Multi-Tracer beyond linear theory

arxiv 2504.18245

Henrique Rubira, Francesco Conteddu

Multi-Tracer analysis

Challenge: extract maximal amount of information from data from LSS.

One possible approach: Multi-Tracer (MT) technique.

$$\rho = \rho^A + \rho^B \Longrightarrow \delta = \frac{\overline{n}^A}{\overline{n}} \delta^A + \frac{\overline{n}^B}{\overline{n}} \delta^B$$

E.g. split galaxy sample by mass, color, spin, ...

Example: 2 tracers (A and B) +linear order theory + RSD:

CROSS-STOCHASTICITY (see 1305.2917)

$$\begin{cases} P^{AA} = \langle \delta^A \delta^A \rangle' = (b_1^A + f\mu^2)^2 P_L + \frac{1}{\overline{n}^A} (1 + c_0^{AA}) \\ P^{AB} = \langle \delta^A \delta^B \rangle' = (b_1^A + f\mu^2) (b_1^B + f\mu^2) P_L + \frac{1}{\sqrt{\overline{n}^A \overline{n}^B}} c_0^{AB} \\ P^{BB} = \langle \delta^B \delta^B \rangle' = (b_1^B + f\mu^2)^2 P_L + \frac{1}{\overline{n}^B} (1 + c_0^{BB}) \end{cases}$$

Multi-Tracer analysis

Main advantage in the linear theory: **cosmic variance suppression** (1302.5444 and 2112.01812).

Beyond linear theory: EFTofLSS + bias expansion \to 3 new biases: $b_{\delta^2}, b_{\mathcal{G}_2}, b_{\Gamma_3}$.

Now also break of degeneracies between parameters (2108.11363, 2306.05474).

Want to understand:

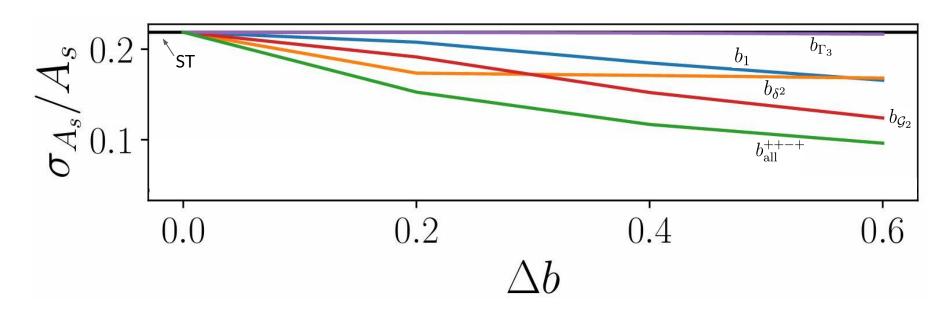
- how to split the dataset more effectively;
- systematically explore information gains.

Use Fisher forecast to compare ST vs MT.

Finding the optimal tracer split: bias difference

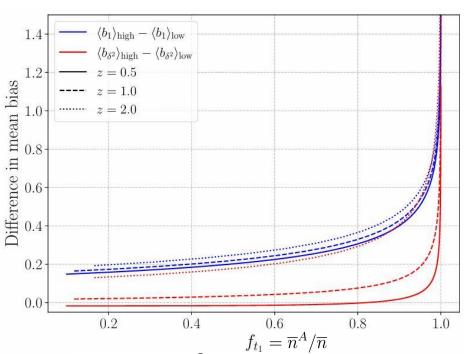
Tracer split \rightarrow different bias parameters:

$$b_O^A = b_O^{\text{ST}} \mp \frac{\Delta b}{2}$$
 and $b_O^B = b_O^{\text{ST}} \pm \frac{\Delta b}{2}$



Is it easy to find splits with different biases? PESSIMISTIC SCENARIO

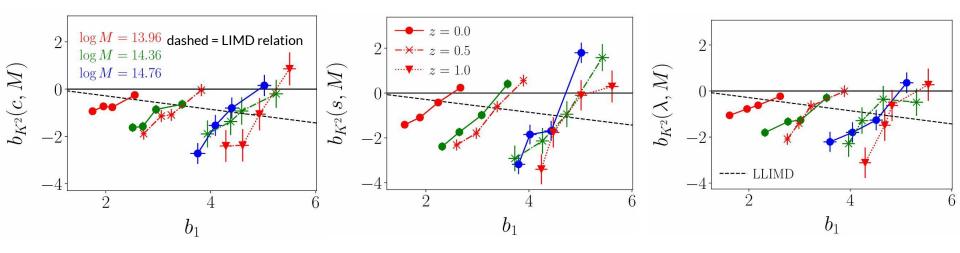
Toy model with DM halos: Tinker's mass function + fit for non-linear bias (1511.01096).



Assuming LIMD relations -> $b_{\mathcal{G}_2}(b_1)=-\frac{2}{7}(b_1-1)$ and $b_{\Gamma_3}(b_1)=-\frac{23}{42}(b_1-1)$

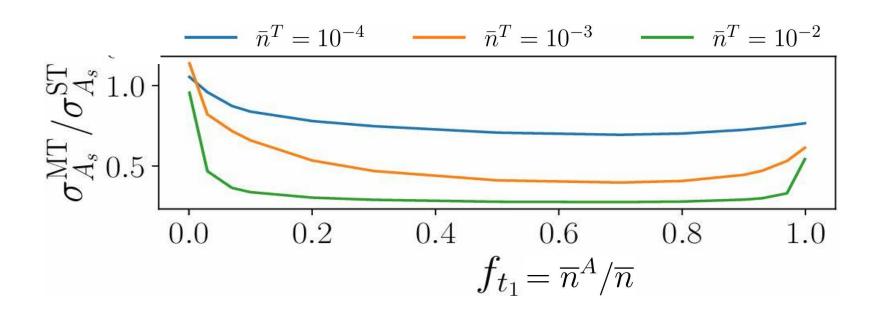
Is it easy to find splits with different biases? MORE REALISTIC SCENARIO

Plots from 2106.14713, with $b_{G_2} = b_{K^2}$.



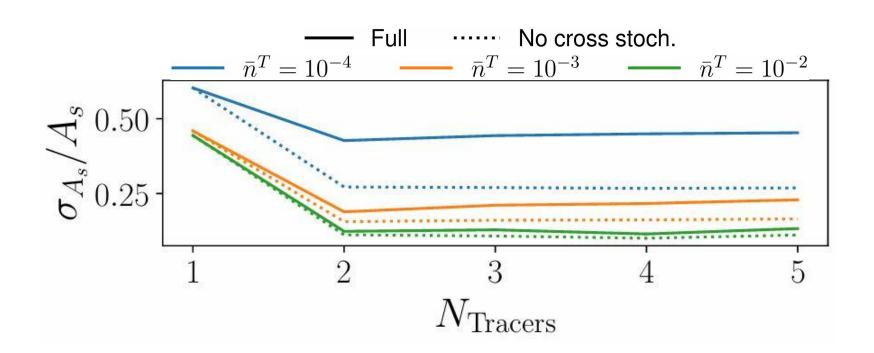
Assembly bias -> easy to find big differences in **non linear** biases!

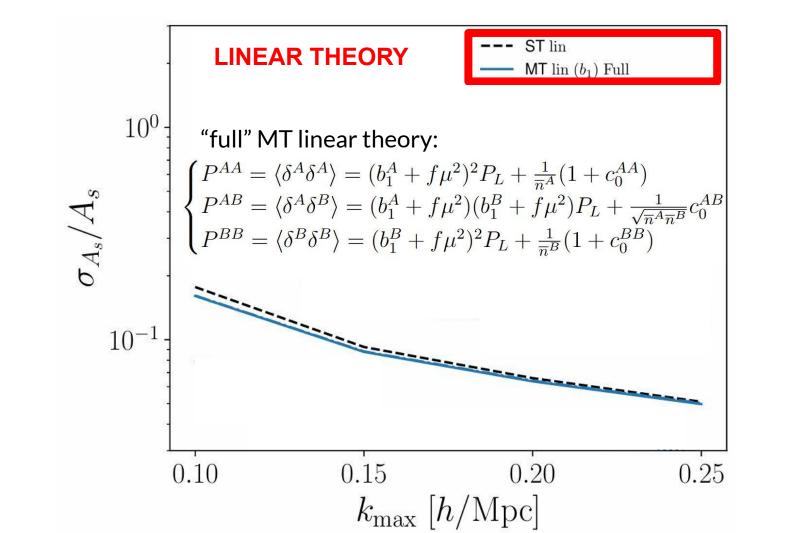
Relative number density

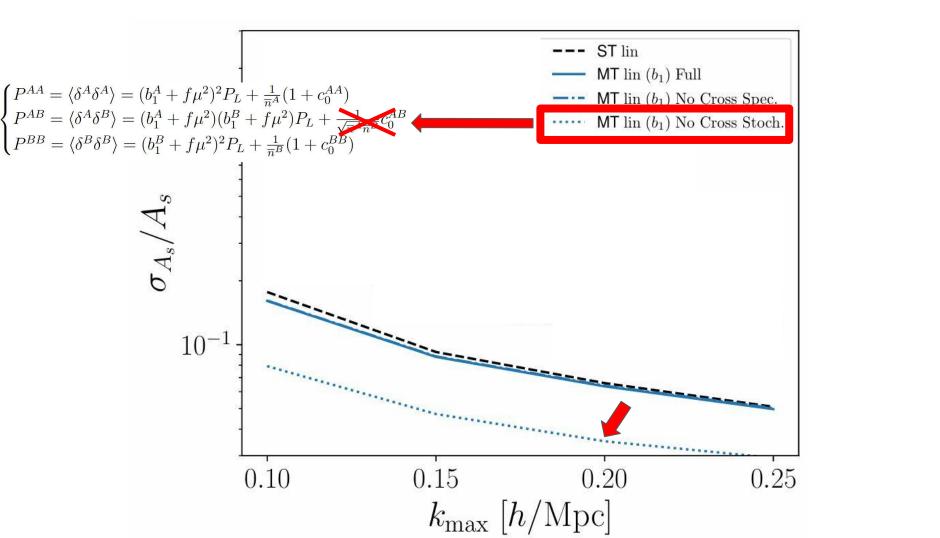


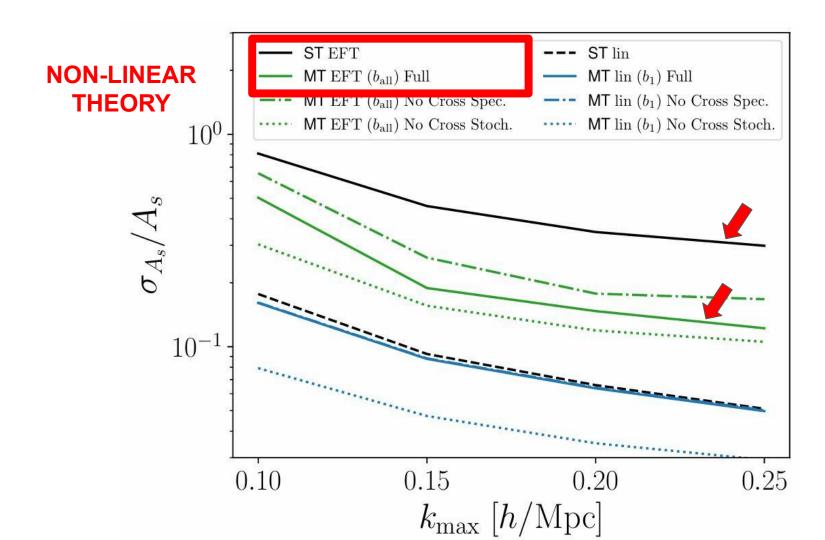
Good news! It's easier to find big bias differences!

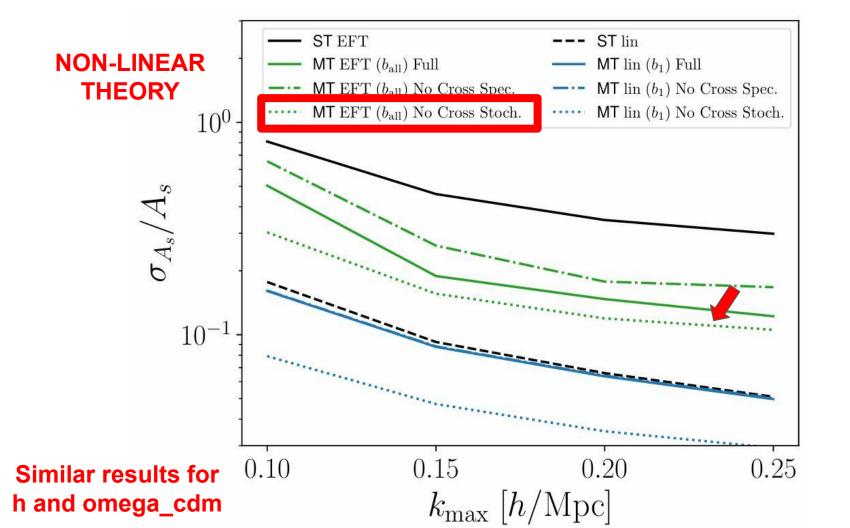
More tracers?











How much are the parameters correlated?

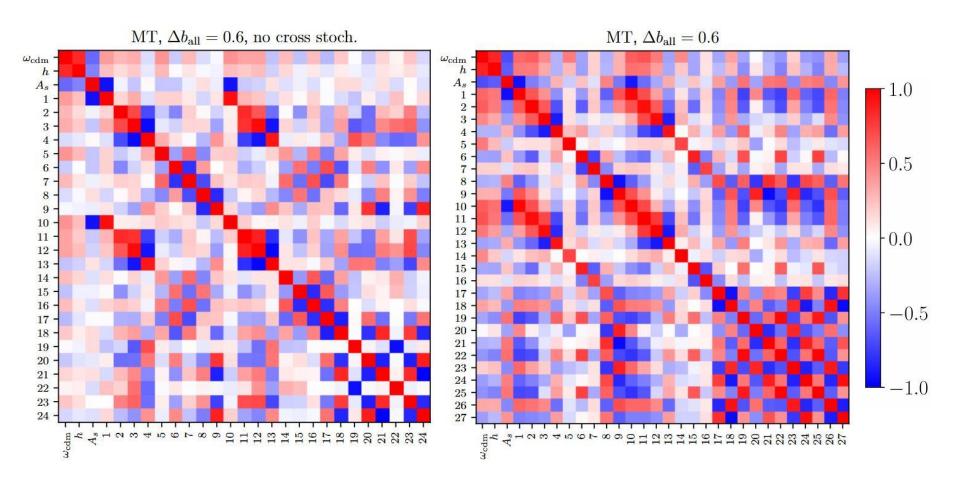
Score
$$S_{\theta_i}^2 = \frac{1}{N-1} \sum_{\substack{j=1 \ j \neq i}}^N r_{ij}^2$$
. (Pearson) correlation matrix: $r_{ij} = \frac{(F^{-1})_{ij}}{\sqrt{(F^{-1})_{ii}(F^{-1})_{jj}}}$.

$$0.6 \frac{\text{Dotted: No Cross stochasticity}}{0.2 \frac{1}{0.0}} = \frac{(F^{-1})_{ij}}{\sqrt{(F^{-1})_{ii}(F^{-1})_{jj}}}$$

$$0.2 \frac{1}{0.0} = \frac{(F^{-1})_{ij}}{\sqrt{(F^{-1})_{ii}(F^{-1})_{jj}}}$$

$$0.2 \frac{1}{0.0} = \frac{(F^{-1})_{ij}}{\sqrt{(F^{-1})_{ii}(F^{-1})_{jj}}}$$

How much are the parameters correlated?



Summary

• **Big non-linear Δb** enhances the constraints.

Hard to find big Δb_1 (high redshift, very unbalanced split), but easy for non-linear biases!

Even with unbalanced splits, good constraints!

• Linear theory: MT gains are based on the absence of $c_{
m st}^{AB}$.

Non-linear theory: always **better performances**, also due to **more diagonal** basis.

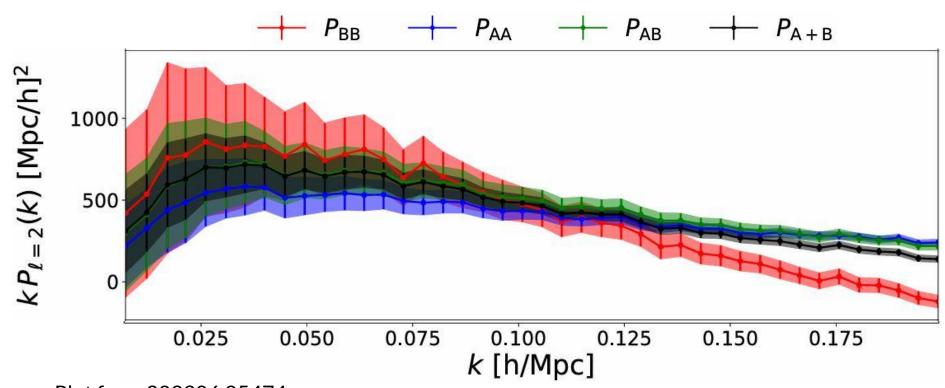
Would like: tracers with physically motivated $c_{
m st}^{---}=0$

N>2 tracers doesn't seem useful!

THANK YOU!

FoG and different k_max

2501.10587 -> use quadrupole to understand when FoG become non perturbative.



Plot from 202306.05474

FoG and different k_max

2501.10587 -> use quadrupole to understand when FoG become non perturbative. Idea: use different k_max for different tracers

