Sprecher
Beschreibung
reactions. The central dogma and related biochemistry are rife with examples: gene i is transcribed into RNA i, which is translated into protein i; kinase n phosphorylates substrate m; protein p dimerizes with protein q. Engineered nucleic acid systems also often have this form: oligonucleotide i hybridizes to complementary oligonucleotide j; signal strand n displaces the output of seesaw gate m; hairpin p triggers the opening of target q. When there are many variants of a small number of prototypes, it can be conceptually cleaner and computationally more efficient to represent the full system in terms of indexed species (eg for dimerization, M_p, D_pq) and indexed reactions (M_p+ M_q→ D_pq). Here, we formalize the Indexed Chemical Reaction Network (ICRN) model and describe a Python software package designed to simulate such
systems in the well-mixed and reaction-diffusion settings, using a differentiable programming framework originally developed for large-scale neural network models, taking advantage of GPU acceleration when available. Notably, this framework makes it straightforward to train the models’ initial conditions and rate constants to optimize a target behavior, such as matching experimental data, performing a computation, or exhibiting spatial pattern formation. The natural map of indexed chemical reaction networks onto neural network formalisms provides a tangible yet general perspective for translating concepts and techniques from the theory and practice of neural computation into the design of biomolecular systems.