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Selective/Smart background MC simulation

Introduced by James Kahn in his PhD thesis (2019):

Generate
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SkimReconstruct AnalyseSimulate
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Discard

NN

slowfast

• Event generation much faster than detector simulation/reconstruction (at Belle II)
→ O(10ms) vs O(1s) → tfast : tslow ≈ 1 : 100

• Many events discarded by filter (skim)
→ try to predict which events will be discarded, already after event generation

• Not always a clearly correlated variable on generator level
→ example: skim may use involved algorithms like FEI (Full Event Interpretation)
→ train an NN to be a good filter
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The problem with naive filtering
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• false positives are not too problematic
(we throw them away later by running the “true” skim)

• false negatives may produce bias (we can’t get them back)
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The solution: Importance sampling
Boyang Yu’s Master thesis (2021)

• Use NN output as probability to keep event

• Weight events by inverse probability

• No bias by construction, every event has a chance to be picked

• Train NN to provide highest speedup tnoNN

tNN

to produce same effective sample size
(
∑

i wi)
2∑

i w
2
i

after skimming

→ for large enough sample independent of sample size

• Speedup also depends on:
• assumed times for generation (fast), NN inference, simulation/reconstruction (slow)

→ roughly expect tfast : tNN : tslow = 1 : 1 : 100
• (target) filter efficiency (= retention rate)

→ can gain more if more events expected to be skipped

• Conceptionally similar to slicing strategy for MC filters at LHC
→ slicing is essentially importance sampling with discrete probabilities
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https://docs.belle2.org/record/3222


Slicing

Who has seen samples like this?

mc15_13TeV.361324.Sherpa_CT10_Wmunu_Pt0_70_CVetoBVeto...
mc15_13TeV.361325.Sherpa_CT10_Wmunu_Pt0_70_CFilterBVeto...
mc15_13TeV.361326.Sherpa_CT10_Wmunu_Pt0_70_BFilter...
mc15_13TeV.361327.Sherpa_CT10_Wmunu_Pt70_140_CVetoBVeto...
mc15_13TeV.361328.Sherpa_CT10_Wmunu_Pt70_140_CFilterBVeto...
mc15_13TeV.361329.Sherpa_CT10_Wmunu_Pt70_140_BFilter...
mc15_13TeV.361330.Sherpa_CT10_Wmunu_Pt140_280_CVetoBVeto...
mc15_13TeV.361331.Sherpa_CT10_Wmunu_Pt140_280_CFilterBVeto...
mc15_13TeV.361332.Sherpa_CT10_Wmunu_Pt140_280_BFilter...
mc15_13TeV.361333.Sherpa_CT10_Wmunu_Pt280_500_CVetoBVeto...
mc15_13TeV.361334.Sherpa_CT10_Wmunu_Pt280_500_CFilterBVeto...
mc15_13TeV.361335.Sherpa_CT10_Wmunu_Pt280_500_BFilter...
mc15_13TeV.361336.Sherpa_CT10_Wmunu_Pt500_700_CVetoBVeto...
mc15_13TeV.361337.Sherpa_CT10_Wmunu_Pt500_700_CFilterBVeto...
mc15_13TeV.361338.Sherpa_CT10_Wmunu_Pt500_700_BFilter...
...

• Every slice is weighted by w =
Ngen,slice

Ntot,exp
, with Ntot,exp = ϵsliceσprocess

∫
Ldt

• Can also view this as sampling with probabilities: pslice =
Ngen,slice

Ntot,exp

• Note: Ngen,slice may already be represented as a sum of weights
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Effective sample size

• With weighted events our expected counts are estimated by Nexp =
∑

i wi

• The variance of Nexp is then estimated by σ2
Nexp

=
∑

i w
2
i

→ that’s what .Sumw2() is for in ROOT histograms
→ think: every event is a poisson count of 1, scaled by wi → variance w2

i

• What’s the unweighted sample size that gives the same relative statistical uncertainty σrel

as some weighted sample?

√
N

N
=

1√
N︸ ︷︷ ︸

σrel,unweighted

!
=

√∑
i w

2
i∑

i wi︸ ︷︷ ︸
σrel,weighted

→ N =
(
∑

wi)
2∑

w2
i
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Speedup formula

NN select NN reject
Actual pass TP FN
Actual fail FP TN

Speedup =
tnoNN

tNN
=

t3 · aeff
(ϵ · fTP + (1− ϵ) · fFP) · t1 + ((1− ϵ) · fTN + ϵ · fFN) · t2

• ϵ: Skim efficiency

• fTP = E[ppass], fFP = E[pfail], fTN = 1− fFP, fFN = 1− fTP

• t1 = tfast + tNN + tslow
• t2 = tfast + tNN

• t3 = tfast + tslow
• aeff = 1/E[wpass] with wpass = 1/ppass
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Sampling probability calibration - optimize speedup
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• My claim: prediction from optimally trained (probabilistic) classifier should be related to
optimal sampling probability by a monotonic transformation
→ higher probabilities to pass filter should come with higher sampling probabilities

• Could see this as using a “skewed” sigmoid activation on logits
→ can optimize this with 3 parameters for skewed sigmoid

• Seems no unique solution, some freedom of choice:
→ can reduce to 2 parameter function (see next slides)
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The 3 Parameters

f(x) =
1(

1 + ae−c(x−b)
) 1

a
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Not a unique maximum
Fix a and c, fit b:
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Tradeoff

Can choose between shorter time (larger sample in same time), or narrower weight distribution:
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activation function
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weight distribution
time; (a, b, c); speedup
25.20; (2, 0.8, 1.2); 2.05
26.99; (3, 0.74, 1.8); 2.07
28.30; (6, 0.85, 3.6); 2.08
28.56; (10, 0.97, 6); 2.08
28.65; (20, 1.1, 12); 2.08
28.69; (1e+02, 1.3, 60); 2.08

→ narrower weight distribution is desirable
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So this function is enough

f(x) = min(ea(x−b), 1)
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→ parameters are a scalefactor a and a bias b
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The dataset
ϒ(4S)

B̅⁰ B⁰

D*(2010)⁺ μ⁻ ν̅(μ) D⁻ ρ(770)⁺ π⁻ π⁺

D⁰ π⁺ K(S)⁰ π⁻ π⁰ π⁺ π⁰

K⁻ μ⁺ ν(μ) π⁺ π⁻ γ γ γ γ

• Using generator level MC record
→ hadron-level, no quarks/gluons

• List of particles with mother-daughter relations

• Particle features: PDG id, 4-momentum, production vertex position/time
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The model

based on Particle Transformer for Jet Tagging arXiv:2202.03772
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• ParT achieved state-of-the-art performance in jet
tagging by pre-training on their own large dataset
(100M) + fine tuning (e.g top tagging)

• Architecture seems very generic
→ essentially just a transformer
(“Attention is all you need (2017)”)

• Supports edge features, in our case:
• adjacency matrix of decay graph

(had success using GNN architectures before)
• angle between pairs
• invariant masses between pairs

• For new skims/filters hope to be able to finetune
pre-trained model
→ especially interesting for low filter efficiencies

• 10-layer, 2M parameter model
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https://arxiv.org/abs/2202.03772
https://arxiv.org/abs/1706.03762


Self Attention
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GNN vs ParT
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→ transformer model (green) better than GNN (blue, orange) for large dataset
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How to do transfer learning

Looking at two methods:

• Feature extraction: Remove final layer, only retrain that
→ simplest case: just retrain a single neuron
→ will likely only work if new skim highly correlated with something seen during training

• Whole-model fine-tuning: start with pre-trained model but adjust all parameters
→ also reinitialize last layer in case of different output
→ hyperparameters from ParT paper:

• learning rate 0.0001/0.005 for pre-trained/last-layer parameters
• weight decay 0.01
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Fine tuning tests
fine tune model pre-trained on a reference skim

Subset of reference
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Skim C
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Train on 2000 events, batch size 256, Transparent: train, Solid: validation
from scratch
feature extraction (+linear layer)
full finetuning

• As expected feature extraction bad if low linear correlation

• Train from scratch does typically not work well with only
2k (1k pass) events

• Full finetune shows promising results!
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Adaptive/Reinforcement learning

Simulated reinforcement learning1 for skim C

• For running on new skims could consider “reinforcement learning”:
→ Train model while producing data and running skim
→ Model becomes successively better producing data more efficiently

• Advantage: Overall time saving, on-the-fly procedure in one step

• Disadvantage: need to implement training loop in production software

1from Daniel Pollmann’s Bachelor thesis (2024)
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Large scale training
• Many pre-defined skims with data available

→ many different definitions centrally run on large datasets
→ pre-train model on large datase that predicts probabilities for all skims
→ data with 51 different labels

• Also condition on background type
→ 7 Generic samples: B±,0 pairs, qq̄ with 4 different q flavours, τ τ̄
(representative of e+e− collisions at 10.58 GeV)

• Using dataset with ≈ 180M events (10% kept for testing),
roughly balanced between all 7 generic samples
→ corresponds to roughly 20 fb−1 of simulated data

• No class weighting, just take labels as they come
→ partially overlapping → binary cross entropy term for each

• Hope: Diverse training dataset makes finetuning more flexible
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Training results
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• Training worked with similar setup as for fewer labels
• Achievable speedups for different skims correlate with

• Separation power (AUC, area under ROC curve)
→ higher separation leads to higher speedup

• Skim efficiency
→ lower skim efficiency tends to higher speedup
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Summary and Conclusions

• We’d like to speedup our simulation with NN assisted filters
→ filter events that won’t pass downstream selection before running expensive parts
(detector simulation and reconstruction)

• Using importance sampling technique to avoid bias
→ continuous version of traditional “slicing” strategy

• Metric to optimize: speedup when producing same effective sample size
→ can be calibrated with parameterized logistic function

• Use Transformer model to generically capture MC generator information

• Transfer learning to capture skims with little training data seems promising
→ fine tuning seems to work also for skim selections not seen during training
→ may also help to avoid retraining when conditions/calibrations/selections change
→ also offers prospects for on-the-fly reinforcement learning

• Can run the pretraining on a large dataset with many different skims
→ maximize diversity of skim selections and inputs seen by the model
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Backup
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Hyperparameters

• Largely following architecture from ParT paper:
• 8 Transformer blocks with self-attention
• 2 Transformer blocks with class-attention
• 8 Attention heads in each multi-head attention block
• Embedding size 128
• MLP hidden layers have 4 times the embedding size

→ around 2 Million parameters

• Modifications/Additions:
• Fewer norm layers (Pre-LN transformer vs Normformer in ParT)
• Embedding layer for PDG ID
• Embedding layer for sample type
• 3 pair features (Decay tree adjacency matrix, invariant masses, angle between pairs)
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Filter efficiencies

Average over all samples where skim is available:
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Correlations between pass events:
(only considering events where both skims are available)

fe
iH

ad
ro

ni
c

fe
iS

L
Sy

st
em

at
ics

Ph
iG

am
m

a
BT

oX
ga

m
m

a
Bt

oX
ll

Bt
oX

ll_
LF

V
in

clu
siv

eB
pl

us
To

Kp
lu

sN
uN

u
TD

CP
V_

cc
s

TD
CP

V_
qq

s
Bt

oD
0h

_K
sp

i0
B0

to
Dp

i_K
pi

pi
B0

to
Dr

ho
_K

pi
pi

Bt
oD

0h
_h

h
Bt

oD
0h

_K
pi

Bt
oD

0h
_K

pi
pi

pi
_K

pi
pi

0
Bt

oD
0h

_K
sh

h
Bt

oD
0r

ho
_K

pi
Bt

oD
0r

ho
_K

pi
pi

pi
_K

pi
pi

0
B0

to
DD

_K
pi

pi
_K

sp
i

In
clu

siv
eL

am
bd

a
Bo

tto
m

on
iu

m
Et

ab
Ex

clu
siv

e
Bo

tto
m

on
iu

m
Up

sil
on

Ch
ar

m
on

iu
m

Ps
i

XT
oD

0_
D0

To
Hp

Jm
XT

oD
0_

D0
To

Ne
ut

ra
ls

XT
oD

p_
Dp

To
Ks

Hp
XT

oD
p_

Dp
To

Hp
Hm

Jp
La

m
bd

ac
To

pH
pJ

m
Ds

tTo
D0

Pi
_D

0T
oH

pJ
m

Ds
tTo

D0
Pi

_D
0T

oH
pH

m
Pi

0
Ds

tTo
D0

Pi
_D

0T
oN

eu
tra

ls
Ds

tTo
D0

Pi
_D

0T
oH

pJ
m

Ks
Ds

tTo
Dp

Pi
0_

Dp
To

Hp
Pi

0
Ds

tTo
D0

Pi
_D

0T
oV

Ga
m

m
a

In
el

as
tic

Da
rk

M
at

te
r

Ra
dB

ha
bh

aV
0C

on
tro

l
Si

ng
le

Ph
ot

on
Da

rk
Ga

m
m

aG
am

m
aC

on
tro

lK
LM

Da
rk

EG
am

m
aC

on
tro

lD
ar

k
Bt

oK
pl

us
LL

P
Ta

uL
FV

Di
m

uo
nP

lu
sM

iss
in

gE
ne

rg
y

El
ec

tro
nM

uo
nP

lu
sM

iss
in

gE
ne

rg
y

LF
VZ

pV
isi

bl
e

Lo
wM

as
sT

wo
Tr

ac
k

Si
ng

le
Ta

gP
se

ud
oS

ca
la

r
Ta

uG
en

er
ic

Ta
uT

hr
us

t
Bt

oP
i0

Pi
0

Bt
oH

ad
Tr

ac
ks

Bt
oH

ad
1P

i0

feiHadronic
feiSL

SystematicsPhiGamma
BToXgamma

BtoXll
BtoXll_LFV

inclusiveBplusToKplusNuNu
TDCPV_ccs
TDCPV_qqs

BtoD0h_Kspi0
B0toDpi_Kpipi

B0toDrho_Kpipi
BtoD0h_hh
BtoD0h_Kpi

BtoD0h_Kpipipi_Kpipi0
BtoD0h_Kshh
BtoD0rho_Kpi

BtoD0rho_Kpipipi_Kpipi0
B0toDD_Kpipi_Kspi

InclusiveLambda
BottomoniumEtabExclusive

BottomoniumUpsilon
CharmoniumPsi

XToD0_D0ToHpJm
XToD0_D0ToNeutrals

XToDp_DpToKsHp
XToDp_DpToHpHmJp

LambdacTopHpJm
DstToD0Pi_D0ToHpJm

DstToD0Pi_D0ToHpHmPi0
DstToD0Pi_D0ToNeutrals
DstToD0Pi_D0ToHpJmKs
DstToDpPi0_DpToHpPi0

DstToD0Pi_D0ToVGamma
InelasticDarkMatter

RadBhabhaV0Control
SinglePhotonDark

GammaGammaControlKLMDark
EGammaControlDark

BtoKplusLLP
TauLFV

DimuonPlusMissingEnergy
ElectronMuonPlusMissingEnergy

LFVZpVisible
LowMassTwoTrack

SingleTagPseudoScalar
TauGeneric

TauThrust
BtoPi0Pi0

BtoHadTracks
BtoHad1Pi0 0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 sh

ar
ed

 p
as

s e
ve

nt
s

27 / 23


