The Smart Background Project

Making simulation more efficient with ML

Nikolai Krug

LMU Munich

30 October 2024, LMU Joint Particle Physics Group Seminar

Selective/Smart background MC simulation

Introduced by James Kahn in his PhD thesis (2019):

- Event generation much faster than detector simulation/reconstruction (at Belle II) \rightarrow O(10ms) vs O(1s) $\rightarrow t_{\text{fast}}: t_{\text{slow}} \approx 1:100$
- Many events discarded by filter (skim) \rightarrow try to predict which events will be discarded, already after event generation
- Not always a clearly correlated variable on generator level
 - ightarrow example: skim may use involved algorithms like FEI (Full Event Interpretation)
 - \rightarrow train an NN to be a good filter

The problem with naive filtering

- false positives are not too problematic (we throw them away later by running the "true" skim)
- false negatives may produce bias (we can't get them back)

The solution: Importance sampling

Boyang Yu's Master thesis (2021)

- Use NN output as probability to keep event
- Weight events by inverse probability
- No bias by construction, every event has a chance to be picked
- Train NN to provide **highest speedup** $\frac{t_{\text{noNN}}}{t_{\text{NN}}}$ to produce same **effective sample size** $\frac{(\sum_i w_i)^2}{\sum_i w_i^2}$ after skimming \rightarrow for large enough sample independent of sample size
- Speedup also depends on:
 - assumed times for generation (fast), NN inference, simulation/reconstruction (slow) \rightarrow roughly expect $t_{\text{fast}} : t_{\text{NN}} : t_{\text{slow}} = 1 : 1 : 100$
 - (target) **filter efficiency** (= retention rate)
 - \rightarrow can gain more if more events expected to be skipped
- Conceptionally similar to slicing strategy for MC filters at LHC \rightarrow slicing is essentially importance sampling with discrete probabilities

Slicing

Who has seen samples like this?

mc15_13TeV.361324.Sherpa_CT10_Wmunu_Pt0_70_CVetoBVeto... mc15_13TeV.361325.Sherpa_CT10_Wmunu_Pt0_70_CFilterBVeto... mc15_13TeV.361326.Sherpa_CT10_Wmunu_Pt0_70_BFilter... mc15_13TeV.361327.Sherpa_CT10_Wmunu_Pt70_140_CVetoBVeto... mc15_13TeV.361329.Sherpa_CT10_Wmunu_Pt70_140_EFilterBVeto... mc15_13TeV.361330.Sherpa_CT10_Wmunu_Pt140_280_CVetoBVeto... mc15_13TeV.361331.Sherpa_CT10_Wmunu_Pt140_280_EFilterBVeto... mc15_13TeV.361332.Sherpa_CT10_Wmunu_Pt140_280_EFilterBVeto... mc15_13TeV.361332.Sherpa_CT10_Wmunu_Pt140_280_EFilterBVeto... mc15_13TeV.361333.Sherpa_CT10_Wmunu_Pt280_500_CVetoBVeto... mc15_13TeV.361333.Sherpa_CT10_Wmunu_Pt280_500_CVetoBVeto... mc15_13TeV.361334.Sherpa_CT10_Wmunu_Pt280_500_EFilterBVeto... mc15_13TeV.361336.Sherpa_CT10_Wmunu_Pt280_500_EFilterBVeto... mc15_13TeV.361337.Sherpa_CT10_Wmunu_Pt280_700_CVetoBVeto... mc15_13TeV.361337.Sherpa_CT10_Wmunu_Pt500_700_CVetoBVeto... mc15_13TeV.361338.Sherpa_CT10_Wmunu_Pt500_700_EFilterBVeto... mc15_13TeV.361338.Sherpa_CT10_Wmunu_Pt500_700_EFilterBVeto... mc15_13TeV.361338.Sherpa_CT10_Wmunu_Pt500_700_EFilterBVeto...

. . .

- Every slice is weighted by $w = \frac{N_{\text{gen,slice}}}{N_{\text{tot,exp}}}$, with $N_{\text{tot,exp}} = \epsilon_{\text{slice}} \sigma_{\text{process}} \int L dt$
- Can also view this as sampling with probabilities: $p_{\text{slice}} = \frac{N_{\text{gen,slice}}}{N_{\text{tot exp}}}$
- Note: $N_{
 m gen, slice}$ may already be represented as a sum of weights

Effective sample size

- With weighted events our expected counts are estimated by $N_{exp} = \sum_i w_i$
- The variance of N_{exp} is then estimated by $\sigma_{N_{exp}}^2 = \sum_i w_i^2$ \rightarrow that's what .Sumw2() is for in ROOT histograms \rightarrow think: every event is a poisson count of 1, scaled by $w_i \rightarrow$ variance w_i^2
- What's the unweighted sample size that gives the same relative statistical uncertainty σ_{rel} as some weighted sample?

Speedup formula

	NN select	NN reject	
Actual pass	TP	FN	
Actual fail	FP	TN	

$$\mathsf{Speedup} = \frac{t_{\mathrm{noNN}}}{t_{\mathrm{NN}}} = \frac{t_3 \cdot a_{\mathrm{eff}}}{(\epsilon \cdot f_{\mathrm{TP}} + (1 - \epsilon) \cdot f_{\mathrm{FP}}) \cdot t_1 + ((1 - \epsilon) \cdot f_{\mathrm{TN}} + \epsilon \cdot f_{\mathrm{FN}}) \cdot t_2}$$

- ϵ : Skim efficiency
- $f_{\text{TP}} = E[p_{\text{pass}}], f_{\text{FP}} = E[p_{\text{fail}}], f_{\text{TN}} = 1 f_{\text{FP}}, f_{\text{FN}} = 1 f_{\text{TP}}$
- $t_1 = t_{\text{fast}} + t_{\text{NN}} + t_{\text{slow}}$
- $t_2 = t_{\text{fast}} + t_{\text{NN}}$
- $t_3 = t_{\text{fast}} + t_{\text{slow}}$
- $a_{\rm eff} = 1/E[w_{\rm pass}]$ with $w_{\rm pass} = 1/p_{\rm pass}$

Sampling probability calibration - optimize speedup

- My claim: prediction from optimally trained (probabilistic) classifier should be related to optimal sampling probability by a monotonic transformation

 → higher probabilities to pass filter should come with higher sampling probabilities
- Could see this as using a "skewed" sigmoid activation on logits \rightarrow can optimize this with 3 parameters for skewed sigmoid
- Seems no unique solution, some freedom of choice:
 → can reduce to 2 parameter function (see next slides)

The 3 Parameters

$$f(x) = \frac{1}{\left(1 + ae^{-c(x-b)}\right)^{\frac{1}{a}}}$$

Not a unique maximum Fix a and c, fit b:

Tradeoff

Can choose between shorter time (larger sample in same time), or narrower weight distribution:

 \rightarrow narrower weight distribution is desirable

So this function is enough

 $f(x) = \min(e^{a(x-b)}, 1)$

- Using generator level MC record → hadron-level, no quarks/gluons
- List of particles with mother-daughter relations
- Particle features: PDG id, 4-momentum, production vertex position/time

The model

based on Particle Transformer for Jet Tagging arXiv:2202.03772

- ParT achieved state-of-the-art performance in jet tagging by pre-training on their own **large dataset** (100M) + **fine tuning** (e.g top tagging)
- Architecture seems very generic
 → essentially just a transformer
 ("Attention is all you need (2017)")
- Supports edge features, in our case:
 - adjacency matrix of decay graph (had success using GNN architectures before)
 - angle between pairs
 - invariant masses between pairs
- For new skims/filters hope to be able to finetune pre-trained model
 - \rightarrow especially interesting for low filter efficiencies
- 10-layer, 2M parameter model

Self Attention

GNN vs ParT

 \rightarrow transformer model (green) better than GNN (blue, orange) for large dataset

How to do transfer learning

Looking at two methods:

- Feature extraction: Remove final layer, only retrain that
 - \rightarrow simplest case: just retrain a single neuron
 - \rightarrow will likely only work if new skim highly correlated with something seen during training
- Whole-model fine-tuning: start with pre-trained model but adjust all parameters
 - \rightarrow also reinitialize last layer in case of different output
 - \rightarrow hyperparameters from ParT paper:
 - learning rate 0.0001/0.005 for pre-trained/last-layer parameters
 - weight decay 0.01

Fine tuning tests

fine tune model pre-trained on a reference skim

Adaptive/Reinforcement learning

- For running on new skims could consider "reinforcement learning":
 - \rightarrow Train model while producing data and running skim
 - \rightarrow Model becomes successively better producing data more efficiently
- Advantage: Overall time saving, on-the-fly procedure in one step
- Disadvantage: need to implement training loop in production software

¹from Daniel Pollmann's Bachelor thesis (2024)

Large scale training

- Many pre-defined skims with data available
 - \rightarrow many different definitions centrally run on large datasets
 - \rightarrow pre-train model on large datase that predicts probabilities for all skims
 - \rightarrow data with 51~different~labels
- Also condition on background type

 \rightarrow 7 Generic samples: $B^{\pm,0}$ pairs, $q\bar{q}$ with 4 different q flavours, $\tau\bar{\tau}$ (representative of e^+e^- collisions at 10.58 GeV)

- Using dataset with \approx 180M events (10% kept for testing), roughly balanced between all 7 generic samples \rightarrow corresponds to roughly $20 \, {\rm fb}^{-1}$ of simulated data
- No class weighting, just take labels as they come \rightarrow partially overlapping \rightarrow binary cross entropy term for each
- Hope: Diverse training dataset makes finetuning more flexible

TRAFIC:

Training results

- Training worked with similar setup as for fewer labels
- Achievable speedups for different skims correlate with
 - Separation power (AUC, area under ROC curve)
 - \rightarrow higher separation leads to higher speedup
 - Skim efficiency
 - \rightarrow lower skim efficiency tends to higher speedup

Summary and Conclusions

- We'd like to speedup our simulation with NN assisted filters
 → filter events that won't pass downstream selection before running expensive parts
 (detector simulation and reconstruction)
- Using importance sampling technique to avoid bias
 → continuous version of traditional "slicing" strategy
- Metric to optimize: **speedup** when producing same effective sample size \rightarrow can be calibrated with parameterized logistic function
- Use Transformer model to generically capture MC generator information
- Transfer learning to capture skims with little training data seems promising
 → fine tuning seems to work also for skim selections not seen during training
 → may also help to avoid retraining when conditions/calibrations/selections change
 → also offers prospects for on-the-fly reinforcement learning
- Can run the pretraining on a large dataset with many different skims \rightarrow maximize diversity of skim selections and inputs seen by the model

Backup

Hyperparameters

- Largely following architecture from ParT paper:
 - 8 Transformer blocks with self-attention
 - 2 Transformer blocks with class-attention
 - 8 Attention heads in each multi-head attention block
 - Embedding size 128
 - MLP hidden layers have 4 times the embedding size
 - \rightarrow around 2 Million parameters
- Modifications/Additions:
 - Fewer norm layers (Pre-LN transformer vs Normformer in ParT)
 - Embedding layer for PDG ID
 - Embedding layer for sample type
 - 3 pair features (Decay tree adjacency matrix, invariant masses, angle between pairs)

Filter efficiencies

Average over all samples where skim is available:

Correlations between pass events: (only considering events where both skims are available)

BLOAN BtoXII LFV inclusiveBplusToKplusNuNu TDCPV ccs TDCPV_cqs BtoD0h_Kpipipi Kpipi0 BtoD0h_Kshh BtoD0rho Kpi BRODON KADIO BRODON KADIO BORDN KADIO KADI DimuonPlusMissingEnergy ElectronMuonPlusMissingEnergy LEV2DVisible LowMassiwoTrack SingleTagPseudoScalar TauGeneric TauGeneric TauFhrust DubtpiOPiO