Development of a Cherenkov Micromegas

Daniel Grewe

theory:
$$\Delta x = (t_{mid} - t_{coc}) \cdot v_D \cdot \tan(\theta)$$

 $\Delta x = (t_{mid} - t_{coc}) \cdot \text{slope} \cdot \theta$
 $t_{coc.} = \frac{\Sigma q_i t_i}{\Sigma q_i}$

Core residual

weighted residual

resolution core

resolution

3mm efficiency in the center of the detector

top strip resolution with the time corrected method:

 σ_{core} = 75 μ m, $\sigma_{weighted}$ = 128 μ m

3mm top strip efficiency	: 0.92
3mm 2D efficiency	: 0.88

theory:
$$\Delta x = (t_{mid} - t_{coc}) \cdot v_D \cdot \tan(\theta)$$

 $\Delta x = (t_{mid} - t_{coc}) \cdot \text{slope} \cdot \theta$
 $t_{coc.} = \frac{\Sigma q_i t_i}{\Sigma q_i}$

now: slope = - 0.0008 ?

