Plasma Eyepiece for Petawatt Laser Wakefield Accelerators

Ming Zeng, Alberto Martinez de la Ossa, Kristjan Poder and Jens Osterhoff

Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany

Laser-Plasma Accelerator Workshop, Split, Croatia, 6 May 2019

Background and Purposes

- \blacktriangleright Petawatt class lasers (1 \sim 100 PW) are useful for high-flux and high-energy laser wakefield accelerators (LWFA).
- \blacktriangleright Limited by mirror damage threshold, petawatt lasers have ~ 1 m diameter. For LWFAs driven by 1/10/100 $\rm PW$ lasers, f $\sim 10/100/1000~m.$
- ▶ LWFA also requires flexible w_0 for matching different plasma densities with the matching condition $k_p w_0 = 2\sqrt{a_0}$ [W. Lu et al., Phys. Rev. ST/AB 10, 061301 (2007)]. But changing the focusing system for different w_0 is costly.
- ▶ Goal: a flexible way for changing w_0 without replacing the focusing system, and reduce f for large w_0 .

1 m diameter, F/2.5 λ /40 OAP by REOSC-SAFRAN

Hervy et al 2015

 $\label{eq:heat} \textbf{HELMHOLTZ} ~ ^{\text{RESEARCH FOR}}_{\text{GRAND CHALLENGE}} \textbf{igure 1: A typical OAP for petawatt laser costs} \sim 1 \text{ million Euros.}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへぐ

Former Active Plasma Lens Studies (courtesy D. Gordon)

- ► Parabolic channel $n(r) = n_0 + \frac{\Omega^2}{c^2}r^2$ leads to ray equation $\frac{d^2r}{dt^2} + \Omega^2 r = 0$, where $\Omega^2 = \frac{c^2}{r_{ch}^2} \frac{\Delta n}{n_0} \frac{\omega_p^2}{\omega^2}$ [R. Hubbard et al., Phys. Plasmas 9, 1431 (2002)].
- Ideal plasma lens which eliminates spherical aberrations [D.F. Gordon et al., Phys. Plasmas 25, 063101 (2018)].

Figure 2: Schematic view of the plasma lenses [J.P. Palastro et al., Phys. Plasmas 22, 123101 (2015)].

Our idea: A Plasma Eyepiece in a Telescope System

- Use a fixed small f-number focusing system to focus the laser beam in vacuum at z_0 . The laser beam enters the plasma at z_1 and reaching a local maximum beam size at z_2 .
- ▶ The plasma acts as an eyepiece in a telescope. Adjust $d \equiv z_1 z_0$ and plasma density to change the effective laser focal size w_2 in this telescope system. $I \equiv z_2 z_1$ is the plasma lens thickness.

Figure 3: Schematic view of the plasma eyepiece.

Theory of relativistic self-refocusing

In weakly relativistic regime so that the perturbation of plasma density is negligible, one may write down the transverse profile functions

$$aw = a_0 w_0, \tag{1}$$

$$\frac{d^2w}{dz^2} = \frac{4}{k^2w^3} \left(1 - \frac{a_0^2w_0^2}{32}\right).$$
(2)

▶ In our case, the initial conditions are

$$w_{1} \equiv w|_{z_{1}} = w_{0}\sqrt{1 + \frac{d^{2}}{z_{R}^{2}}},$$

$$\left. \frac{dw}{dz} \right|_{z_{1}} = \frac{w_{0}^{2}d}{z_{R}^{2}w_{1}}.$$
(3)
(4)

Theory of Relativistic Self-refocusing

• These lead to the solution for $\frac{dw}{dz}\Big|_{z_2} = 0$

$$w_{2} \equiv w|_{z_{2}} = w_{0} \sqrt{1 + \frac{d^{2}}{z_{R}^{2}} \cdot \frac{1}{1 - \left(1 + \frac{d^{2}}{z_{R}^{2}}\right) \frac{32}{a_{0}^{2}w_{0}^{2}}}}$$

$$I \equiv z_{2} - z_{1} = \frac{d}{\frac{a_{0}^{2}w_{0}^{2}}{32} \left(1 + \frac{d^{2}}{z_{R}^{2}}\right)^{-1} - 1},$$
(5)
(6)

with the condition

$$d < z_R \sqrt{\frac{a_0^2 w_0^2}{32} - 1} \equiv d_{\rm M}.$$
 (7)

Vacuum

2wh

 Z_1

 $2w_0$

 Z_0

Plasma

 $2W_2$

 Z_2

Ming Zeng, et al. (・) ・ロト・(ア・・ヨト・ヨト・ヨーシッペー・)

Eqs. (5) (6) (7) are obtained without the perturbation of the plasma density. Do they still hold in the blowout regime?

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

PIC Simulation Configuration

- ▶ In the simulations using the code OSIRIS, the time is normalized to the inverse of the plasma frequency ω_p^{-1} , length to the plasma skin depth c/ω_p , or simply k_p^{-1} .
- We use a step-function plasma density profile. There are 5 key parameters: $a_{0 \max} (= a_0(z ct)|_{\max})$, w_0 , ω (or k), d and τ (pulse duration).
- We firstly keep $\tau = 4$ and do parameter scan for the other 4 parameters.

Example Simulations

- Example simulations with k = 10, $w_0 = 4$, $a_{0 \text{ max}} = 10$, d = 100 and $\tau = 4$.
- > In (a), black square is result from a half-infinite plasma, and red circle is from a simulation with the same parameters but for z > 105 it is vacuum.
- ▶ In this case $w_2 = 8.7$, and red circle in vacuum region gives $w_{0 \text{eff}} = 7.9$ which has only 10% error.

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Ming Zeng, et al.

 w_2/w_0 vs. d

- With a considerable amount of simulations, we found that in most of the cases a_{0 max} does not change the w₂/w₀ vs. d curve (it only changes the upper-limit for d).
- ► For different k and w₀, we plot w₂/w₀ vs. d and fit with

$$\frac{w_2}{w_0} = \sqrt{1 + \frac{d^2}{\zeta^2}},$$
 (8)

DESY.

∽ へ [⊙] 9/16

where ζ is a function of k and w_0 .

Ming Zeng, et al.

<ロ> (四) (四) (三) (三) (三)

 ζ vs. z_R

$$\zeta pprox 0.95 z_R - 1.2 k - 13.$$
 which can be put back to $\frac{w_2}{w_0} = \sqrt{1 + \frac{d^2}{\zeta^2}}$ for w_2 .

(9)

I vs. d

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

• We also found that *I* is almost linearly depends on *d*, if *k* and w_0 are fixed, i. e. $I = \chi d$.

• We plot χ vs. w_0 and found k only has minor influence on the curve. Thus we do one fitting for all the χ vs. w_0 data and write the empirical formula

$$\chi = 21.0 w_0^{-2.08}.$$
Ming Zeng, et al.

Vacuum

Plasma

Why not depend on $a_{0 \max}$?

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

- ▶ a_0 is a function of z ct. There can be other regimes in which the self-focusing strongly depends on a_0 . In those cases, the laser front where a_0 is smaller has totally different self-focusing behavior compared to the laser central part, and the laser cannot be self-refocused as a whole.
- Only in the regime that the self-focusing weakly depends on a_0 , the laser can self-focus uniformly.

What if initial laser pulse duration changes?

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

- Two sets of examples with k = 10, $w_0 = 6$, $a_{0 \text{ max}} = 14$, d = 160 (top) and k = 20, $w_0 = 3.5$, $a_{0 \text{ max}} = 10$, d = 100 (bottom).
- The laser is less guided at smaller τ , thus has larger w_2 and *I*. At larger τ there is saturation. Only $\sim 10\%$ differences are observed while τ changes.

Full 3D LWFA simulations with/without plasma eyepiece

- ▶ By using the laser-plasma matching condition $k_p w_2 = 2\sqrt{a_2}$ and our empirical formulas, we can write down a set of parameters for a 1 PW, 800 nm laser pulse: $a_{0 \max} = 8$, $w_0 = 2k_p^{-1} = 21.6 \ \mu \text{m}$, $k/k_p = 84.7 \ (k_p^{-1} = 10.8 \ \mu \text{m})$, $\tau = 3\omega_p^{-1} = 108 \ \text{fs}$, $d = 80k_p^{-1} = 864 \ \mu \text{m}$, so that $a_2 = 4$, $w_2 = 4k_p^{-1} = 43.2 \ \mu \text{m}$ and $I = 397k_p^{-1} = 4287.6 \ \mu \text{m}$.
- \blacktriangleright To achieve a similar effective spot size with plasma eyepiece, focal length is reduced from \sim 20 m to \sim 10 m.

□ ▶ 《@ ▶ 《 분 ▶ 《 분 ▶ · 분 · · ⑦ � (안 14/16)

Table 1: Plasma eyepiece parameters for 10 PW and 100 PW laser driven LWFAs. The dephasing length L_d , the optimal pulse duration τ_{opt} for matching the pump depletion length with the dephasing length and the energy gain ΔW for LWFAs according to Lu et al. [Phys. Rev. ST Accel. Beams 10, 061301 (2007)] are also shown.

Estimations for 10 and 100 PW LWFA design

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Conclusions

- ▶ A plasma lens for laser, like an eyepiece in a telescope, greatly reduces the focal length for petawatt level LWFA applications. It also makes the laser spot size easily adjustable (by changing *d*).
- ▶ The empirical formula for the effective laser spot size is found to be $w_2 = w_0 \sqrt{1 + (d/\zeta)^2}$, where $k_p \zeta \approx 0.95 k_p z_R 1.2 k/k_p 13$.
- The empirical formula for the thickness of the plasma lens is found to be $l \approx 21.0 d/(k_p w_0)^{2.08}$.
- Scanning of d around the predicted value is still necessary in real experiments, because of the errors from the fit parameters, and the non-sharpened vacuum-plasma transition.

