasma density to change the
effective laser focal size wy in this telescope system. | = z; — z; is the plasma lens thickness.
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Figure 3: Schematic view of the plasma eyepiece.
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Theory of relativistic self-refocusing

Vacuum

Plasma

> In weakly relativistic regime so that the perturbation of plasma density is negligible, one may write down
the transverse profile functions
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» In our case, the initial conditions are
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Theory of Relativistic Self-refocusing
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> Egs. (5) (6) (7) are obtained without the perturbation of the plasma density. Do they still hold in the

blowout regime?
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PIC Simulation Configuration Vacuum Plasma

> In the simulations using the code OSIRIS, the time is normalized to the inverse of the plasma frequency
w,;l, length to the plasma skin depth c¢/wp, or simply k;l.

> We use a step-function plasma density profile. There are 5 key parameters: agmax (= a0(z — ct)|max), o, w
(or k), d and 7 (pulse duration).

> We firstly keep 7 = 4 and do parameter scan for the other 4 parameters.
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Example Simulations
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» Example simulations with k = 10, wg = 4, agmax = 10, d = 100 and 7 = 4.

> In (a), black square is result from a half-infinite plasma, and red circle is from a simulation with the same
parameters but for z > 105 it is vacuum.

> In this case wy = 8.7, and red circle in vacuum region gives wyerr = 7.9 which has only 10% error.
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wa/wp vs. d
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» With a considerable amount of

simulations, we found that in most
of the cases ag max does not
change the wa/wp vs. d curve (it
only changes the upper-limit for
d).

For different k and wp, we plot
wa/wy vs. d and fit with

W2_ 1+d2
wo <

(8)

where ( is a function of k and wy.
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( vs. zg
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» We found that ¢ almost linearly depends on zg = gwg, if k is fixed.
» With linear fittings we finally found

¢~ 0.95zg — 1.2k — 13.

d2
which can be put back to w2 _ 14 — for wy.

wo ¢?
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Vacuum Plasma
/vs. d
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> We also found that / is almost linearly depends on d, if k and wy are fixed, i. e. | = xd.
» We plot x vs. wg and found k only has minor influence on the curve. Thus we do one fitting for all the x
vs. wy data and write the empirical formula

X = 21.0w, >%. (10
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Why not depend on agmax?

domax

do

> ap is a function of z — ct. There can be other regimes in which the self-focusing strongly depends on ap. In
those cases, the laser front where ag is smaller has totally different self-focusing behavior compared to the
laser central part, and the laser cannot be self-refocused as a whole.

> Only in the regime that the self-focusing weakly depends on ag, the laser can self-focus uniformly.
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What if initial laser pulse duration changes?

91@\ | 200

o 8 p 150
~ - -
i& ] #) ___________ 4> &
71 —m— —¢— Casel
] B -3- -é- Case2 | 100
6 1 I I W\ - W |
0 5 10 15 20
wWpT

> Two sets of examples with k = 10, wp = 6, agmax = 14, d = 160 (top) and k = 20, wy = 3.5, agmax = 10,
d =100 (bottom).

» The laser is less guided at smaller 7, thus has larger wo and /. At larger 7 there is saturation. Only ~ 10%
differences are observed while 7 changes.
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Full 3D LWFA simulations with /without plasma eyepiece
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By using the laser-plasma matching conditionk,ws = 2,/a; and our empirical formulas, we can write down

a set of parameters for a 1 PW, 800 nm laser pulse:
a0max = 8, wo = 2k; 1 = 21.6 um, k/k, = 84.7 (k; ' = 10.8 pm), 7 = 3w, ! = 108 fs,

d = 80k, ' = 864 um,

so that ay = 4, wy = 4k, ! = 43.2 ym and | = 397k, * = 4287.6 pum.

To achieve a similar effective spot size with plasma eyepiece, focal length is reduced from ~ 20 m to

~ 10 m.
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Estimations for 10 and 100 PW LWFA design

Vacuum Plasma

P TPW] 10 10 100 100
a 4 4 4 4

np [em™3] | 2.4 x 10% | 2.4 x 10'® | 2.4 x 10¥® | 2.4 x 10%5
wo [pm] 30 40 60 70
wy [um] 136 136 431 431
d [mm] 35.6 17.7 694 563
I [m] 0.98 0.27 49 29
Ly [m] 6.52 6.52 206 206
Topt [fS] 303 303 958 958
AW [GeV] 97.7 97.7 977 977

Table 1: Plasma eyepiece parameters for 10 PW and 100 PW laser driven LWFAs. The dephasing length L4, the optimal pulse

duration 7,p¢ for matching the pump depletion length with the dephasing length and the energy gain AW for LWFAs according
to Lu et al. [Phys. Rev. ST Accel. Beams 10, 061301 (2007)] are also shown.
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Conclusions
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> A plasma lens for laser, like an eyepiece in a telescope, greatly reduces the focal length for petawatt level
LWFA applications. It also makes the laser spot size easily adjustable (by changing d).

» The empirical formula for the effective laser spot size is found to be wy = wy+/1 + (d/¢)?, where
kpC =~ 0.95kpzg — 1.2k /kp — 13.
» The empirical formula for the thickness of the plasma lens is found to be / ~ 21.0d/(kpwg)?-%.

» Scanning of d around the predicted value is still necessary in real experiments, because of the errors from
the fit parameters, and the non-sharpened vacuum-plasma transition.
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