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▶ Asymmetric 𝑒+𝑒− experiment
▶ Mainly at Υ(4𝑆) resonance
(10.58GeV)
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Focus on B, charm and 𝜏 physics
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KEKB/Belle SuperKEKB/Belle II

Operation 1999–2010 2019–

Peak luminosity 2.11 × 1034 cm−2s−1 8 × 1035 cm−2s−1

Integrated luminosity 1 ab−1 (772 million BB̄ pairs) 50 ab−1
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Problem Belle II expecting 50 ab−1 of data (Belle: 1 ab−1)

Want MC ≈ 10 × data
Event simulation is time consuming

Most background events discarded trivially

Task Come up with a way to only simulate useful (background) events

Dataset Generic MC simulations and their corresponding skims

Solution Use neural networks to predict (classify) event usefulness before performing full

simulation

Stage HEP-SPEC06 s/event

Framework overhead 0.79
Event generation 0.11
Detector simulation 47.23
Event reconstruction 26.77

MC
Skim

Det. Sim.
Reco Analyse Fit

Data
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Want to predict (labels):

MC SkimDet. Sim. Reco

Fail

Analyse
Pass

with generalised prediction module:

MC SkimDet. Sim. Reco AnalyseNN
Pass*

Fail*
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Train on two FEI skim channels:

▶ FEI Had. 𝐵0: 8.5M events

▶ FEI Had. 𝐵+: 4M events

10% reserved for validation.

Test events simulated independently.

Table: FEI skim event retention rates.

Channel Had 𝐵+ Had 𝐵0

𝐵0𝐵̄0 5.62% 4.25%
𝐵+𝐵− 8.35% 3.82%
𝑢𝑢̄ 6.86% 3.78%
𝑑 ̄𝑑 7.20% 3.39%
𝑐𝑐̄ 12.0% 5.73%
𝑠𝑠̄ 6.13% 2.95%
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Decay strings:

𝐵̄0 → 𝐽/𝜓(→ 𝜇+𝜇−𝐾0
𝑆 (→ 𝜋+𝜋−))

becomes:

-511 ( 443 ( -13 13 310 ( 211 -211 ) ) )
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MCParticles

1 300553 (Upsilon(4S)) E: 1.100e+01 m: 1.058e+01 p:(...) v:(...)
2 521 (B+) E: 5.511e+00 m: 5.279e+00 p:(...) v:(...)
4 -421 (anti-D0) E: 1.939e+00 m: 1.865e+00 p:(...) v:(...)

10 310 (K_S0) E: 5.913e-01 m: 4.976e-01 p:(...) v:(...)
20 211 (pi+) E: 2.379e-01 m: 1.396e-01 p:(...) v:(...)
21 -211 (pi-) E: 3.534e-01 m: 1.396e-01 p:(...) v:(...)
11 211 (pi+) E: 3.484e-01 m: 1.396e-01 p:(...) v:(...)
12 -211 (pi-) E: 7.756e-01 m: 1.396e-01 p:(...) v:(...)
5 413 (D*+) E: 2.453e+00 m: 2.010e+00 p:(...) v:(...)

14 411 (D+) E: 2.239e+00 m: 1.870e+00 p:(...) v:(...)
28 -321 (K-) E: 8.801e-01 m: 4.937e-01 p:(...) v:(...)
29 211 (pi+) E: 5.853e-01 m: 1.396e-01 p:(...) v:(...)
30 211 (pi+) E: 7.737e-01 m: 1.396e-01 p:(...) v:(...)
15 22 (gamma) E: 2.138e-01 m: 0.000e+00 p:(...) v:(...)
6 313 (K*0) E: 1.111e+00 m: 8.617e-01 p:(...) v:(...)

16 321 (K+) E: 8.508e-01 m: 4.937e-01 p:(...) v:(...)
17 -211 (pi-) E: 2.683e-01 m: 1.396e-01 p:(...) v:(...)
3 -521 (B-) E: 5.493e+00 m: 5.279e+00 p:(...) v:(...)
7 43 (Xu0) E: 2.052e+00 m: 8.646e-01 p:(...) v:(...)

18 211 (pi+) E: 4.797e-01 m: 1.396e-01 p:(...) v:(...)
19 -211 (pi-) E: 1.572e+00 m: 1.396e-01 p:(...) v:(...)
8 11 (e-) E: 1.621e+00 m: 5.110e-04 p:(...) v:(...)
9 -12 (anti-nu_e) E: 1.820e+00 m: 0.000e+00 p:(...) v:(...)
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Particle input Decay string

NN NN

Concatenate

NN

Prediction

[0, 1]

PDG motherPDG

Embedding Embedding



Architecture

James Kahn Selective background Monte Carlo simulation at Belle II 10 / 18February 2019

Particle input

Conv1D (3, 64)

Prediction

PDG motherPDG

Embedding

Concatenate

Conv1D (3, 64)

AvgPool1D

Node (2, 3, 64, Avg)

Node (2, 3, 64, Avg)

Node (2, 3, 64, Avg)

GlobalAvgPool1D

Dense

Decay string

Prediction

Embedding

Dense

N paths
Conv1D (4, 64) Conv1D (5, 64) Conv1D (9, 64)

Concatenate

GlobalAvgPool GlobalAvgPool GlobalAvgPool
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▶ Simulate 100,000 events of each sample
▶ Keep all – label with NN prediction

MC SkimDet. Sim. Reco AnalyseNN
Pass*

Fail*
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▶ Simulate 100,000 events of each sample
▶ Keep all – label with NN prediction
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(a) Charged FEI 𝐵+
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(b) Mixed FEI 𝐵0
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Compare kinematics before/after applying NN threshold:
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Compare kinematics before/after applying NN threshold:
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▶ Adversarial / loss penalty to discourage bias.

▶ Investigating usage in ATLAS simulation (bachelor student)

▶ Presenting results at ACAT
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PXD

Inner ring: 8 ladders (3.1M pixels)

Inner ring: 12 ladders (4.6M pixels)

Goal: Simulate backgrounds with GAN
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Wasserstein GAN
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Thank you
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First attempt:

Secondary NN→ use to reweight events.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Bias NN prediction
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5 Predicted pass (NN > 0.85)
Predicted fail (NN 0.85)


