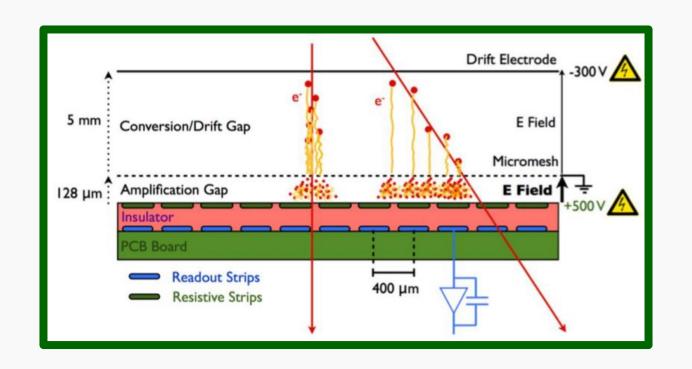
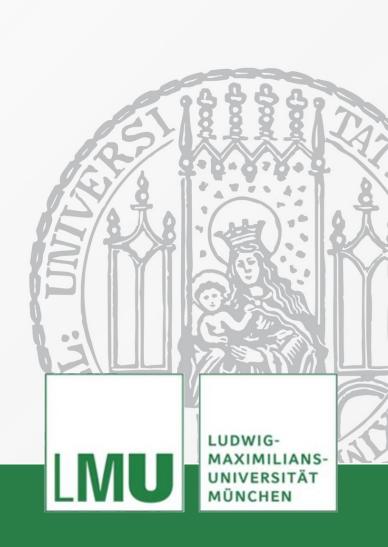
Particle Track Analysis using Neural Networks



WEEKLY HARDWARE MEETING

Roman Lorenz 19 September 2024



The datasets and neural network

4 datasets for track inclination of 29°:

- Amplification voltage 520V/530V and peaking time 100ns/200ns.
- ~150 000 events per dataset
- Split in 80% for training and 20% for validation

Events with >20 strips (1.9% of data) were discarded in this try to avoid too much 0-padding

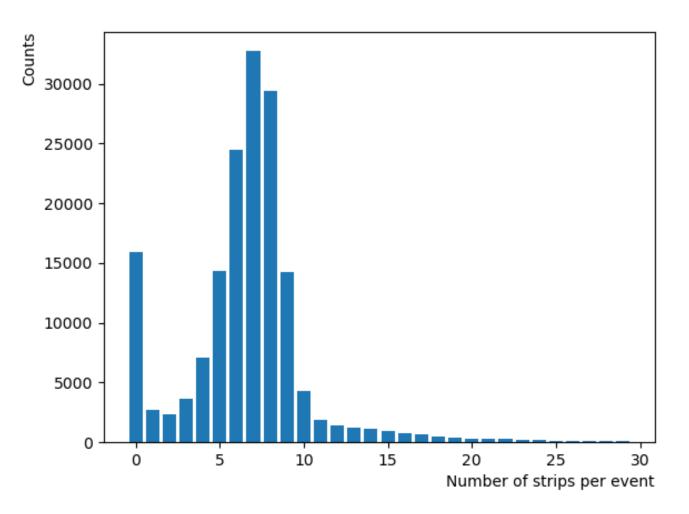
Neural network with 3 hidden layers (300+200+100):

Epochs: 500-1000 Optimizer: Adam

Learning rate: 0.01 to 0.0001

Plan:

- 1) Train a single NN for each dataset and compare how each NN reconstructs each dataset
- 2) Train a NN with the whole data and compare how it reconstructs each dataset.



Distribution of the number of strips per event.

4 different neural networks:

Model : Dataset :	520V 100ns		520V 200ns		530V 100ns		530V 200ns		
	Single Gaussian :	Double Gaussian :	Single Gaussian :	Double Gaussian :	Single Gaussian :	Double Gaussian :	Single Gaussian :	Double Gaussian :	
520V 100ns	Efficiency: 89.0%		Efficiency: 87.6%		Efficiency: 88.1%		Efficiency: 87.1%		
	σ = 175 μm	$\sigma_1 = 143 \ \mu m$ $\sigma_2 = 348 \ \mu m$	σ = 171 μm	$\sigma_1 = 147 \ \mu m$ $\sigma_2 = 392 \ \mu m$	σ = 173 μm	$\sigma_1 = 143 \ \mu m$ $\sigma_2 = 362 \ \mu m$	σ = 185 μm	$\sigma_1 = 153 \ \mu m$ $\sigma_2 = 368 \ \mu m$	
520V 200ns	Efficiency : 90.1%		Efficiency : 90.0%		Efficiency : 90.5%		Efficiency : 89.7%		
	σ = 200 μm	$\sigma_1 = 167 \ \mu m$ $\sigma_2 = 431 \ \mu m$	σ = 186 μm	$\sigma_1 = 164 \ \mu m$ $\sigma_2 = 506 \ \mu m$	σ = 196 μm	$\sigma_1 = 161 \ \mu m$ $\sigma_2 = 404 \ \mu m$	σ = 198 μm	$\sigma_1 = 163 \ \mu m$ $\sigma_2 = 409 \ \mu m$	
530V 100ns	Efficiency: 88.7%		Efficiency: 88.5%		Efficiency: 89,2%		Efficiency: 88.4%		
	σ = 170 μm	$\sigma_1 = 139 \ \mu m$ $\sigma_2 = 309 \ \mu m$	σ = 163 μm	$\sigma_1 = 142 \ \mu m$ $\sigma_2 = 378 \ \mu m$	σ = 164 μm	$\sigma_1 = 136 \ \mu m$ $\sigma_2 = 332 \ \mu m$	σ = 170 μm	$\sigma_1 = 143 \ \mu m$ $\sigma_2 = 345 \ \mu m$	
530V 200ns	Efficiency : 90.4%		Efficiency : 90.5%		Efficiency : 91.1%		Efficiency : 90,2%		
	σ = 189 μm	$\sigma_1 = 165 \ \mu m$ $\sigma_2 = 467 \ \mu m$	σ = 173 μm	$\sigma_1 = 154 \ \mu m$ $\sigma_2 = 463 \ \mu m$	σ = 183 μm	$\sigma_1 = 159 \ \mu m$ $\sigma_2 = 450 \ \mu m$	σ = 180 μm	$\sigma_1 = 148 \ \mu m$ $\sigma_2 = 361 \ \mu m$	

Notes: -Efficiency is here the percentage of event positions reconstructed with the residual in range of -2mm to 2mm.
-When model and dataset match, only 20% of the dataset is used because of the train/validation split.

Higher voltage: better accuracy and often better efficiency Higher peaking time: better efficiency but worse accuracy

Neural network trained on all datasets

Datasets :	Efficiency :	Single Gaussian fit	Double Gaussian fit		
All 4	92.44%	σ = 179 μm	$\sigma_1 = 149 \ \mu m$ $\sigma_2 = 383 \ \mu m$		
520V 100ns	90.7%	σ = 178 μm	$\sigma_1 = 151 \mu m$ $\sigma_2 = 386 \mu m$		
520V 200ns	93.1%	σ = 191 μm	$\sigma_1 = 145 \mu m$ $\sigma_2 = 329 \mu m$		
530V 100ns	92.2%	σ = 167 μm	$\sigma_1 = 138 \ \mu m$ $\sigma_2 = 383 \ \mu m$		
530V 200ns	94.1%	σ = 181 μm	$\sigma_1 = 156 \mu m$ $\sigma_2 = 438 \mu m$		

Same result than before concerning voltage and peaking time.

Efficiency is higher, this could hint that the neural network would benefit from bigger datasets.

Resolution for each dataset is slightly worse than in the case of individually trained NNs.

Clustering

			Cluster 1						Cluster 2		
Strip position	673,73	674,15	674,58	675	675,43	9442	982,28	982,7	983,13	983,55	983,98
Strip charge	100	108	124	183	128	5-1-	73	122	106	87	74
Strip timing	36,8	53,4	51,2	77,5	67,6	222	11,3	23,9	29,3	36,3	62,1

Example of an event that requires clustering

Attempts with conventional algorithms:

Choose cluster with most strips, with 0 or 1 gap (missing strip) allowed:

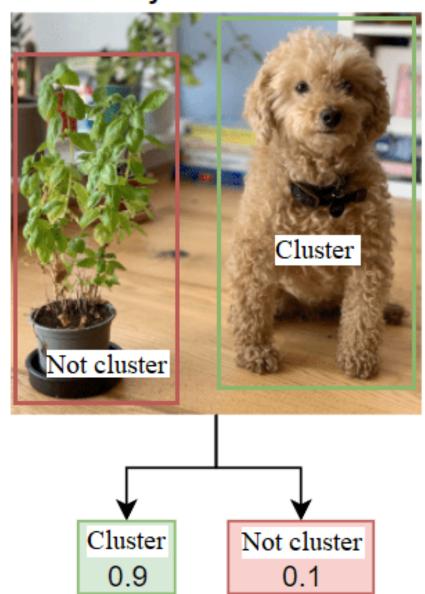
Choose cluster with highest total or mean charge:

Discard clusters with -100ns < timing < 200ns :

Other desperates attempts :

Clustering with classification neural network?

Binary Classification



Modified image from mathworks.com (Source original file)

Train a classification neural network:

First idea:

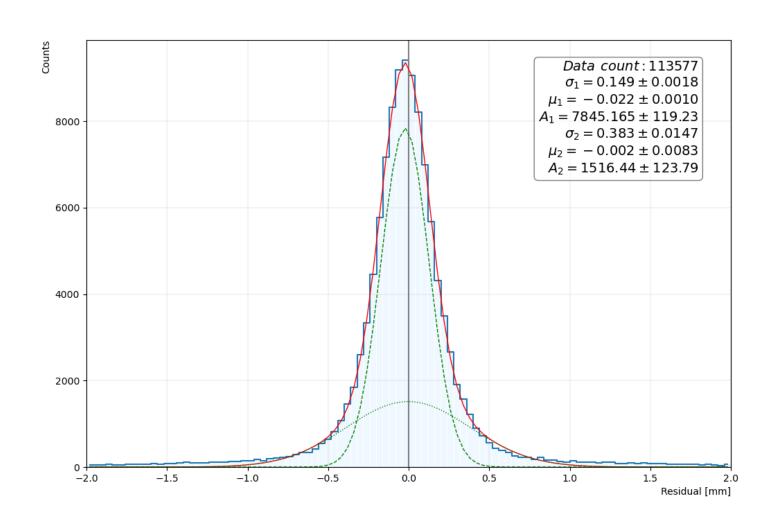
Similar to image recognition, it could be trained to form clusters of varying size with a likelihood value between 0 and 1.

But: data may lack features compared to images with millions of pixels.

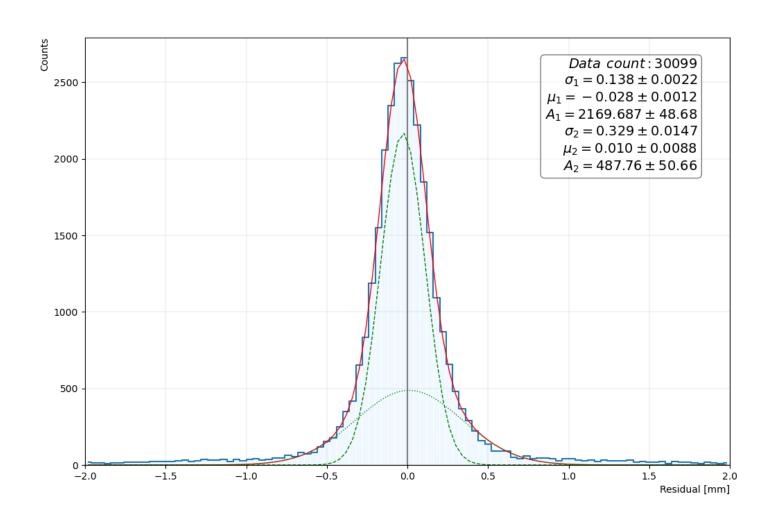
Second idea:

Classification that gives a likelihood for each strip to be in the correct cluster. Followed by a conventional algorithm to form the cluster with the most likelihood.

Backup: Plots on NN trained on all datasets

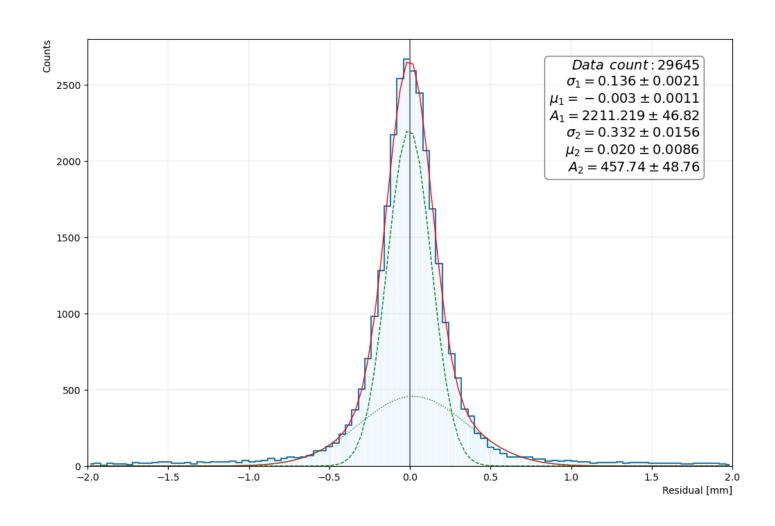


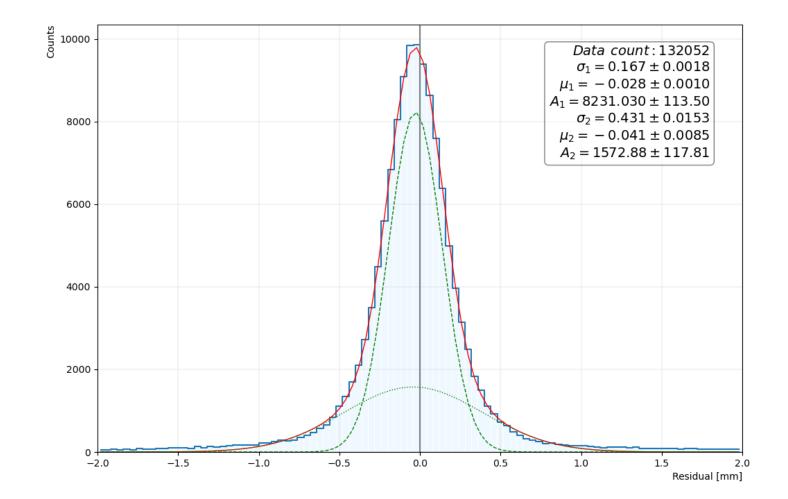
Reconstructed position residuals for the 4 datasets in the NN trained on the 4 datasets Chi^2 / Ndf (-0.8 to 0.8mm) = 217.5284 / 34 Efficiency (-2mm to 2mm) : 92.4%



Reconstructed position residuals for the dataset 530V100ns in the NN trained on the 4 datasets Chi^2 / Ndf (-0.8 to 0.8mm) = 112.2575 / 34 Efficiency (-2mm to 2mm) : 92.2%

Backup: Plots on NN trained on single dataset





Reconstructed position residuals for the dataset 530V100ns in the NN trained on the same dataset Best result in term of σ Chi² / Ndf (-0.8 to 0.8mm) = 130.4580 / 34 Efficiency (-2mm to 2mm) : 89,2%

Reconstructed position residuals for the dataset 520V200ns in the NN trained on the dataset 520V100ns Worst result in term of σ Chi² / Ndf (-0.8 to 0.8mm) = 228.9782 / 34 Efficiency (-2mm to 2mm) : 90,1%

Backup: Question about Chi² goodness of fit

$$\chi^2 = \sum_{i=1}^n rac{\left(O_i - E_i
ight)^2}{E_i}$$

Oi = an observed count for bin i

Ei = an expected count for bin i