Towards higher-loops in LSS

Henrique Rubira (LMU/Cambridge)

with: Fabian Schmidt, Charalampos Nikolis, Mathias Garny, Thomas Bakx, Zvonimir Vlah, Elisa Chisari, Hsiang-Ming (Harry) Huang

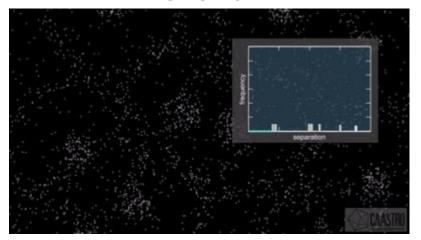
Cambridge-LMU workshop, September 2025

henrique.rubira@lmu.de

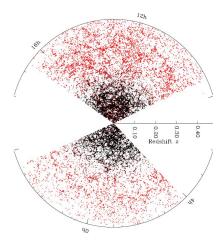
Based on: 2307.15031, 2404.16929, 2405.21002, 2507.13905 2508.00611

Preamble

Structure formation



SDSS collaboration

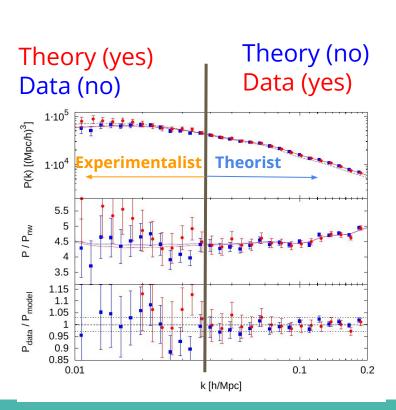


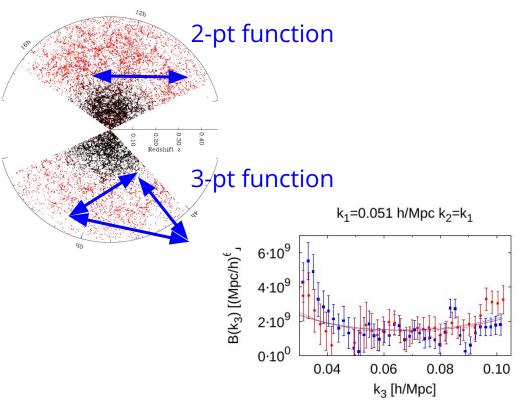
Calculate the galaxy n-point functions

$$\langle \delta_g(k_1)\delta_g(k_2)\dots\delta_g(k_n)\rangle$$

N-pt functions

Gil-Marin+, 2014, SDSS BOSS data





Is there a way to push towards non-linear scales from 'first principles'?

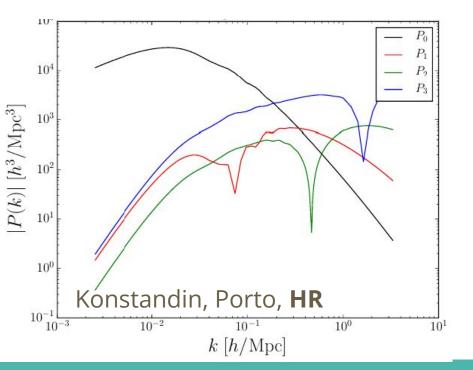
The (smoothed) EoM

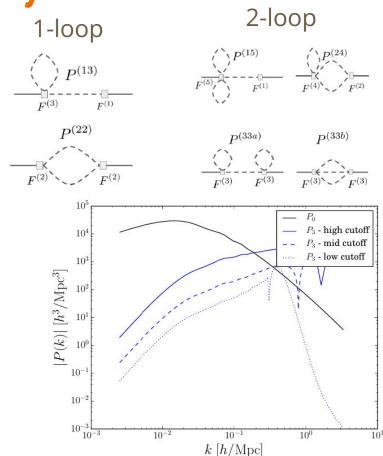
$$\partial_{\tau}\delta + \theta = -\int_{\mathbf{p}_{1}} \int_{\mathbf{p}_{2}} \delta_{D} \left(\mathbf{p_{2}} - (\mathbf{k} - \mathbf{p}_{1})\right) \theta_{\mathbf{p}_{1}} \delta_{\mathbf{p}_{2}} \alpha(\mathbf{p_{1}}, \mathbf{p_{2}})$$
$$\partial_{\tau}\theta + \mathcal{H}\theta + \frac{3}{2} \Omega_{m} \mathcal{H}^{2}\delta = -\int_{\mathbf{p}_{1}} \int_{\mathbf{p}_{2}} \delta_{D} \left(\mathbf{p_{2}} - (\mathbf{k} - \mathbf{p}_{1})\right) \theta_{\mathbf{p}_{1}} \theta_{\mathbf{p}_{2}} \beta(\mathbf{p_{1}}, \mathbf{p_{2}})$$

Perturbative solution
$$\delta(\mathbf{x}, \tau) = \sum_{n} a^{n}(\tau) \delta^{(n)}(\mathbf{x})$$

$$\delta^{(n)}(\mathbf{k}) = \int_{\mathbf{q}_{1...n}} \delta_{\mathrm{D}}(\mathbf{q}_{1...n} - \mathbf{k}) F^{(n)}(\mathbf{q}_{1}, \ldots, \mathbf{q}_{n}) \delta^{(1)}(\mathbf{q}_{1}) \ldots \delta^{(1)}(\mathbf{q}_{n})$$

$$\delta^{(n)}(\mathbf{k}) = \int_{\mathbf{q}_{1...n}} \delta_{\mathrm{D}}(\mathbf{q}_{1...n} - \mathbf{k}) F^{(n)}(\mathbf{q}_{1}, \ldots, \mathbf{q}_{n}) \delta^{(1)}(\mathbf{q}_{1}) \ldots \delta^{(1)}(\mathbf{q}_{n})$$





$$\partial_{\tau}\delta + \theta = -\int_{\mathbf{p}_{1}} \int_{\mathbf{p}_{2}} \delta_{D} \left(\mathbf{p_{2}} - (\mathbf{k} - \mathbf{p}_{1})\right) \theta_{\mathbf{p}_{1}} \delta_{\mathbf{p}_{2}} \alpha(\mathbf{p_{1}}, \mathbf{p_{2}})$$
$$\partial_{\tau}\theta + \mathcal{H}\theta + \frac{3}{2} \Omega_{m} \mathcal{H}^{2}\delta = -\int_{\mathbf{p}_{1}} \int_{\mathbf{p}_{2}} \delta_{D} \left(\mathbf{p_{2}} - (\mathbf{k} - \mathbf{p}_{1})\right) \theta_{\mathbf{p}_{1}} \theta_{\mathbf{p}_{2}} \beta(\mathbf{p_{1}}, \mathbf{p_{2}})$$

Perturbative solution
$$\delta(\mathbf{x}, \tau) = \sum_{n} a^{n}(\tau) \delta^{(n)}(\mathbf{x})$$

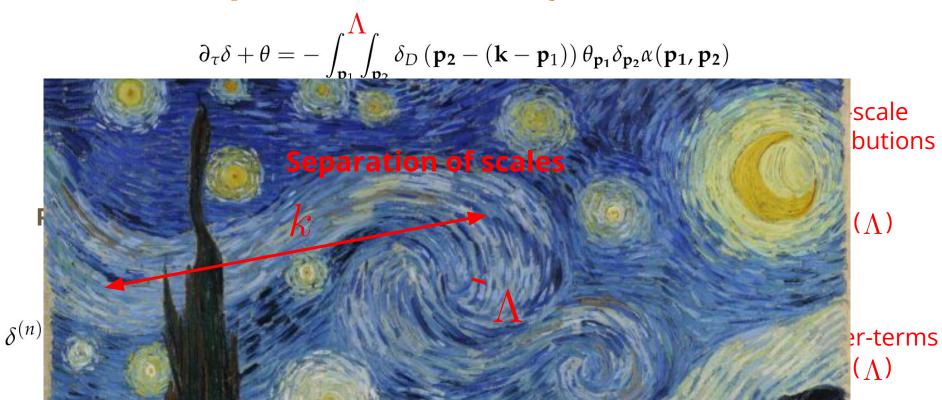
$$\delta^{(n)}(\mathbf{k}) = \int_{\mathbf{q}_{1...n}} \delta_{\mathrm{D}}(\mathbf{q}_{1...n} - \mathbf{k}) F^{(n)}(\mathbf{q}_{1}, \ldots, \mathbf{q}_{n}) \delta^{(1)}(\mathbf{q}_{1}) \ldots \delta^{(1)}(\mathbf{q}_{n})$$

$$\partial_{\tau}\delta + \theta = -\int_{\mathbf{p}_{1}}^{\Lambda} \int_{\mathbf{p}_{2}} \delta_{D} \left(\mathbf{p_{2}} - (\mathbf{k} - \mathbf{p_{1}})\right) \theta_{\mathbf{p_{1}}} \delta_{\mathbf{p_{2}}} \alpha(\mathbf{p_{1}}, \mathbf{p_{2}})$$

$$\partial_{\tau}\theta + \mathcal{H}\theta + \frac{3}{2} \Omega_{m} \mathcal{H}^{2}\delta = -\int_{\mathbf{p}_{1}}^{\Lambda} \int_{\mathbf{p_{2}}} \delta_{D} \left(\mathbf{p_{2}} - (\mathbf{k} - \mathbf{p_{1}})\right) \theta_{\mathbf{p_{1}}} \theta_{\mathbf{p_{2}}} \beta(\mathbf{p_{1}}, \mathbf{p_{2}}) + \text{small-scale contributions}$$

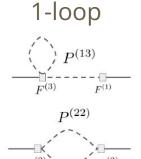
Perturbative solution
$$\delta(\mathbf{x}, \tau) = \sum_{n} a^{n}(\tau) \delta^{(n)}(\mathbf{x})$$
 + counter-terms (Λ)

$$\delta^{(n)}(\mathbf{k}) = \int_{\mathbf{q}_{1...n}}^{\mathbf{\Lambda}} \delta_{\mathrm{D}}(\mathbf{q}_{1...n} - \mathbf{k}) F^{(n)}(\mathbf{q}_{1}, \dots, \mathbf{q}_{n}) \delta^{(1)}(\mathbf{q}_{1}) \dots \delta^{(1)}(\mathbf{q}_{n}) + \text{counter-terms}$$
(\Lambda)

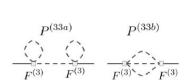


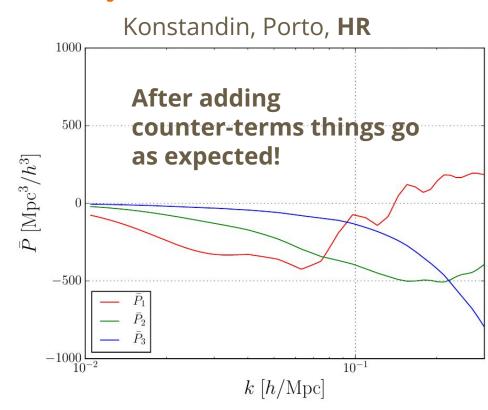
Linear:

$$P^{(11)}$$
 $F^{(1)}$
 $F^{(1)}$



2-loop





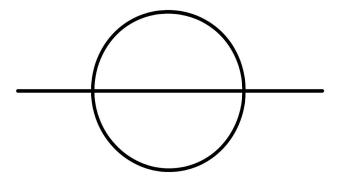
State of the art

1-loop widely applied to data (see e.g. newest DESI results)

Challenges to going to higher-loops:

- computational time
- structure of bias parameters and counter-terms gets complicated

Part I: Towards two-loop EFT



1-Loop: 2dim integral (~seconds)

2-Loop: 5dim integral (~minutes)

3-Loop: 8dim integral (~week)

1-Loop: 2dim integral (~seconds)

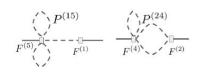
2-Loop: 5dim integral (~minutes)

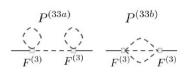
3-Loop: 8dim integral (~week)

Idea: PCA expand the linear spec

$$P_L^{\Theta}(k) = \sum_{i=1}^{N_b} w_i(\Theta) v_i(k)$$

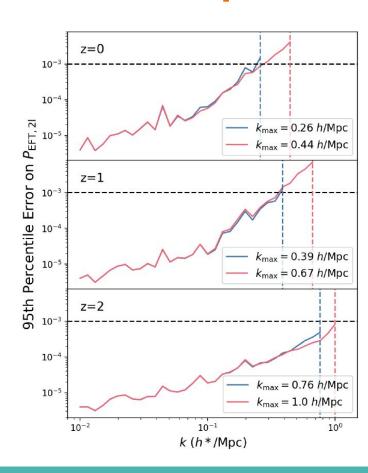
$$P_{1-\text{loop}}^{\Theta}(k,\mu) = \text{const.}(k,\mu) + \mathcal{S}_i^l(k,\mu)w_i(\Theta) + \mathcal{S}_{ij}^q(k,\mu)w_i(\Theta)w_j(\Theta)$$

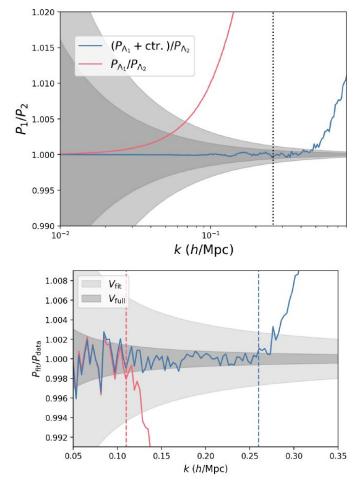




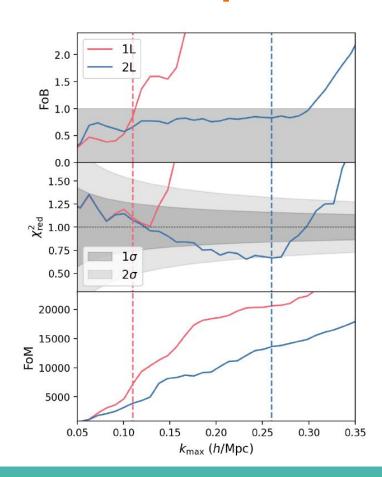
	Default							
Θ	Emulation range for $w_i(\Theta)$	Grid size for SVD						
ω_c	[0.095, 0.145]	30						
ω_b	[0.0202, 0.0238]	15						
n_s	[0.91, 1.01]	15						
$10^{9} A_{s}$	-	$10^9 A_s^* = 2$						
h	[0.55, 0.8]	$h^* = 0.7$						
z	-	$z^* = 0$						

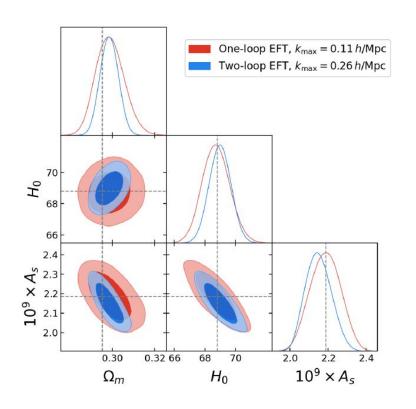
Bakx, HR, Chisari, Vlah 2025;





Bakx, HR, Chisari, Vlah 2025;





Bakx, HR, Chisari, Vlah 2025;

Conclusion I

- With two-loop we can go from $k\sim0.11h/Mpc$ (one-loop) to $k\sim0.26h/Mpc$

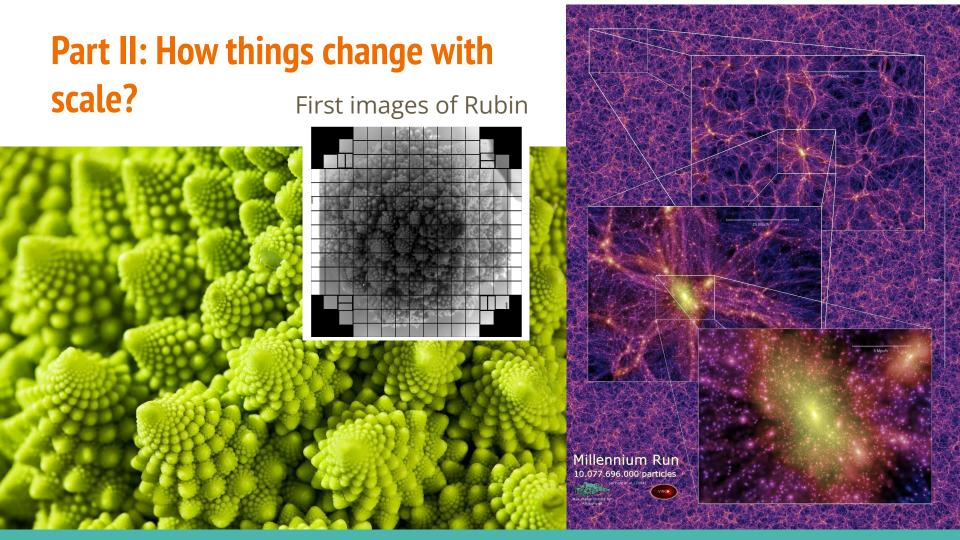
- Factor 2 in FoM

- 20 to 30% gain in Cosmological parameters 'for free'

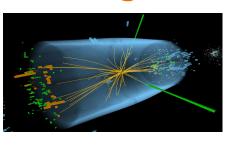
Part II: How things change with scale?

... Or on how to use a one-loop (renormalization group) to get information about higher-loop terms 'for free'

Intuition: (1loop)^n ~ n-loop (for some part of the integrals domain) Part II: How things change with scale?



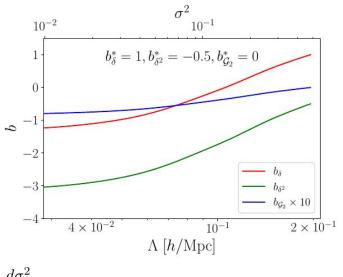
Message to take home

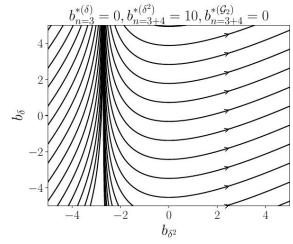


$$\frac{\partial g}{\partial \ln \mu} = \beta(g) \qquad \frac{\frac{db_{\delta}}{d\Lambda} = -\left[\frac{68}{21}b_{\delta^{2}} + 3b_{\delta^{3}}^{*} - \frac{4}{3}b_{\mathcal{G}_{2}\delta}^{*}\right]\frac{d\sigma_{\Lambda}^{2}}{d\Lambda}}{\frac{db_{\delta^{2}}}{d\Lambda}} = -\left[\frac{8126}{2205}b_{\delta^{2}} + \frac{17}{7}b_{\delta^{3}}^{*} - \frac{376}{105}b_{\mathcal{G}_{2}\delta}^{*} + b_{n=4}^{*(\delta^{2})}\right]\frac{d\sigma_{\Lambda}^{2}}{d\Lambda}}{\frac{db_{\mathcal{G}_{2}}}{d\Lambda}} = -\left[\frac{254}{2205}b_{\delta^{2}} + \frac{116}{105}b_{\mathcal{G}_{2}\delta}^{*} + b_{n=4}^{*(\mathcal{G}_{2})}\right]\frac{d\sigma_{\Lambda}^{2}}{d\Lambda}.$$

Many things to explore:

- Systematic construction of operator basis,
- Systematic renormalization,
- Cross-checks,
- More information from galaxy clustering (TBD)

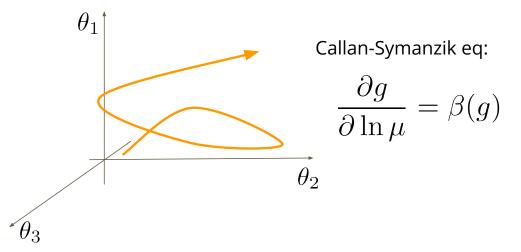




OFT101

Coupling constants evolve "flow" with the cutoff

Observables don't depend on the cutoff!



 $\beta_{1L} = 2/(3\pi)$

 $\beta_{2L} = 1/(4\pi^2)$

For the fine-structure constant (QED):

$$\frac{d\alpha}{d\ln\mu} = \beta_{1L}\alpha^2 + \beta_{2L}\alpha^3 + O(\alpha^4)$$

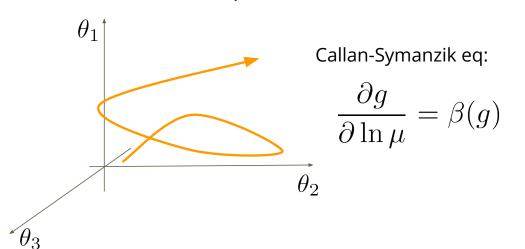
$$\alpha(\mu)\big|_{\mathrm{LL}} = \frac{\alpha}{1 - \beta_{1\mathrm{L}}\alpha \ln(\mu/\mu_*)}$$

$$= \alpha \left[1 + \beta_{1L} \alpha \ln(\mu/\mu_*) - \beta_{1L}^2 \alpha^2 \ln^2(\mu/\mu_*) + \dots \right]$$

QFT101

Coupling constants evolve "flow" with the cutoff

Observables don't depend on the cutoff!



For the fine-structure constant (QED):

$$\boxed{\frac{d\alpha}{d\ln\mu} = \beta_{1L}\alpha^2 + \beta_{2L}\alpha^3 + O(\alpha^4)}$$

$$\beta_{1L} = 2/(3\pi)$$

$$\beta_{2L} = 1/(4\pi^2)$$

Solution to the RG

$$\alpha(\mu)\big|_{\mathrm{LL}} = \frac{\alpha}{1 - \beta_{1\mathrm{L}}\alpha \ln(\mu/\mu_*)}$$

$$= \alpha \left[1 + \beta_{1L} \alpha \ln(\mu/\mu_*) - \beta_{1L}^2 \alpha^2 \ln^2(\mu/\mu_*) + \dots \right]$$

Suppose you have an amplitude

$$\frac{\sigma_{\ell L}}{\sigma_{\text{tree}}} = \alpha^{\ell} \left[c^{(\ell,\ell)} \ln^{\ell}(\mu/\mu_*) + c^{(\ell,\ell-1)} \ln^{\ell-1}(\mu/\mu_*) + \dots \right]$$

$$\frac{\sigma_{\text{tree}}}{\sigma_{\text{tree}}} = \alpha^{0} [c^{(0,0)} \ln^{0}]$$

$$\frac{\sigma_{1L}}{\sigma_{\text{tree}}} = \alpha^{1} [c^{(1,1)} \ln^{1} + c^{(1,0)} \ln^{0}]$$

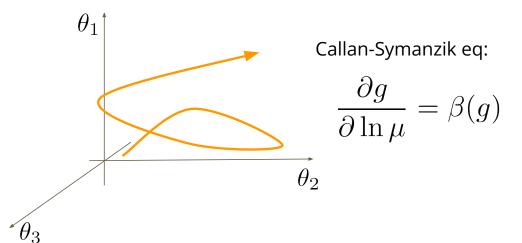
$$\frac{\sigma_{2L}}{\sigma_{\text{tree}}} = \alpha^{2} [c^{(2,2)} \ln^{2} + c^{(2,1)} \ln^{1} + c^{(2,0)} \ln^{0}]$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

QFT101

Coupling constants evolve "flow" with the cutoff

Observables don't depend on the cutoff!



For the fine-structure constant (QED):

$$\frac{d\alpha}{d\ln\mu} = \beta_{1L}\alpha^2 + \beta_{2L}\alpha^3 + O(\alpha^4)$$

$$\beta_{\rm 2L} = 1/(4\pi^2)$$

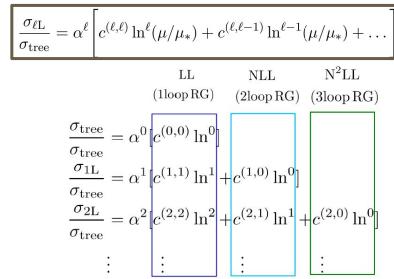
 $\beta_{1L} = 2/(3\pi)$

Solution to the RG

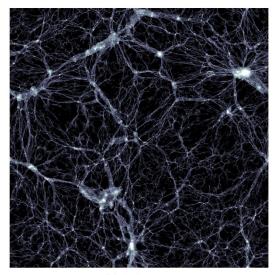
$$\alpha(\mu)\big|_{\mathrm{LL}} = \frac{\alpha}{1 - \beta_{1\mathrm{L}}\alpha \ln(\mu/\mu_*)}$$

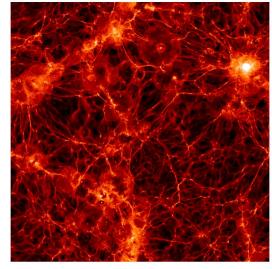
$$= \alpha \left[1 + \beta_{1L} \alpha \ln(\mu/\mu_*) - \beta_{1L}^2 \alpha^2 \ln^2(\mu/\mu_*) + \dots \right]$$

Suppose you have an amplitude



The galaxy bias expansion





From Illustris simulation, Haiden, Steinhauser, Vogelsberger, Genel, Springel, Torrey, Hernquist, 15

(a) dark matter

(b) baryons

Stochastic field

$$\delta_g(\boldsymbol{x},\tau) \equiv \frac{n_g(\boldsymbol{x},\tau)}{\bar{n}_g(\tau)} - 1 = \sum_O \left[b_O(\tau) + c_{\epsilon,O}(\tau) \epsilon(\boldsymbol{x},\tau)\right] O(\boldsymbol{x},\tau) + \epsilon(\boldsymbol{x},\tau)$$

Bias review: Desjacques, Jeong, Schmidt

Renormalizing the bias parameters

Important: those are the same parameters for all n-pt functions

In a nutshell, it is an **Operator Product Expansion (OPE)**

$$\delta_g(\boldsymbol{x}, au) \equiv rac{n_g(\boldsymbol{x}, au)}{ar{n}_g(au)} - 1 = \sum_O \left[b_O(au) + c_{\epsilon,O}(au) \epsilon(\boldsymbol{x}, au) \right] O(\boldsymbol{x}, au) + \epsilon(\boldsymbol{x}, au)$$

First order:
$$\delta$$
;
Second order: δ^2 , \mathcal{G}_2 ;
Third order: δ^3 , $\delta \mathcal{G}_2$, Γ_3 , \mathcal{G}_3 ;

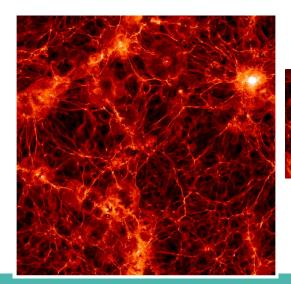
Contribution from arbitrarily small scales!

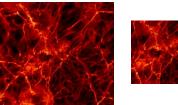
Renormalizing the bias parameters

Important: those are the same parameters for all n-pt functions

In a nutshell, it is an Operator Product Expansion (OPE)

$$\delta_g(\boldsymbol{x},\tau) \equiv \frac{n_g(\boldsymbol{x},\tau)}{\bar{n}_g(\tau)} - 1 = \sum_O \left[b_O^{\Lambda}(\tau) + c_{\epsilon,O}^{\Lambda}(\tau) \frac{\Lambda}{\epsilon(\boldsymbol{x},\tau)} \right] O(\boldsymbol{x},\tau) + \frac{\Lambda}{\epsilon(\boldsymbol{x},\tau)} + \frac{\Lambda}{\epsilon(\boldsymbol{x},\tau)} + \frac{\Lambda}{\epsilon(\boldsymbol{x},\tau)} + \frac{\Lambda}{\epsilon(\boldsymbol{x},\tau)} + \frac{\Lambda}{\epsilon(\boldsymbol{x},\tau)} \right] O(\boldsymbol{x},\tau) + \frac{\Lambda}{\epsilon(\boldsymbol{x},\tau)} + \frac{\Lambda}{\epsilon(\boldsymbol{x}$$





First order: δ ;

Second order: δ^2 , \mathcal{G}_2 ; Third order: δ^3 , $\delta \mathcal{G}_2$, Γ_3 , \mathcal{G}_3 ;

Contribution from arbitrarily small scales!

From Λ -independence to bias running

$$0 = \frac{d}{d\Lambda} \delta_g(\boldsymbol{x}) = \frac{db_a}{d\Lambda} \mathcal{O}_a(\boldsymbol{x}) + b_a \frac{d\mathcal{O}_a(\boldsymbol{x})}{d\Lambda}$$

Then we expand...

$$\frac{db_a}{d\Lambda} = \frac{db_a}{d\Lambda}\Big|_{1L} + \frac{db_a}{d\Lambda}\Big|_{2L} + \dots$$

From Λ -independence to bias running

$$0 = \frac{d}{d\Lambda} \delta_g(\boldsymbol{x}) = \frac{db_a}{d\Lambda} \mathcal{O}_a(\boldsymbol{x}) + b_a \frac{d\mathcal{O}_a(\boldsymbol{x})}{d\Lambda}$$

$$\frac{db_a}{d\Lambda} = \frac{db_a}{d\Lambda} \Big|_{1L} + \frac{db_a}{d\Lambda} \Big|_{2L} + \dots$$

Then we expand...

$$\frac{db_a}{d\Lambda} = \frac{db_a}{d\Lambda}\Big|_{1L} + \frac{db_a}{d\Lambda}\Big|_{2L} + \dots$$

one-loop:
$$\left| \frac{db_a}{d\Lambda} \right|_{1L} = -b_b s_{ba}^{1L} \frac{d\sigma_{\Lambda}^2}{d\Lambda} \right|$$
 HR, Schmidt, 23

$\mathcal{S}^2_O(a)$
50

$s_{O'}^O$	δ	δ^2	\mathcal{G}_2	δ^3	\mathcal{G}_3	Γ_3	$\delta \mathcal{G}_2$
1	-	-	-	-	-	-	-
δ	-	68/21	-	3	-	-	-4/3
δ^2	-	8126/2205	-	68/7	-	-	-376/105
$ \mathcal{G}_2 $	-	254/2205	-	-	-	-	116/105

From Λ -independence to bias running

$$0 = \frac{d}{d\Lambda} \delta_g(\boldsymbol{x}) = \frac{db_a}{d\Lambda} \mathcal{O}_a(\boldsymbol{x}) + b_a \frac{d\mathcal{O}_a(\boldsymbol{x})}{d\Lambda}$$

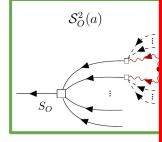
Then we expand...

$$\frac{db_a}{d\Lambda} = \frac{db_a}{d\Lambda} \Big|_{1L} + \frac{db_a}{d\Lambda} \Big|_{2L}$$

one-loop:

$$\left. \frac{db_a}{d\Lambda} \right|_{1L} = -b_b s_{ba}^{1L} \frac{d\sigma_{\Lambda}^2}{d\Lambda}$$

HR, Schmidt, 23



a	c _{aδ}	a_a	a_a
$\mathrm{tr}\big[\Pi^{[1]}\big]$	0	0	0
$\frac{\mathrm{tr}\big[\big(\Pi^{[1]}\big)^2\big]}{\left(\mathrm{tr}\big[\Pi^{[1]}\big]\right)^2}$	68 63 68 63	862 1575 862 1575	376 6615 376 6615
$\begin{array}{c} \left(\mathrm{tr} [\Pi^{[1]}] \right)^3 \\ \mathrm{tr} [(\Pi^{[1]})^2] \mathrm{tr} [\Pi^{[1]}] \\ \mathrm{tr} [(\Pi^{[1]})^3] \\ \mathrm{tr} [\Pi^{[1]}\Pi^{[2]}] \end{array}$	1 5 1 3 41 63	70739 33075 2917 2205 30263 33075 134957 99225	4 105 716 1323 1748 2205 148 441
$\begin{array}{c} \left(\mathrm{tr} \left[\Pi^{[1]} \right]^4 \\ \mathrm{tr} \left[\left(\Pi^{[1]} \right)^3 \right] \mathrm{tr} \left[\Pi^{[1]} \right] \\ \mathrm{r} \left[\left(\Pi^{[1]} \right)^2 \right] \left(\mathrm{tr} \left[\Pi^{[1]} \right] \right)^2 \\ \left(\mathrm{tr} \left[\Pi^{[1]} \right] \Pi^{[1]} \right) \\ \mathrm{tr} \left[\Pi^{[1]} \Pi^{[1]} \Pi^{[2]} \right] \\ \mathrm{tr} \left[\Pi^{[1]} \right] \mathrm{tr} \left[\Pi^{[1]} \Pi^{[2]} \right] \\ \mathrm{tr} \left[\Pi^{[2]} \Pi^{[2]} \right] \end{array}$	0 0 0 0 0 0 0	272 105 82 105 6352 4725 592 675 16112 19845 12814 11025 24784 19845	0 5 21 4 21 8 8 3706 6615 373 735 401 2285 3315
$(tr[\Pi^{[1]}])^5$ $r[(\Pi^{[1]})^3] (tr[\Pi^{[1]}])^2$ $r[(\Pi^{[1]})^3] (tr[\Pi^{[1]}])^3$ $r[(\Pi^{[1]})^3] tr[(\Pi^{[1]})^3]$ $r[(\Pi^{[1]})^3] tr[(\Pi^{[1]})^2]$ $r[(\Pi^{[1]})^3] tr[(\Pi^{[1]})^2]$ $r[(\Pi^{[1]})^3] tr[(\Pi^{[1]})^3]$ $r[(\Pi^{[1]})^3] tr[(\Pi^{[1]})^3]$ $tr[(\Pi^{[1]})^3]$ $tr[(\Pi^{[1]})^3]$ $tr[(\Pi^{[2]})^3]$ $tr[(\Pi^{[2]})^3]$	0 0 0 0 0 0 0 0 0 0 0 0 0	1 11 45 7 15 31 225 675 47 103 675 47 103 675 103 103 103 103 103 103 103 103 103 103	0 0 0 0 252255 5 5 5 5 5 5 5 5 5 5 5 5 5

$s_{O'}^O$	δ	δ^2	\mathcal{G}_2	δ^3	\mathcal{G}_3	Γ_3	$\delta \mathcal{G}_2$
1	-	-	-	-	-	-	-
δ	-	68/21	-	3	-	-	-4/3
δ^2	-	8126/2205	-	68/7	-	-	-376/105
\mathcal{G}_2	-	254/2205	-	-	-	-	116/105

two-loop:

$$\left| \frac{db_{\delta}}{d\Lambda} \right|_{2L} = -30b_b \tilde{d}_b^{(5)} \frac{d\sigma_{\Lambda}^2}{d\Lambda} \int_0^{\Lambda} dq \frac{q^2 P^{\text{lin}}(q)}{2\pi^2} g(q/\Lambda) ,$$

Bakx, Garny, **HR**, Vlah

Solutions

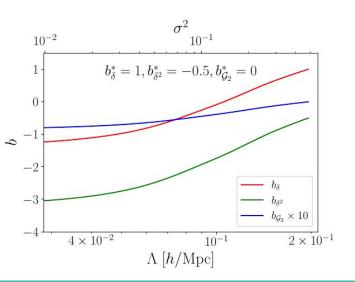
Wilson-Polchinski RG-equations

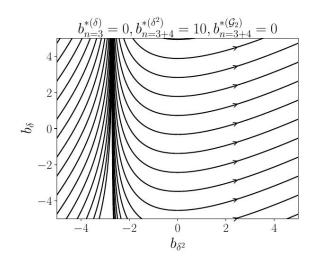
$$\frac{db_{\delta}}{d\Lambda} = -\left[\frac{68}{21}b_{\delta^2} + 3b_{\delta^3}^* - \frac{4}{3}b_{\mathcal{G}_2\delta}^*\right] \frac{d\sigma_{\Lambda}^2}{d\Lambda},$$

$$\frac{db_{\delta^2}}{d\Lambda} = -\left[\frac{8126}{2205}b_{\delta^2} + \frac{17}{7}b_{\delta^3}^* - \frac{376}{105}b_{\mathcal{G}_2\delta}^* + b_{n=4}^{*(\delta^2)}\right] \frac{d\sigma_{\Lambda}^2}{d\Lambda},$$

$$\frac{db_{\mathcal{G}_2}}{d\Lambda} = -\left[\frac{254}{2205}b_{\delta^2} + \frac{116}{105}b_{\mathcal{G}_2\delta}^* + b_{n=4}^{*(\mathcal{G}_2)}\right] \frac{d\sigma_{\Lambda}^2}{d\Lambda}.$$

HR, Schmidt 23

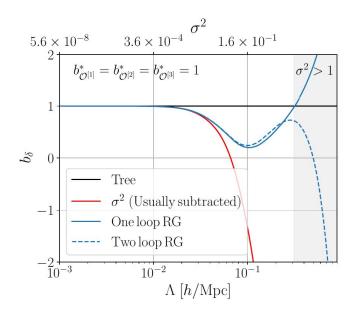




Solutions (two-loop)

Smallness of two-loop tell us that one-loop RG is able to absorb important part of higher-loop terms

Bakx, Garny, **HR**, Vlah



So the 2Loop is small. Why should you care?

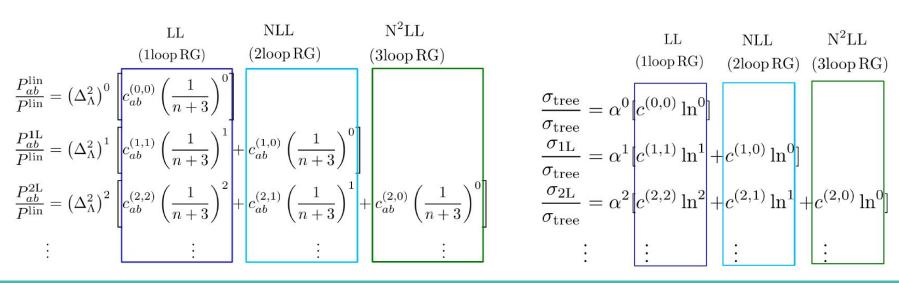
We can write EFT loops as:

$$\frac{P_{ab}^{\ell L}(k)}{P^{\text{lin}}(k)}\Big|_{k \ll \Lambda} = (\Delta_{\Lambda}^2)^{\ell} \times \left[c_{ab}^{(\ell,\ell)} \left(\frac{1}{n+3} \right)^{\ell} + c_{ab}^{(\ell,\ell-1)} \left(\frac{1}{n+3} \right)^{\ell-1} + \dots \right]$$

So the 2Loop is small. Why should you care?

We can write EFT loops as:

$$\frac{P_{ab}^{\ell L}(k)}{P^{\text{lin}}(k)}\Big|_{k \ll \Lambda} = (\Delta_{\Lambda}^2)^{\ell} \times \left[c_{ab}^{(\ell,\ell)} \left(\frac{1}{n+3} \right)^{\ell} + c_{ab}^{(\ell,\ell-1)} \left(\frac{1}{n+3} \right)^{\ell-1} + \dots \right]$$



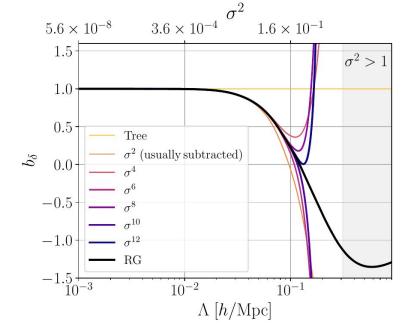
Resumming terms with the RG equations Bakx, Garny, HR, Vlah

1Loop RG eq.

$$\frac{db_a}{d\sigma^2} = -\bar{s}_{ac}^{1L}b_c$$

Solution

$$b_a(\sigma^2) = \left[e^{-\bar{s}^{1L} \times (\sigma^2 - \sigma_*^2)} \right]_{ac} b_c^*$$



RG resums the series!

$$=b_a^* - (\sigma^2 - \sigma_*^2)\bar{s}_{ac}^{1L}b_c^* + \frac{1}{2}(\sigma^2 - \sigma_*^2)^2\bar{s}_{ab}^{1L}\bar{s}_{bc}^{1L}b_c^* - \frac{1}{6}(\sigma^2 - \sigma_*^2)^3\bar{s}_{ab}^{1L}\bar{s}_{bd}^{1L}\bar{s}_{dc}^{1L}b_c^* + \dots$$

What do the solutions of the RG tell us?

Bakx, Garny, **HR**, Vlah

We can always diagonalize the bias basis

$$\frac{db_i^{\text{diag}}}{d\sigma^2} = \lambda_i b_i^{\text{diag}}$$

$$b_a(\sigma^2) = p_{ai}e^{\lambda_i(\sigma^2 - \sigma_*^2)}c_i$$

If we stop at second-order, we find:

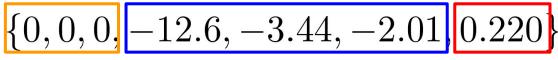
$$\{\lambda_1, \lambda_2, \lambda_3\} \simeq \{0, 0, -3.69\}$$

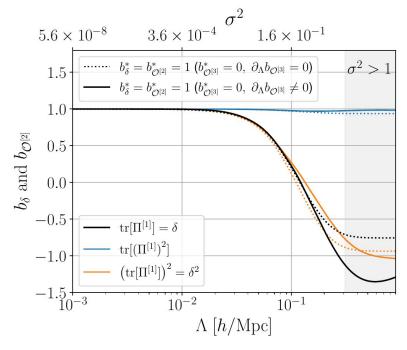
Marginal

Relevant

Extending to third-order:

Irrelevant





PNGs

Free term

$$\frac{db_{\delta}}{d\Lambda} = -\left[\frac{68}{21}b_{\delta^2}(\Lambda) + b_{n=3}^{*\{\delta\}_G}\right]\frac{d\sigma_{\Lambda}^2}{d\Lambda}$$

New interaction

$$-a_0 f_{\rm NL} \left[-\frac{13}{21} b_{\Psi} + \frac{13}{21} b_{\Psi \delta} + b_{n=3}^{*\{\delta\}_{\rm NG}} \right] \left(\frac{H_0}{\Lambda} \right)^2 \frac{3 \Omega_m}{2 T(\Lambda)} \frac{d\sigma_{\Lambda}^2}{d\Lambda};$$

Now a coupled set of ODEs

$$\frac{db_{\Psi}}{d\Lambda} = -a_0 f_{\rm NL} b_{n=3}^{*\{\Psi\}_{\rm NG}} \frac{d\sigma_{\Lambda}^2}{d\Lambda} - 4a_0 f_{\rm NL} b_{\delta^2} \frac{d\sigma_{\Lambda}^2}{d\Lambda} ,$$

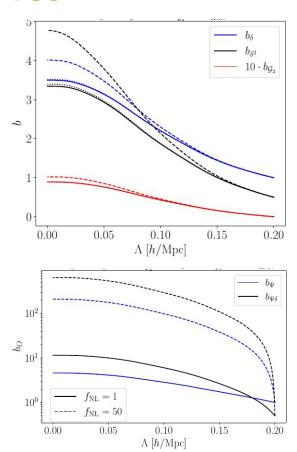
$$\frac{db_{\Psi\delta}}{d\Lambda} = -a_0 f_{\rm NL} \left[\frac{272}{21} b_{\delta^2} + b_{n=3+4}^{*\{\Psi\delta\}_{\rm G}} + b_{n=3+4}^{*\{\Psi\delta\}_{\rm NG}} \right] \frac{d\sigma_{\Lambda}^2}{d\Lambda} ,$$

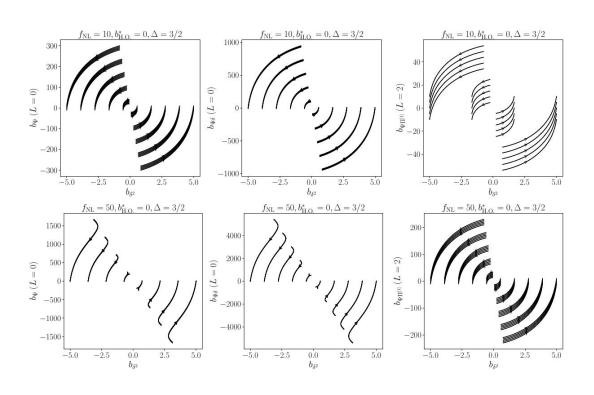
Rederivation of Dalal+ 07 (in an elegant way)

$s_{O'}^O$	δ^2	δ^3	$\delta \mathcal{G}_2$	Ψ	$\Psi\delta$	$\Psi \delta^2$	$\Psi \mathcal{G}_2$	$\text{Tr}\Psi\Pi^{[1]}$	$\delta \operatorname{Tr} \Psi \Pi^{[1]}$	$\text{Tr }\Psi\Pi^{[2]}$
δ	68/21	3	-4/3	-13/21	13/21	2	-4/3	34/21	1	34/21
δ^2	8126/2205	68/7	-376/105	43/135	478/135	47/21	-31/21	124/315	178/105	14347/6027
\mathcal{G}_2	254/2205	-	116/105	-1699/13230	79/2205	=	-1/21	-661/4410	4/35	-241/735
Ψ	4	-	-	-		1	-	-	2	-
$\delta\Psi$	272/21	12	-8/3	-	-	68/21	-		-	-0
$\text{Tr } \Psi \Pi^{[1]}$	64/105	-	16/15	-	-	=	-		8/105	58/305

Nikolis, **HR**, Schmidt

PNGs





Stochasticity
$$\delta_g({m x}, au) \equiv rac{n_g({m x}, au)}{ar{n}_g(au)} - 1 = \sum_O \left[b_O(au) + c_{\epsilon,O}(au)\,{m \epsilon}({m x}, au)
ight] O({m x}, au) + \epsilon({m x}, au)$$

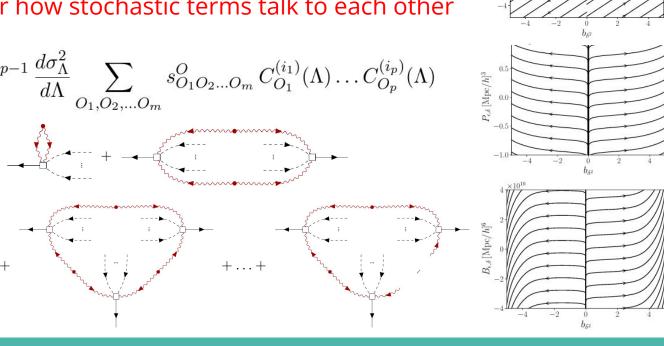
$$\langle \epsilon(\boldsymbol{k}_1) \dots \epsilon(\boldsymbol{k}_m) O(\boldsymbol{k}_{m+1}) \rangle = \hat{\delta}_{\mathrm{D}}(\boldsymbol{k}_{1...m}) C_{\epsilon,O}^{(m)} O(\boldsymbol{k}_{m+1})$$

Simple expression for how stochastic terms talk to each other

$$\frac{d}{d\Lambda} C_O^{(m)}(\Lambda) \propto - [P_{\mathcal{L}}(\Lambda)]^{p-1} \frac{d\sigma_{\Lambda}^2}{d\Lambda} \sum_{O_1, O_2, \dots O_m} s_{O_1 O_2 \dots O_m}^O C_{O_1}^{(i_1)}(\Lambda) \dots C_{O_p}^{(i_p)}(\Lambda)$$

Simple diagrammatic interpretation

HR, Schmidt, 24



First images of Rubin

- Cross-check for EFT inference;
- Systematic renormalization (+ stochastic +PNG);
- Systematic renormalization of n-point functions.
 Self-consistent renormalization for P(k),
 B(k1,k2,k3), ...
- (Unambiguously) Define Priors for EFT analysis in $\Lambda \to 0$
- More information from resummation? TBD!
- Measuring the running in the lattice (Harry's talk)

