

Forward modelling pipeline of tSZ maps

Licong Xu, Íñigo Zubeldia, James Alvey, Boris Bolliet, and Anthony Challinor

Cambridge-LMU meeting, Sep. 18, 2025

The thermal Sunyaev-Zel'dovich effect

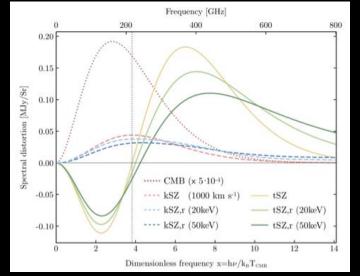
$$\frac{\Delta T_{CMB}}{T_{CMB}} = g(v)y \qquad y(M, z, \theta) = \frac{\sigma}{m_e c^2} P_e \left(\sqrt{l^2 + d_A^2 \theta^2} \right) dl$$

Spectral distortion of the CMB sensitive to integrated pressure of profiles of clusters along line of sight

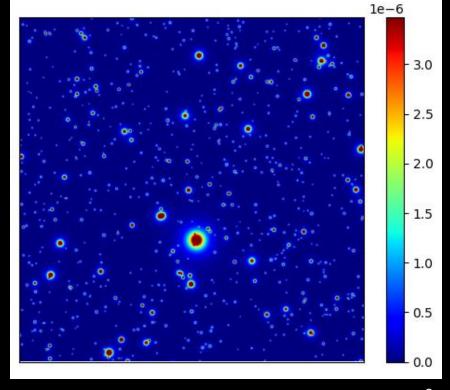
Hot electrons

OMB photons

CMB photons Scattered CMB photons



"Compton-y maps"



The tSZ power spectrum

Halo Model Formalism (Cooray & Sheth, 2002)

$$C_{\ell}^{yy} = C_{\ell}^{yy,1h} + C_{\ell}^{yy,2h}$$

"within each halo" "across halos"

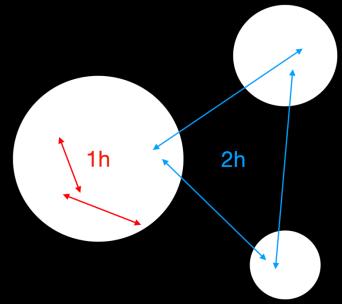
$$C_{\ell}^{yy,1h} = \int_{0}^{Z_{max}} dz \, \frac{dV}{dz} \int_{M_{min}}^{M_{max}} dM \, \frac{dN}{dMdV} |y_{\ell}(M,z)|^{2}$$
HMF FT of halo pressure profile

"Sum of (FT of) pressure profile of all the halos in the catalogue, averaged over ensemble halo population"

 $C_{\ell}^{yy,2h}$: correlations between spatial positions of halos (clustering)

Note:

- the 2h halo term is not significant if we include massive clusters
- but might be non-negligible if we remove massive clusters
- We neglect 2h term in our current analysis



The tSZ power spectrum

$$C_{\ell}^{yy,1h} = \int_{0}^{z_{max}} dz \, \frac{dV}{dz} \int_{M_{min}}^{M_{max}} dM \frac{dN}{dMdV} |y_{\ell}(M,z)|^{2}$$

Cosmology (Ω_m, σ_8) at large scale

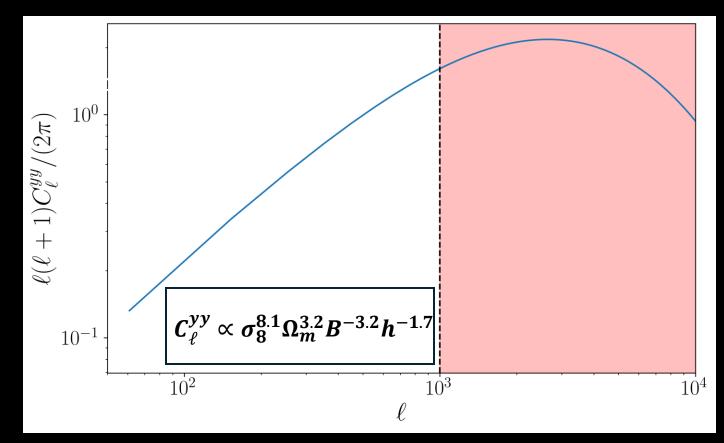
Gas physics at small scale

Assume Generalized NFW pressure profile:

$$P_e(x) = C \times P_0(c_{500}x)^{-\gamma} [1 + (c_{500}x)^{\alpha}]^{(\gamma - \beta)/\alpha}$$

$$x = r/r_{500}$$

Use Arnauld 2010 parameters: $\{\gamma, \alpha, \beta, P_0, c_{500}\}$ are constants



Likelihood analysis

- Clusters follow Poisson Statistics
- But people assume a Gaussian likelihood

$$\chi^2 = (\widehat{\boldsymbol{C}} - \boldsymbol{C})^T \boldsymbol{M}^{-1} (\widehat{\boldsymbol{C}} - \boldsymbol{C})$$

$$C_\ell^{yy,tot} = C_\ell^{tSZ,1h} + A_{CIB}C_\ell^{CIB} + A_{IR}C_\ell^{IR} + A_{RS}C_\ell^{RS} + A_{CN}C_\ell^{CN}$$

Signal FG Residual

Include the trispectrum term in the covariance matrix

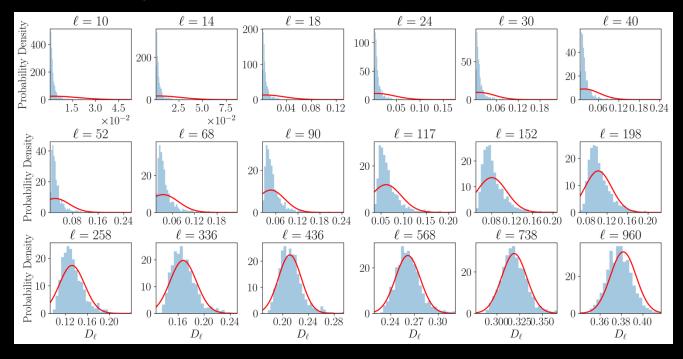
$$T_{\ell\ell'} = \int_0^{z_{max}} dz \frac{dV}{dz d\Omega} \int_{M_{min}}^{M_{max}} dM \frac{dn(M,z)}{dM} |y_\ell(M,z)|^2 |y_{\ell'}(M,z)|^2 \longrightarrow \text{"Covariance of the power spectrum"}$$

Sensitive to four posterior-driven parameters:

•
$$F = \sigma_8 \left(\frac{\Omega_m}{B}\right)^{0.40} h^{-0.21}$$
, A_{CIB} , A_{IR} , A_{RS}

Why we do SBI?

• tSZ is non-Gaussian and analytical likelihood difficult to write, SBI does not need likelihood



No need to model covariance if you have a good forward model

SBI – A brief introduction

SBI is

- Produce lots of simulations with parameter-data pairs: $\{\theta_i, d_i\}$
- Density estimation task, three ways: $p(\theta|d)$, $p(d|\theta)$, $p(\theta,d)$

Comment: this is the same as Generative Al

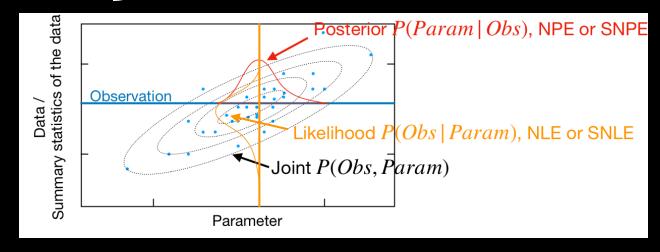
Many ways to do that:

- Simply estimate the KDE
- Neural networks

Examples of neural networks:

Simple Gaussian Mixture Model (GMM):

$$p(\boldsymbol{d}|\boldsymbol{\theta}) = \sum_{k=1}^{K} \pi_{k}(\boldsymbol{\theta}; \boldsymbol{w}) N[(\boldsymbol{d}|\mu_{k}(\boldsymbol{\theta}; \boldsymbol{w}), \boldsymbol{C}_{k}(\boldsymbol{\theta}, \boldsymbol{w})]$$



Autoregressive models:

$$p(\boldsymbol{d}|\boldsymbol{\theta}) = \prod_{i=1}^{n} p(d_i|d_1,d_2,...,d_{i-1};\boldsymbol{\theta}) = \prod_{i=1}^{n} p(d_i|\boldsymbol{d}_{< i};\boldsymbol{\theta}) \longrightarrow \underline{\underline{M}} \text{asked } \underline{\underline{A}} \text{utoregressive } \underline{\underline{F}} \text{low (MAF)}$$

SBI - NPE & NLE

Given data x, compress the data into some summary statistics t

Neural Posterior Estimation (NPE)

- Learn the posterior $p(\theta|t)$
- So the learned posterior should be similar to true posterior $p^*(\theta|t)$
- So weights w of Neural Net should be tuned to minimize

$$\mathbb{E}_{p(x)}[\mathbb{KL}((p^*(\theta|t)||p(\theta|t;w))]$$

Avg. over data

Similarity

$$Loss = -\frac{1}{N_{samples}} \sum_{i=1}^{N_{samples}} \ln p(\theta_i | t_i, w)$$

Neural Likelihood Estimation (NLE)

- Learn the likelihood $p(t|\theta)$
- So the learned likelihood should be similar to true likelihood $p^*(t|\theta)$
- So weights w of Neural Net should be tuned to minimize

$$\mathbb{E}_{\boldsymbol{p}(\boldsymbol{\theta})}\big[\mathbb{KL}(\big(\boldsymbol{p}^*(\boldsymbol{t}|\boldsymbol{\theta})\big|\big|\boldsymbol{p}(\boldsymbol{t}|\boldsymbol{\theta};\boldsymbol{w})\big)\big]$$

Avg. over params

Similarity

$$Loss = -\frac{1}{N_{samples}} \sum_{i=1}^{N_{samples}} \ln p(t_i | \theta_i, w)$$

SBI – Likelihood based

Given data x, compress the data into some summary statistics $m{t}$

$$\chi^2 = (\widehat{\mathbf{C}} - \mathbf{C})^T \mathbf{M}^{-1} (\widehat{\mathbf{C}} - \mathbf{C})$$

"Data are Gaussian with Covariance M"

$$C_{\ell}^{yy} = C_{\ell}^{yy,signal} + N_{\ell}^{yy}$$

Theoretical tSZ PS given cosmo params

tszpower: Cosmological Parameter Inference with tSZ **Power Spectrum**

A repository for computing the thermal Sunyaev-Zel'dovich (tSZ) power spectrum and performing cosmological parameter inference using both Markov Chain Monte Carlo (MCMC) and Simulation-Based Inference (SBI). Built with JAX for accelerated computation and automatic differentiation

Likelihood benchmark:

- Cobaya with Metropolis-Hastings algorithm
- $z_{min} = 0.005, z_{max} = 3.0$
- $M_{min} = 10^{10} M_{\odot} h^{-1}$, $M_{max} = 3.5 \times 10^{15} M_{\odot} h^{-1}$

SBI details:

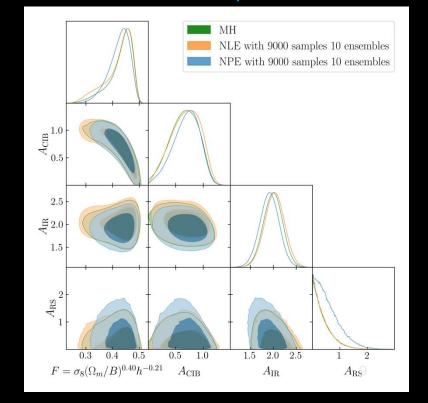
- 9000 parameter-data pairs
- Train: Validation split = 80:20
- Averaging over ensemble of 10 networks: reduce intrinsic bias of NN

Conclusion:

- NLE: all within 0.2σ
- NPE: worst within 0.33σ (A_{IR})

 $M = LL^T$ (Cholesky decomposition)

N = Lv (transform from standard Gaussian)



SBI – Halo based

" \mathcal{C}_{ℓ}^{yy} non-Gaussian at low ℓ so Gaussian likelihood is not correct"

tSZ maps

Given data x, compress the data into some summary statistics t

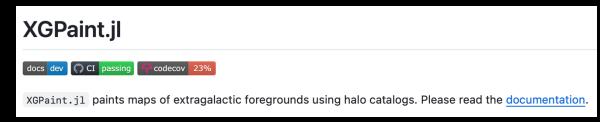
1. Generating cluster catalogues

cosmocnc

cosmocnc is a Python package for evaluating the number count likelihood of galaxy cluster catalogues in a fast, flexible and accurate way. It is based on the use of Fast Fourier Transform (FFT) convolutions in order to evaluate some of the likelihood integrals. The code was introduced in <u>Zubeldia & Bolliet (2024)</u>, where the likelihood formalism and implementation are described in detail. If you use the code, please cite the paper.

- Sample N clusters from the HMF
- Assign random sky coordinate (no clustering)
- For each cluster in the catalogue:
 - (z, M, lon, lat)

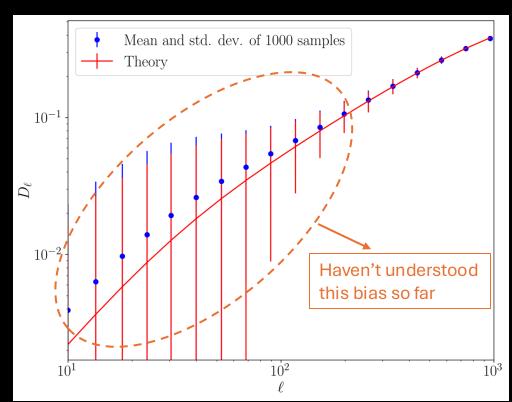
2. Painting clusters onto sky

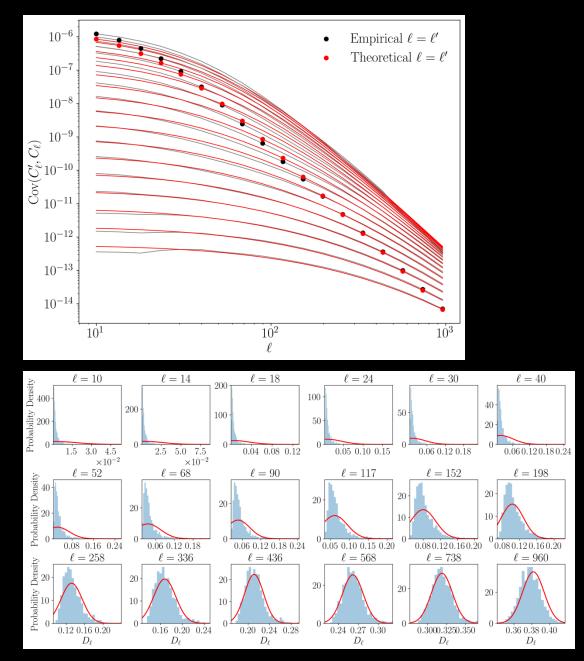


- Assign beam convolved (FWHM=10') pressure profile for each cluster
- Paint clusters by sky positions
- Healpix workspace with $N_{side} = 1024$

SBI – Halo based

- 1000 full sky maps, fixed cosmology
- $z_{min} = 0.005, z_{max} = 3.0$
- $M_{min} = 10^{14} M_{\odot} h^{-1}$, $M_{max} = 10^{16} M_{\odot} h^{-1}$





SBI – Halo based

Simulation details:

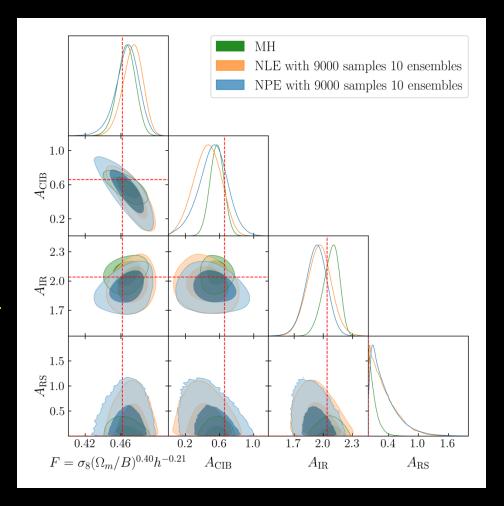
- Painting halos from halo model
- FG residuals painted as Gaussian random field (GRF) from template FG power spectrum
- No instrumental noise

SBI details:

- 9000 full-sky maps
- $z_{min} = 0.005, z_{max} = 3.0$
- $M_{min} = 10^{14} M_{\odot} h^{-1}$, $M_{max} = 10^{16} M_{\odot} h^{-1}$
 - C_ℓ^{yy} at low ℓ saturate if we decrease M_{min} further
 - Fewer clusters, so save computational time
- Take "true data" to be one realization of mock data

Conclusion:

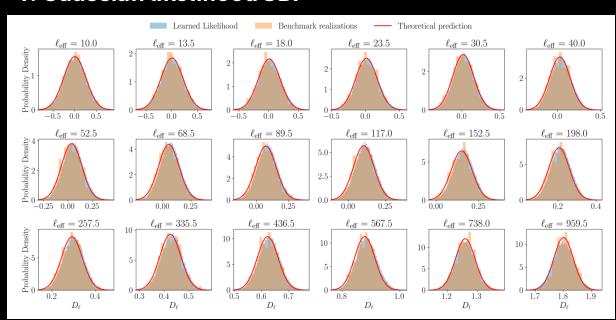
- SBI and likelihood agrees on F (cosmology)
- SBI predicts wider posteriors for foreground parameters Haven't come up with an explanation yet



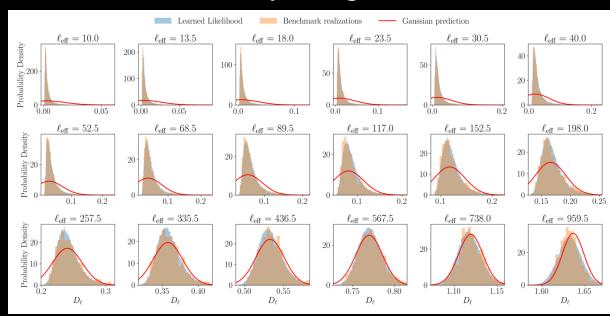
SBI – NLE Validation

- NLE learns the likelihood
- Can look at the learned likelihood at some input parameters (since SBI = generative AI)
- Meanwhile, we can generate many realizations of tSZ maps at those input parameters
- If SBI is learning correctly, these two should agree

1. Gaussian likelihood SBI



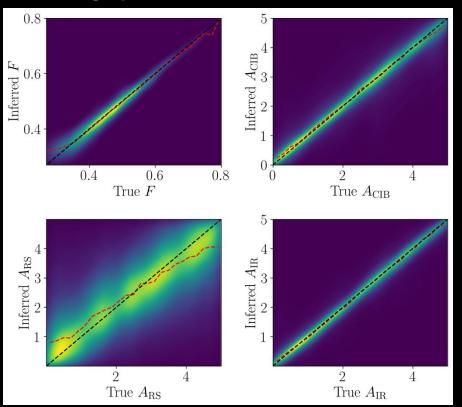
2. Halo based SBI from painting



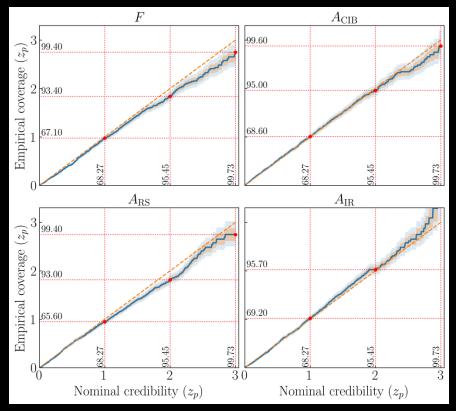
SBI – NPE Validation

- To test SBI is unbiased across parameter space of interest
- SBI is "amortized" (since SBI = generative AI), only need to train once
- Sampling posteriors at different mock observational data points is fast

Coverage plot



Probability-Probability (P-P) plot



Is PS really the optimal thing to look at?

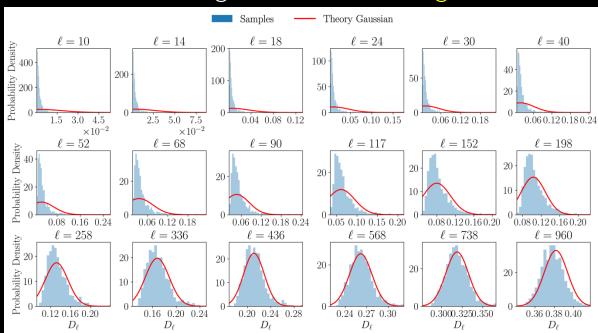
tSZ maps

???

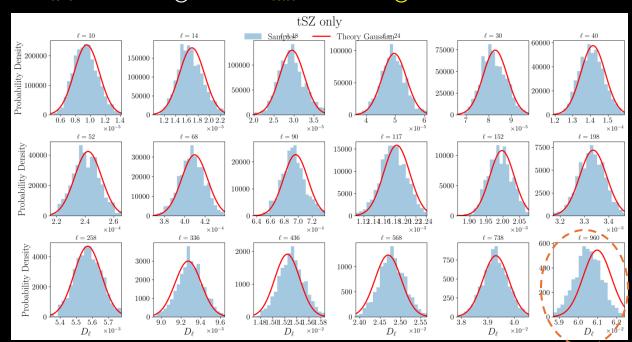
Given data χ' , compress the data into some summary statistics t

$$z_{min} = 0.005, z_{max} = 3.0$$

 $M_{min} = 10^{14} M_{\odot} h^{-1}, M_{max} = 10^{16} M_{\odot} h^{-1}$



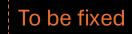
$$z_{min} = 0.5$$
, $z_{max} = 3.0$
 $M_{min} = 10^{14} M_{\odot} h^{-1}$, $M_{max} = 10^{15} M_{\odot} h^{-1}$



"Removing local clusters makes the low ℓ more Gaussian"

The masked part are resolved clusters!

"cluster number count"



Combine with cluster number count (coming soon ...)

tSZ maps $\{C_\ell^{yy,masked},N_{clusters}\}$

Given data x, compress the data into some summary statistics t

$$N(M,z) o N(q,z)$$
 Converting mass M to observables q (e.g., in tSZ, $q = SNR = \frac{y_0}{\sigma_{y_0}}$)

$$\frac{dN}{dqdz} \propto p(q,z) = \int dM \, p(M,z) p(q|M,z)$$
HMF Scaling relations

$$N \propto \int_{M,z} dM dz \, p(M,z) \int_{q_{min}}^{\infty} dq \, p(q|M,z)$$

$$\hat{\chi}, \text{ completeness}$$

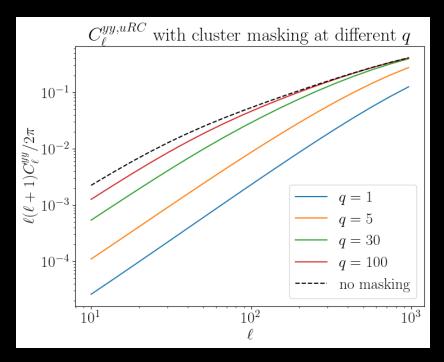
Combine with cluster number count (coming soon ...)

tSZ maps

 $\{C_{\ell}^{yy,masked}, N_{clusters}\}$

Given data χ , compress the data into some summary statistics t

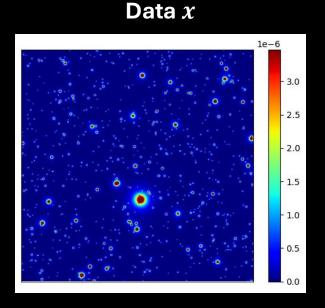
$$C_{\ell}^{yy,1h} = \begin{cases} \langle |y_{\ell}|^2 \ \hat{\chi} \rangle & \text{Resolved} \\ \\ \langle |y_{\ell}|^2 \ (1 - \hat{\chi}) \rangle & \text{Unresolved} \end{cases}$$



Note in SBI:

- No need to model covariance between $C_\ell^{yy,masked}$ & $N_{clusters}$
 - This covariance is not understood, can use SBI as test
 - Can easily extend to full joint analysis of $C_\ell^{yy,full}$ & $N_{clusters}$ (where there is covariance but unclear how to model it)
- Things missing now: intrinsic & noise scattering

Exhausting all information in y-maps?



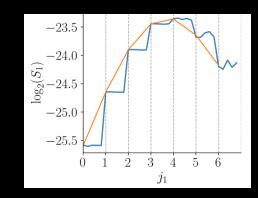
Summary statistics t

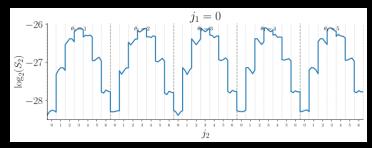
•
$$C_{\ell}^{yy}$$
• $N_{clusters}$ This work

- Minkowski Functionals: V_0 , V_1 , V_2
- Peaks
- Minima
- Moments

•
$$\sigma_0 = \sqrt{\langle y^2 \rangle}$$
, $\sigma_1 = \sqrt{\langle |\nabla y|^2 \rangle}$, $S_1 = \sqrt{\langle y^2 \nabla^2 y \rangle}$, $K_1 = \sqrt{\langle y^3 \nabla^2 y \rangle}$

- Wavelet scattering coefficients: S_0 , S_1 , $S_2 \longrightarrow Currently working on it$
- CNNs
- and many more ...





See Sabyr et al. (2025) for Gaussian likelihood analysis

tszpower

- Fast computation of tSZ power spectrum using Python & JAX with cosmopower emulator
- $2 \times \text{faster than } \text{class_sz}$ due to JIT compilation on tSZ PS, $10 \times \text{faster for trispectrum}$
- Customized SBI backend based on sbi and PyTorch, interfaced with wandb

XGPaint

- Fast cluster map painting code with Julia backend
- Support Healpix & CAR workspace
- Painting NOT expensive (can provide scaling laws if required)

Time & Space complexities of halo-based simulations

GNFW is 1D grid $y(\theta) = y_0(M,z)I\left(\frac{\theta}{\theta_{500}}\right)$ so building the interpolation grid is cheap

Time complexity is $O(N_{clusters}N_{side}^2)$

General pressure profile is 3D: $y(M, z, \theta)$ Interpolation time is more expensive: $O(N_M N_z N_\theta)$

On Macbook M2 Pro: painting $N_{side}=1024$ with 300,000 clusters takes 90 s

Cluster catalogue validation

