How are phase2 machines
setup and why?

What is DLL hell?

DLL Hell XA 186 languages v

Atticle Talk Read Edit Yiew history Tools v

From wikipedia, the free encyclopedia

In computing, DLL hell is a term for the complications that arise when one works with dynamic-link libraries {DLLs) used with Microsoft
Windows operating systems '] particularly legacy 16-bit editions, which all run in a single memory space.

DLL hell can manifest itself in many different ways wherein applications neither launch nor work correctly.

DLL hell is the Windows ecosystem-specific form of the general concept dependency hell.

Problems i)

DLLs are Microsoft's implementation of shared libraries. Shared libraries allow common code to be bundled into a wrapper, the DLL,
which is used by any application software on the system without loading multiple copies into memory. A simple example might be the GUI
text editor, which is widely used by many programs. By placing this code in a DLL, all the applications on the systemn can use it without
using more memory. This contrasts with static libraries, which are functionally similar but copy the code directly into the application. In this
case, every application grows by the size of all the libraries it uses, and this can be quite large for modern programs.

he problem arises when the version of the DLL on the computer is different than the version that was used when the program was being

reated. DLLs have no built-in mechanism for backward compatibility, and even minor changes to the DLL can render its internal structure

o different from previous versions that attempting to use them will generally cause the application to cras[l. Static libraries avoid this
problem because the version that was used to build the application is included inside it, so even if a newer version exists elsewhere on the
system, this does not affect the application.

Dynamic

Link

Libraries

is the windows equivalent of
shared libraries(.so) in linux

Comments on DLL hell -1

* Why the problem appeared on the 90s?

* |t was the first time that people got access to lots of precompiled software

* Why linux had not this problem?

e Software in linux (unix) was delivered in source code form. If you always compile all
the code in your machine you are essentially not having a problem.

* Why linux might be having this problem?
* Because we use precompiled software packages for all of our dependencies

 How to avoid the problem?
* Use only a single linux distribution and software from the official repositories of your
distribution

* Use a predefined self-consistent collection of all the software packages that you
might need

Comments on DLL hell -2

* How is LHC offline software avoiding this problem?
e LHC experiments have configuration steps that impose the correct paths for
finding libraries
* They are using a central repository for all their software that is needed before
the experiment specific software

How are LHC era computers being setup?
-before each experiment sets up its own software

* Use only the agreed upon distribution
* Currently Alma9

* Make sure everyone has installed the same packages from the
baseline installation
* by installing HEP_OSlibs metapackage

What is HEP Oslibs?

HEP_OSlibs meta-package

This is the main repository and documentation page for HEP_OSlibs.
HEP_OSlibs is a meta-package that captures the Linux operating system (OfS) build- and run-time dependencies of the software of the four LHC experiments.

HEP_OSIlibs is a pure meta-package that contains no software. Installing it simply pulls in the packages it depends on, as well as any other packages on which these in turn

depend.

11 RKequires: attrixi__1sal) T T I AT Io ZUZY ANUr T YOrassSI 7SIz Z (AUUUY anu ooronos—————————
1?2 Requires: autoconf 114 [Requestor: Marco Clemencic (LHCh)]

13 Requires: automake 115 Add libzstd-devel as requested by LHCb (#15).

14 Requires: bzip2(%{__isal) 116 Require 66 packages on x86_64 and aarchéd (62 x86-64/aarch-64, 4 noarch).

15 Requires: hzip2-devel(%{__isal) 117

16 #Requires: ccache(%{__isa}) # EPEL 112 * Mon Mar 11 2024 Andrea ¥alassi 92.1.1-6 (x86_64 and aarchéd)

17 Requires: cmake(%{__isal) 119 [Requestor: Maarten Litmaath (WLCG)]

18 Requires: cyrus-sasl-devel(%{__isal) 120 Add openldap-compat, which was reported by ATLAS as a missing dependency of GFAL (#14).

1% Requires: elfutils-debuginfod-client(%{__isal) [I121 Require 65 packages on x86_64 and aarchéd (61 x86-64faarch-64, 4 noarch).
20 Requires: expat-devel(%{__isal) 122

21 Requires: file(%{__isal) 123 % Mon Mar 11 2024 Andrea ¥Yalassi 92.1.1-4 (x86_64 and aarchéd)

22 Requires: gcc{%{__isal) 124 [Requestor: Attila Krasznahorkay (ATLAS)]

23 Requires: gcc-c++(%{__isal}) 125 Add expat-devel, which is needed in the ATLAS builds of Geantd (#12 and SPI-23%6).

24 Requires: gcc-gfortran(%{__isal) 126 Require 64 packages on x86_64 and aarchéd (60 x86-64faarch-64, 4 noarch).

2?5 Requires: gdh(%{__isal) 127

2?6 Requires: gdbm-devel{(%{__isal) 123 % Mon Mar 11 2024 Andrea ¥alassi 9.1.1-3 (x86_64 and aarchéd)

27 Requires: git{(%{__isal) 12% [Requestor: Andre Sailer (SPI)]

28 Requires: glibc-devel(%{__isal) 130 Add elfutils-debuginfod-client, which is needed to build R in the LCG stack (#11 and IMC360%9512)
2% Requires: gmp-devel(%{__isal) 131 Require 63 packages on x86_64 and aarchéd (5% x86-64/aarch-64, 4 noarch).

30 Requires: jg(%{__isa}) -

How are LHC era computers being setup?
Before each experiment sets up its own software

* Use only the agreed upon distribution
* Currently Alma9

* Make sure everyone has installed the same packages from the
baseline installation
* by installing HEP_OSlibs metapackage

* Add a self-consistent repository of all external packages needed by
LHC experiments, over the network
e Add the cvmfs service to your system
* Load the LCG release that you like

What is an LCG release?

Welcome to the LCG Releases provided by the SPI team in EP-SFT at CERN.

In the CVMFS repository /cvmfs/sft.cern.ch you can find a software stack containing over 450
external packages as well as HEP specific tools and generators. There are usually two releases
per year as well as development builds every night.

The releases start with the prefix LcG_ followed by the major version of the release, e.g. 181. A
major release implies major version changes in all packages of the software stack. For patches,
we append lowercase letters like a, b, ... to the name of the release.

acts None None £6.0.0

acts core Simulation None 0.10.05

agile Generator C++ 1.5.0 ¢ Sacrifice
AIDA Math C++ 3.21 + Lorenzo
aiohttp None None 3.95

aiosignal None None 1.2.0

aiostream None None 0.45

alabaster None None 0.7.12

alembic None None 1.13.3

alpaka Other C++ 0.9.0

alpgen Generator Fortran 214 « Michelar
altair None None 5.2.0

x86 64-el9-clangi16-dbg

x86 64-el9-clang16-opt

x86 64-el9-gcc11-opt

x86 64-el9-gcc12-dbg

x86 64-el9-gccl12-opt

x86 64-el9-gcc13-dbg

x86 64-el9-gccl13-opt

x86 64-el9-gcc14fp-opt

x86 64-el9-gcc14-opt

Q&A

* Q1:0Online machines do have more low level needs

e Kernel modules to map VME memory space to pc memory
e Kernel modules to arrange the memory regions according to needs

* Special drivers for networking

* Al: hopefully you know more than what this presentation talks about
* Q2:I have dependencies on software that is not part of the repository

* A2: you do have to compile from scratch but the real question is why
you depend on software that no one else on LHC experiments
depends upon.

