

GENERATION OF POLARIZED PARTICLE BEAMS AT RELATIVISTIC LASER INTENSITIES

LPA Seminar [JuSPARC Seminar]

ANNA HÜTZEN | 25 NOVEMBER 2020

PARTICLES, SPINS & PLASMA PHYSICS: GOALS

Forschungszentrum

HIGH POWER LASER SCIENCE AND ENGINEERING

SPIN AS A PARTICLE PROPERTY

mass

charge

spin

"Everything in the universe, including light and gravity, can be described in terms of particles. These particles have a property called spin. [...] What the spin of a particle really tells us is what the particle looks like from different directions."

A Brief History of Time – Stephen Hawking - Chapter 5

spin = intrinsic angular momentum

polarization

Forschungszentrum

POLARIZATION BUILD-UP?

• Typical energy of spin states:

 $E_{\text{spin,p}} = \mu \cdot B = 6 \cdot 10^{-8} \frac{\text{eV}}{\text{T}} \cdot 1000 \text{ T} \approx 1 \text{ meV}$

- Typical temperature of the plasma:
 10⁸ K ≈ 10 keV
- occupation probability of both states (almost) one in thermal equilibrium
 - → no polarization (in thermal equilibrium)

INTERACTIONS INVOLVING SPINS

Forschungszentrum

POSSIBLE (DE-)POLARIZATION EFFECTS

Conservation of polarization for times < 1 ps in a 10³ T field → Dominant effect

Polarization time ~ 5 ms for a 100 GeV proton beam in a 1000 T field → Time scale too long

Separation distances are in the nmrange for e⁻ & sub pm-range for protons → Spatial separation too small

POLARIZATION OF ELECTRONS VS PROTONS

WHY POLARIZATION OF PROTONS?

Our group already has expertise in polarized proton acceleration

Stagnation in the (unpolarized) proton acceleration

POLARIZED TARGET GEOMETRIES FOR PROTONS

• Targets suitable for laser acceleration not available yet

• Experimental realization extremely challenging

Established technique and easy in handling
E.g. ³He

Anna Hützen | 25 November 2020

HYPERPOLARIZED ³HE GAS-JET

Forschungszentrum

POLARIMETRY FOR ³HE IONS WITH CR-39 PLATES

Test beam time at Jülich Tandetron with unpolarized ³He beam

LICH

Forschungszentrum

Anna Hützen | 25 November 2020

POLARIZED TARGET GEOMETRIES FOR PROTONS

- Targets suitable for laser acceleration not available yet
- Experimental realization extremely challenging

- Established technique and easy in handling
- E.g. ³He

Novel approach & synchronization with accelerating laser needed
E.g. HCl, HBr, Hl, ...

DYNAMICALLY POLARIZED HCL TARGET

Nozzle For HCl gas jet

Method described in:

T. P. Rakitzis, Chem.Phys.Chem. **5**, 1489 (2004)

R. Engels et al., Rev.Sci.Instrum. **74**, 4607 (2003)

SETUP OF OPTICAL ELEMENTS

Linearly polarized beam @ 1064 nm

PRODUCTION OF POLARIZED PROTON BEAMS

POLARIZATION OF THE H NUCLEUS

- Maximal theoretical polarization *P* $P = \frac{m}{m_{\text{max}}} = 100\%$, with $m_{\text{max}} = 0.5$
- After 0.35 ns the e⁻ polarization of the H atoms is transferred into a nuclear polarization
- Out-coming protons will remain polarized, even if they undergo spin precession (T-BMT equation)

Anna Hützen | 25 November 2020

SUPERINTENSE ULTRAFAST LASER FACILITY

@ SHANGHAI

- Common simulation work and publications on polarized particle beams
- First common experiments on proton acceleration in 2021
- Application of joint Sino-German Research Project

Laser parameter for SULF

- Central wavelength: ~ 800 nm
- Pulse energy: ~ 300 J
- Pulse duration: ~ 30 fs
- Contrast ratio: ~ 10¹¹
- Focused intensity: > 10²² W/cm²

CURRENT STATUS OF THE EXPERIMENT

COMMISSIONING OF POLARIZED HCL TARGET

https://www.researchgate.net/publication/340460224

- Clear detection of proton signal from diffusive HCl into ionizer after ~ 4 ms.
- Laser-generated atoms should produce additional proton signal
 → not yet detected

POLARIMETER FOR PROTONS WITH CR-39 PLATES

Based on elastic pp and pC scattering Test beam time @COSY: Feb. 2020 Data under analysis

Analysis by: C. Zheng

25

30

35

No.152 top Branch "

SPIN DYNAMICS IN THE VLPL CODE

Forschungszentrum

MODELLING OF SPINS IN LASER-INDUCED PLASMAS

Implementation of particle spins into a simulation code (in collaboration with A. Pukhov, hhu Hinterstitt Disselford)

Description of spin motion in arbitrary electric and magnetic fields for the semi-classical approach

 $\frac{d\mathbf{s}}{dt} = -\Omega \times \mathbf{s}$

Rotation frequency in cgs units

Thomas-BMT equation

$$\Omega = -\frac{q}{mc} \left[\Omega_{\rm B} \mathbf{B} - \Omega_{\rm v} \left(\frac{\mathbf{v}}{c} \cdot \mathbf{B} \right) \frac{\mathbf{v}}{c} - \Omega_{\rm E} \frac{\mathbf{v}}{c} \times \mathbf{E} \right]$$
with $\Omega_{\rm B} = a + \frac{1}{\gamma}$ $\Omega_{\rm v} = \frac{a\gamma}{\gamma + 1}$ $\Omega_{\rm E} = a + \frac{1}{1 + \gamma}$

Anna Hützen | 25 November 2020

PIC Code (VLPL, recently EPOCH)

 γ

PREDICTED ACCELERATION SCHEME FOR PROTONS

- Acceleration in electron bubble-channel structure: e⁻ at the rear of the bubble, ions at the front
- Gas mixtures required (protons & heavier nuclei)
- High Laser powers required (>10 PW)

Observation of a up to GeV polarized proton beam.

B. Shen et al., Phys. Rev. E 76, 055402 (2007)

SPIN-POLARIZED PROTON BEAMS FROM HCL GAS

L. Jin ..., AH, et al., Phys. Rev. E 102, 011201(R) (2020)

Forschungszentrum

NEW IDEA: HYPERPOLARIZED CRYOGENIC TARGETS

Anna Hützen | 25 November 2020

Forschungszentrum

Un-pol.

Pre-pol.

PRE-POLARIZED ELECTRON BEAMS

POLARIZED ELECTRONS BY LASERS

- two counter-propagating circularly polarized lasers produce a standing wave
- *E* rotates with constant amplitude at z=0, inducing the rotation of any e⁻
- e⁻ tend to align its spin s antiparallel to vector **E** x β

Del Sorbo et al., Plasma Phys. Control. Fusion 60, 064003 (2018)

POLARIZED POSITRONS BY LASERS

Chen et al., Phys. Phys. Rev. Lett. 123, 174801 (2019)

- intense linearly polarized two-color laser pulse collides head-on with unpolarized relativistic e⁻ beam
- emission of photons in the forward direction decaying into polarized e⁺/e⁻ pairs
- spins parallel & antiparallel to laser's magnetic field direction
- small divergence angle in propagation direction

•

- Markus Büscher
- Andreas Lehrach
- Claus M. Schneider
- Paul Gibbon
- Jürgen Böker
- Ralf Engels
- Pavel Fedorets
- Chuan Zheng
- Chrysovalantis Kannis

University of Crete

Dimitrios Sofikitis

Shanghai Institute of Optics

and Fine Mechanics

Baifei Shen

- Jiancai Xu
- Liangliang Ji
- Lingang Zhang
- Yitong Wu
- Xuesong Geng

Institut für Theoretische Physik I

- Alexander Pukhov
- Johannes Thomas
- Lars Reichwein

UNIVERSITY

OF CRETE