The Smart Background Project

Making simulation more efficient with ML

Nikolai Krug
LMU Munich

30 October 2024, LMU Joint Particle Physics Group Seminar

LUDWIG-

MAXIMILIANS-
UNIVERSITAT
MUNCHEN

1/23

Selective/Smart background MC simulation

Introduced by James Kahn in his PhD thesis (2019):

Kee Kee
NN R Simulate Reconstruct Skim p; Analyse

— Discard * v d Discard
fast slow

® Event generation much faster than detector simulation/reconstruction (at Belle II)
— O(10ms) vs O(1s) — tfast : tslow ~= 1 : 100

® Many events discarded by filter (skim)
— try to predict which events will be discarded, already after event generation

® Not always a clearly correlated variable on generator level
— example: skim may use involved algorithms like FEI (Full Event Interpretation)
— train an NN to be a good filter

2/23

https://doi.org/10.5282/edoc.24013

The problem with naive filtering

NN

® false positives are not too problematic

AiEiscard

rT=" '-:1

Kee|

R

Simulate

False
negatives

Reconstruct

(we throw them away later by running the “true” skim)

* false negatives may produce bias (we can't get them back)

Kee
Skim p} Analyse
Aifiscard
False
positives

3/23

The solution: Importance sampling
Boyang Yu’s Master thesis (2021)

Use NN output as probability to keep event
Weight events by inverse probability

No bias by construction, every event has a chance to be picked

Train NN to provide highest speedup fpeNx

tNN

(; wi 2
>

to produce same effective sample size w‘z,) after skimming

— for large enough sample independent of Sarﬁple size

Speedup also depends on:
® assumed times for generation (fast), NN inference, simulation/reconstruction (slow)
— roughly expect teast : tNN : tslow = 1 : 1 : 100
® (target) filter efficiency (= retention rate)
— can gain more if more events expected to be skipped

Conceptionally similar to slicing strategy for MC filters at LHC
— slicing is essentially importance sampling with discrete probabilities

4/23

https://docs.belle2.org/record/3222

Slicing

Who has seen samples like this?

mc15_13TeV.361324.Sherpa_CT10_Wmunu_Pt0_70_CVetoBVeto...
mc15_13TeV.361325.Sherpa_CT10_Wmunu_Pt0_70_CFilterBVeto...
mc15_13TeV.361326.Sherpa_CT10_Wmunu_PtO0_70_BFilter...
mc15_13TeV.361327.Sherpa_CT10_Wmunu_Pt70_140_CVetoBVeto...
mc15_13TeV.361328.Sherpa_CT10_Wmunu_Pt70_140_CFilterBVeto...
mc15_13TeV.361329.Sherpa_CT10_Wmunu_Pt70_140_BFilter...
mc15_13TeV.361330.Sherpa_CT10_Wmunu_Pt140_280_CVetoBVeto...
mc15_13TeV.361331.Sherpa_CT10_Wmunu_Pt140_280_CFilterBVeto...
mc15_13TeV.361332.5herpa_CT10_Wmunu_Pt140_280_BFilter...
mc15_13TeV.361333.Sherpa_CT10_Wmunu_Pt280_500_CVetoBVeto...
mcl15_13TeV.361334.Sherpa_CT10_Wmunu_Pt280_500_CFilterBVeto. ..
mc15_13TeV.361335.5herpa_CT10_Wmunu_Pt280_500_BFilter...
mc15_13TeV.361336.Sherpa_CT10_Wmunu_Pt500_700_CVetoBVeto...
mc15_13TeV.361337.Sherpa_CT10_Wmunu_Pt500_700_CFilterBVeto...
mc15_13TeV.361338.Sherpa_CT10_Wmunu_Pt500_700_BFilter...

. . . N, n,sli N
® Every slice is weighted by w = == with Niot exp = €sliceFprocess | Ldt
ot,exp
. . . . e Neenstice

® Can also view this as sampling with probabilities: pgjice = 7Ni N !
ot,exp

® Note: Ngensiice Mmay already be represented as a sum of weights

5/23

Effective sample size

® With weighted events our expected counts are estimated by Nex, = >, w;

® The variance of Nexp is then estimated by 0%, =37, w?
— that's what .Sumw2() is for in ROOT histograms
— think: every event is a poisson count of 1, scaled by w; — variance w?

® What's the unweighted sample size that gives the same relative statistical uncertainty o
as some weighted sample?

VN 1 u? (> wi)?

A S N=-="Y

== = 2

N VN > wi > w;
—_————— ——
Orel,unweighted Orel,weighted

6/23

Speedup formula

| NN select | NN reject

Actual pass TP FN
Actual fail FP TN
tnoNN t3 © Qeff

Speedup = =

NN (e-frr+ (1 —€)- fep)-t1+((1—€) - fon+e- fon)- 1o

e: Skim efficiency

frp = Elppass|, frp = E[pail], frn =1 — fep, fon =1— frp
11 = tgast + INN + Lslow

to = Tast + INN

t3 = trast + Lslow

et = 1/ E[Wpass] With wpass = 1/Ppass

7/23

density

® My claim: prediction from optimally trained (probabilistic) classifier should be related to

Sampling probability calibration - optimize speedup

Logits (pre-activation output) 10

1 fail
pass
0.8

0.6

==~ Sigmoid (cross entropy training)
—— Optimized for Speedup

Predicted pass probability (cross entropy training)
£ fail
pass

Optimal sampling probability for speedup
1 fail
pass

-100 -75 =50 -25 00 25 50 715

optimal sampling probability by a monotonic transformation

— higher probabilities to pass filter should come with higher sampling probabilities

0.0 0.2 0.4 0.6 0.8

® Could see this as using a “skewed” sigmoid activation on logits

® Seems no unique solution, some freedom of choice:
— can reduce to 2 parameter function (see next slides)

— can optimize this with 3 parameters for skewed sigmoid

8/23

1.0 1

0.81

0.6 1

0.2 1

0.0

The 3 Parameters

1
(1 + ae*c(m*b)) «

9/23

Not a unique maximum
Fix a and ¢, fit b:

10
2.0
9
8
1.8
7
6 Q
163
Q
[
5 &
4 1.4
3
1.2

N

10/23

Tradeoff

Can choose between shorter time (larger sample in same time), or narrower weight distribution:

activation function weight distribution
1.0 time; (a, b, ¢); speedup
10" 4 [25.20; (2, 0.8, 1.2); 2.05
[26.99; (3, 0.74, 1.8); 2.07
081 [28.30; (6, 0.85, 3.6); 2.08
: [28.56; (10, 0.97, 6); 2.08
100 [28.65; (20, 1.1, 12); 2.08
[28.69; (1e+02, 1.3, 60); 2.08
0.6 1
0.4 107" 4
0.2
1072 4
0.0 4
T y T T T T T T T T T T +
-4 -2 0 2 4 1.0 15 20 25 3.0 35 40 45 5.0

— narrower weight distribution is desirable

11/23

1.0 1

0.8 1

0.6

0.4 1

0.2 1

0.0 1

So this function is enough

f(z) = min(e®@=% 1)

B 3 :
— parameters are a scalefactor a and a bias b

12/23

The dataset

® Using generator level MC record
— hadron-level, no quarks/gluons

® List of particles with mother-daughter relations

® Particle features: PDG id, 4-momentum, production vertex position/time

13/23

(b) Particle Attention Block

(c) Class Attention Block

The model

based on Particle Transformer for Jet Tagging arXiv:2202.03772

ParT achieved state-of-the-art performance in jet
tagging by pre-training on their own large dataset
(100M) + fine tuning (e.g top tagging)
Architecture seems very generic
— essentially just a transformer
(“Attention is all you need (2017)")
Supports edge features, in our case:

® adjacency matrix of decay graph

(had success using GNN architectures before)

® angle between pairs
® invariant masses between pairs

For new skims/filters hope to be able to finetune
pre-trained model
— especially interesting for low filter efficiencies

10-layer, 2M parameter model

14/23

https://arxiv.org/abs/2202.03772
https://arxiv.org/abs/1706.03762

Self Attention

- Z/_ Lc « V'\o\.(o (,L
=)(me'ﬁ S

l Q

X v
71\\1‘ K
: v - X

|

Uncherceg
Q KT
\ v
>< = softmax(ﬂ) BEE
Vi
AN
\ =D
N PR
63 ><4 = 1

15/23

Particles

Interactions —»|

Embedding) [Embedding

L blocks
A

Particle Particle

(b) Particle Attention Block

Particle

Aelass

Linear

Xelass

(c) Class Attention Block

16/23

0.44

0.43

0.42

0.41

0.40

Loss

0.39

0.38

0.37

0.36

0.35

GNN vs ParT

transparent: val loss

—— GNN

—— GNN large

— ParT

----- Epoch boundaries |

T

|

il

Jil

i | 4
AIW\"\TW M“MMV LA L
A ¥ AN AN
(i | ‘ ,
L
L 11 A
0.0 0.5 1.0 1.5 2.0
Number of training samples 1le8

— transformer model (green) better than GNN (blue, orange) for large dataset

17/23

How to do transfer learning

Looking at two methods:

® Feature extraction: Remove final layer, only retrain that
— simplest case: just retrain a single neuron
— will likely only work if new skim highly correlated with something seen during training

® Whole-model fine-tuning: start with pre-trained model but adjust all parameters
— also reinitialize last layer in case of different output
— hyperparameters from ParT paper:

® learning rate 0.0001/0.005 for pre-trained/last-layer parameters
® weight decay 0.01

18/23

Fine tuning tests

fine tune model pre-trained on a reference skim

Subset of reference

Train on 2000 events, batch size 256, Transparent: train, Solid: validation Train on 2000 events, batch size 256, Transparent: train, Solid: validation Train on 2000 events, batch size 256, Transparent: train, Solid: validation

Train of

14

—— from scratch
—— feature extraction (+linear layer)
—— full finetuning

0 200 400 600 800 1000
batches

1
n 2000 events, batch size 256, Transparent: train, Solid: vall

idation

— from scratch
—— feature extraction (+linear layer)
— full finetuning

0 200 400 600 800 1000
batches

08

— from scratch 1o — fromscratch
—— feature extraction (+linear layer) —— feature extraction (+linear layer)
fullfinetuning — full finetuning
10
08
Los
04
g 02
00
] 200 400 600 800 1000] 200 400 600 800 1000
batches batches

® As expected feature extraction bad if low linear correlation

® Train from scratch does typically not work well with only
2k (1k pass) events

® Full finetune shows promising results!

19/23

Adaptive/Reinforcement learning

Simulated reinforcement learning® for skim C

le7

1.4

©c ©o ©o » =~
> o ® o N

Time Consumption in ms

o
~

e

o
o

Intelligent
Standard

== Nerr

/

[1000 2000 3000 4000

No. of Events Passed through Entire Chain

® For running on new skims could consider “reinforcement learning”:

— Train model while producing data and running skim

— Model becomes successively better producing data more efficiently
® Advantage: Overall time saving, on-the-fly procedure in one step
® Disadvantage: need to implement training loop in production software

Lfrom Daniel Pollmann’s Bachelor thesis (2024)

20/23

Large scale training

Many pre-defined skims with data available

— many different definitions centrally run on large datasets

— pre-train model on large datase that predicts probabilities for all skims
— data with 51 different labels

Also condition on background type
— 7 Generic samples: B¥0 pairs, ¢G with 4 different q flavours, 77
(representative of eTe™ collisions at 10.58 GeV)

Using dataset with ~~ 180M events (10% kept for testing),
roughly balanced between all 7 generic samples
— corresponds to roughly 20 fb~! of simulated data

No class weighting, just take labels as they come
— partially overlapping — binary cross entropy term for each

Hope: Diverse training dataset makes finetuning more flexible

[TRAINON

21/23

Training results

Assuming trast : tn & tsiow = 1:1: 100, Wimax = 1000

30
R °
® Skims/Filters 107t
204
°
154
%
10 L4 i
° 10
>
9
a 7 .' 5
S ° g
B o © £
? 54 L] b}
& *% o ® £
o o © L
pors : o . 1072 v
3 ® o e
[4 ¢ ° ¢ ¢
(K]
2 . D)
[4
1074
1 T T T T T T T
0.88 0.90 0.92 0.94 0.96 0.98 1.00

AuC

® Training worked with similar setup as for fewer labels
® Achievable speedups for different skims correlate with
® Separation power (AUC, area under ROC curve)
— higher separation leads to higher speedup
® Skim efficiency

— lower skim efficiency tends to higher speedup .

Summary and Conclusions

We'd like to speedup our simulation with NN assisted filters
— filter events that won't pass downstream selection before running expensive parts
(detector simulation and reconstruction)

Using importance sampling technique to avoid bias
— continuous version of traditional “slicing” strategy

Metric to optimize: speedup when producing same effective sample size
— can be calibrated with parameterized logistic function

Use Transformer model to generically capture MC generator information

Transfer learning to capture skims with little training data seems promising

— fine tuning seems to work also for skim selections not seen during training

— may also help to avoid retraining when conditions/calibrations/selections change
— also offers prospects for on-the-fly reinforcement learning

Can run the pretraining on a large dataset with many different skims
— maximize diversity of skim selections and inputs seen by the model

23/23

Backup

Hyperparameters

® |argely following architecture from ParT paper:
® 8 Transformer blocks with self-attention
2 Transformer blocks with class-attention
8 Attention heads in each multi-head attention block
Embedding size 128
MLP hidden layers have 4 times the embedding size

— around 2 Million parameters
® Modifications/Additions:

® Fewer norm layers (Pre-LN transformer vs Normformer in ParT)

Embedding layer for PDG ID

Embedding layer for sample type

3 pair features (Decay tree adjacency matrix, invariant masses, angle between pairs)

25/23

iciencies

Filter eff

ilable:

Im IS ava

Average over all samples where sk

T
T

o
=1

Aou

T
T

o
=

A
A_
0 0
E =
5 12|y abesane

0ldTPeHO}g
S3ded|peHolg
0!d0!doig

asniyLner

EIFENELLLTR
Jejedsopnasdbela|buls
0€4 OMI SSeINMOT

SN|duoON|\u0J129|3
ABisuzbuissipsniduonwig
AdneL

dTIsnidyoig
sdeqglouojyewwesy
Se@nIM|ouoDRWWRDRWIWED
>equoloyda|buls
103u0D0ARYqRYgPRY
Janeppegonse|dul
eWWeA0L0d 1d0aoLIsa
olddHorda olddaonsa
sywldHoL0d IdoaoLIsa
slesinaNoLOd Id0aonisa
0ldwHdHOLOQ 'd0doLIsa
wfdHoLOa dodoLsa
w(dydoroepque
dfwHdHorda dagorx
dHsyorda daorx
S|eNaN0LOd 0QOLX
wfdHoL0d 0doLX
ISqwniuowueyd
uojisdnwniuowonog
BAISN|IX3gejqwiniuowoiog
epquieaAisndu|
1dsy1didy"@aolog

oididy T 1dididy “oyl0Qoig
1dy"oyipqoig

yusy yoaog
oididy1dididy yoaoig
1dy yogoig

Uy yoaoig

1didy oyigo308
dy1dgolog

% 40Qolg
sbb™AddaL

S35 AdDAL
nNnNsnidyoLsnidgaaisnoul
411X

lxog

ewwebxolg
m_.:r:mmu_:&mu_um:._wum>m
S19)

JluoJipeHIa)

26 /23

Correlations between pass events:
(only considering events where both skims are available)

feiHadronic 1] 10
) feiSL
SystematicsPhiGamma
BloXgamm
Bloxil
BtoXIl LFV
inclusiveBplusToKplusNUNu
TDCPV ccs

0.8

Y

Fraction of shared pass events

nclu
BottomoniumEtabExclusive 0.
BottomoniumUpsilon
CharmoniumPsi
XToDO_DOToH
XToDO_DOToNeut;
XToDp_DpToKsHp
XToDp. D
LambdacTopH
StToDOPi DOToH
pHi

DimuonPlusMissingEnergy
ElectronMuonplusMissingEnerqy
LFVZpVisible

LowMassTwoTrack
SingleTagPseudoScalar

BtoHad1Pi0

feiHadronic
feisL
SystematicsPhiGamma
BToXgamma

Btoxil

BtoXIl_LFV
inclusiveBplusToKpluSNUNu
TDCPV_ccs

 Kpi

I_Kp'?\

ipi K5

Sival omibda
TauGeneric
TauThrust
BtoPiOPI0
BtoHadTracks
BtoHad1Pi0

2
o5
2
Sa5
232
32
=

BOtGD
Inclu

LowMassTwoTrack

singleTagPseudoScalar

2

o
£
S
aQ
S
@

27/23

