Development and implementation of deep
neural networks close to sensors
for object reconstruction and identification

Christian Schmitt (Mainz)
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Aim of the project in Mainz

* Processing of detector data at extremely high rates
* Not possible to store data due to its size
» Usage of GPUs not possible due to their too high latency
* Data has to be processed and filtered locally, maybe

directly at the corresponding sensors

* Solution: deep neural networks as replacement for
iterative algorithms, that can be efficiently evaluated on
FPGAs

» Test environment: ATLAS L1 Trigger (40 MHz rate)
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 Participation in ATLAS L1-Trigger

* Expertise on the
development and

implementation
of algorithms on FPGAs

* ATLAS physics analysis

 Expertise on machine

learning techniques
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Example: jet reconstruction

* Optimal reconstruction of jets: anti-kT algorithm

» Iterative algorithm

* Direct implementation on FPGAs
possible, but latency too high (O(us))
* Bachelor thesis N. Nottbeck (Mainz, 2016)

* Not possible to perform in real time, only simplified
algorithms are currently in use in the ATLAS L1 Trigger

(“sliding window”)

=DNN as replacement for anti-kT algorithm

jonannes GUTENBERG
4 UNIVERSITAT MAINz JG‘U



DNN instead of Anti-kT

Current status:

Bt display nte truth e
* Jet reconstruction via

DNN P »
» Image recognition based

on calorimeter images | |
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* DNNis able to

reconstruct overlapping -+ *** i

jets better than anti-kT = ...
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DNN Details

* DNN has to reconstruct Position as well as Energy of arbitrary

number of jets!

Input ........................................................................... Output

¢ Much more complex than simple

1 16 16
image classification tasks T | R
» Convolution

I:> 2x2 Max-pooling

(] Ansatz: Create neW image With jet » Transpose Convolution

------ Concatenate

64 64

information from calorimeter image
(2D-conv with U-net architecture)

* Additional connections between the layers avoids information
loss by down-sampling

* ReLU as activation function (performant and ideal for FPGA!)

 3x3 kernel size for all layers = total of 116881 weights
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DNN results

» Trained on ttbar events using own g
fast detector simulation und p=0 Eo.8:—
» Results for fully simulated HH- s
>4b events (u=60) :
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Implementation on FPGA
+ FPGAs 8 l[= ﬁﬁ@
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» Advantages for this project compared to CPU or GPU:
very short latencies possible and guaranteed timing
* Challenges:
» Adaptation of network architecture needed
* Arithmetic precision, signal propagation delay, resource
usage on the FPGA, ...
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First results for dense layers

» Dense layer successfully
implemented on FPGAs
 (Calculations in DSPs

* Only small additional

LUTs per DSP (Normalized, N = 162) FFs per DSP (Normalized, N = 162)

resource over.

head (LUT,

FF)
+ High frequencies can be
reached
« Target FPGA: Xilinx US+9P
» 6840 DP5s; 2.4M FE,

1.2M LUT
* ‘mid-range” US+
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Implementation on FPGAs

* Long term goal:
* Universal framework to implement DNN on FPGAs
» Starting point: pre-trained DNN (e.g. with Keras)
* Framework creates VHDL code and all other files needed
for implementation on FPGA
* QOther parameters: e.g. desired arithmetic precision for the
calculations on the FPGA, chosen maximal latency /

minimal frequency for the implementation
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Plans for the next 2,5 years

* Development of deep network architectures as
replacement for iterative algorithms

* anti-kt jets, missing transverse energy, jet substructure
* Adaptations and Improvements of existing deep neural
network methods

» Optimal performance with limited resources (FPGAs)

* Adaptations on FPGA resources and validation
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