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NN on Hardware Trigger FPGAs Backup

Network Architecture

segmentation-like architecture ) creating new image

additional concatenations: allow important information to skip
down-sampling

all kernels have size 3⇥ 3 ) 116,881 weights in total

ReLU activation functions

loss function: mean squared error
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NN on Hardware Trigger FPGAs Network Adaption to Hardware Resources

Results - Event Display

training: fast simulation tt̄
w/o pile-up

evaluate: full ATLAS
Di-Higgs MC, µ = 60

di↵erent energy
calibrations:

calorimeter jets have about
half the truth jet energy

NN able to cope with new
type of data

NN even able to resolve
two close-by jets that
anti-kt online merges (left)
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Aim of the project in Mainz
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• Processing of detector data at extremely high rates
• Not possible to store data due to its size
• Usage of GPUs not possible due to their too high latency
• Data has to be processed and filtered locally, maybe 

directly at the corresponding sensors
• Solution: deep neural networks as replacement for 

iterative algorithms, that can be efficiently evaluated on  
FPGAs 

• Test environment: ATLAS L1 Trigger (40 MHz rate) 
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Mainz
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• Participation in ATLAS L1-Trigger
• Expertise on the  

development and  
implementation  
of algorithms on FPGAs 

• ATLAS physics analysis
• Expertise on machine  

learning techniques 

• Close collaboration with the  
Computer Science Institute

Figure 5: Components of the Level-1 calorimeter trigger after the Phase-I up-
grade, new components in yellow [13]. Multiple Feature Extractors reconstruct
important objects, the Topological Processor (L1Topo) processes these, and the
Central Trigger Processor (L1CTP) then decides about the trigger accept.

Level-1 trigger [9]. However, only a small fraction of this time is available for data
processing, much is required for data transmission and similar purposes. The Jet
Feature Extractor (jFEX), which is responsible for the task of jet clustering and
therefore of particular interest in the following, only has five bunch crossings, i.e.
125 ns, available for processing. A similar time scale applies to the topological
processor (L1Topo), which could potentially also benefit from the inclusion of
neural networks.2 This value therefore becomes important later, as it served as
orientation for a reasonable latency target for the inclusion of neural networks
within low-level hardware triggers.

Figure 6 shows a schematic of the calorimeter triggering system after the
Phase-II upgrade. There, most of the Level-1 systems from the Phase-I upgrade
have now become part of the Level-0 trigger. Instead of the Level-1 topological
processor, which was left out, there is only a single global trigger. The muon
system which is included in this figure will also be present in the Level-1 trigger
of the Phase-I upgrade and provide inputs to the L1Topo already, but figure 5
focused only on calorimeter-related systems and did therefore not include it. The
total latency budget of the Level-0 trigger after the Phase-II upgrade is 10 µs. Of
these, 500 ns are reserved for processing in the jFEX. The new global trigger has
data at the full detector granularity available for executing o✏ine-like processing.

2Currently, three bunch crossings are used for L1Topo algorithms [12]. (No specific value for
this is stated in [9].)
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Figure 3: Schematic view of the ATLAS detector [11]. The calorimeter which
is relevant in the following is only comprised of the orange and surrounding dark
gray part in the center, a more detailed view can be found in figure 4.

’pile up’, and instead of reconstructing only the initial collision products of one
interaction from the measured data, it is even necessary to reconstruct which
part of the measured data came from which collision. In the future, this will
become even more challenging due to an increased beam luminosity. Currently,
the Long Shutdown 2 (LS2), is ongoing, which is used for maintenance tasks,
but also upgrades for various systems and detectors at CERN. For the LHC, the
main goal of the LS2 is to increase the collision energy to

p
s = 14 TeV and to

further increase the luminosity. After the LS2, it is expected to on average have
a high two-digit number of interactions per bunch crossing [9]. After the Long
Shutdown 3 (LS3) in the mid 2020s, even an average interaction number of 200
is expected [10].

The ATLAS experiment aims at improving and extending the Standard
Model, and at probing Beyond Standard Model theories, as previously mentioned.
This, for example, includes precision measurements of the Higgs boson properties
and other precision measurements for particle properties, as well as searches for
new particles, especially in the context of Supersymmetry.

The core part of the ATLAS experiment is its cylindrical detector, which is
shown in figure 3 [11]. It consists of three subsystems for measuring: The inner-
most subsystem is used for tracing the path of charged collision products within
a magnetic field. The second subsystem layer is comprised of electromagnetic
and hadronic calorimeters, which are used to measure the energy of the colli-
sion products, especially electrons, photons and hadrons. The outermost layer

12



1

Example: jet reconstruction
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• Optimal reconstruction of jets: anti-kT algorithm
• Iterative algorithm
• Direct implementation on FPGAs 

possible, but latency too high (O(!s)) 
• Bachelor thesis N. Nottbeck (Mainz, 2016)

• Not possible to perform in real time, only simplified 
algorithms are currently in use in the ATLAS L1 Trigger 
(“sliding window”)  
 
⇒DNN as replacement for anti-kT algorithm

A priori it is not clear whether it is better to have regular (‘soft-resilient’) or less regular (soft-
adaptable) jets. In particular, regularity implies a certain rigidity in the jet algorithm’s ability to
adapt a jet to the successive branching nature of QCD radiation. On the other hand knowledge
of the typical shape of jets is often quoted as facilitating experimental calibration of jets, and
soft-resilience can simplify certain theoretical calculations, as well as eliminate some parts of the
momentum-resolution loss caused by underlying-event and pileup contamination.

Examples of jet algorithms with a soft-resilient boundary are the plain “iterative cone” algo-
rithm, as used for example in the CMS collaboration [6], and fixed-cone algorithms such as Pythia’s
[7] CellJet. The CMS iterative cone takes the hardest object (particle, calorimeter tower) in the
event, uses it to seed an iterative process of looking for a stable cone, which is then called a jet.
It then removes all the particles contained in that jet from the event and repeats the procedure
with the hardest available remaining seed, again and again until no seeds remain. The fixed-cone
algorithms are similar, but simply define a jet as the cone around the hardest seed, skipping the
iterative search for a stable cone. Though simple experimentally, both kinds of algorithm have the
crucial drawback that if applied at particle level they are collinear unsafe, since the hardest particle
is easily changed by a quasi-collinear splitting, leading to divergences in higher-order perturbative
calculations.1

In this paper it is not our intention to advocate one or other type of algorithm in the debate
concerning soft-resilient versus soft-adaptable algorithms. Rather, we feel that this debate can be
more fruitfully served by proposing a simple, IRC safe, soft-resilient jet algorithm, one that leads
to jets whose shape is not influenced by soft radiation. To do so, we take a quite non-obvious route,
because instead of making use of the concept of a stable cone, we start by generalising the existing
sequential recombination algorithms, kt [1] and Cambridge/Aachen [2].

As usual, one introduces distances dij between entities (particles, pseudojets) i and j and diB

between entity i and the beam (B). The (inclusive) clustering proceeds by identifying the smallest
of the distances and if it is a dij recombining entities i and j, while if it is diB calling i a jet and
removing it from the list of entities. The distances are recalculated and the procedure repeated
until no entities are left.

The extension relative to the kt and Cambridge/Aachen algorithms lies in our definition of the
distance measures:

dij = min(k2p
ti , k2p

tj )
∆2

ij

R2
, (1a)

diB = k2p
ti , (1b)

where ∆2
ij = (yi − yj)2 + (φi − φj)2 and kti, yi and φi are respectively the transverse momentum,

rapidity and azimuth of particle i. In addition to the usual radius parameter R, we have added a
parameter p to govern the relative power of the energy versus geometrical (∆ij) scales.

For p = 1 one recovers the inclusive kt algorithm. It can be shown in general that for p > 0
the behaviour of the jet algorithm with respect to soft radiation is rather similar to that observed
for the kt algorithm, because what matters is the ordering between particles and for finite ∆ this
is maintained for all positive values of p. The case of p = 0 is special and it corresponds to the
inclusive Cambridge/Aachen algorithm.

1This is discussed in the appendix in detail for the iterative cone, and there we also introduce the terminology
iterative cone with split–merge steps (IC-SM) and iterative cone with progressive removal (IC-PR), so as to distinguish
the two broad classes of iterative cone algorithms.
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DNN instead of Anti-kT
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• Current status:
• Jet reconstruction via 

DNN
• Image recognition based 

on  calorimeter images 
(Trigger towers)

• DNN is able to 
reconstruct overlapping 
jets better than anti-kT

NN on Hardware Trigger FPGAs Network Adaption to Hardware Resources

Results - Event Display

training: fast simulation tt̄
w/o pile-up

evaluate: full ATLAS
Di-Higgs MC, µ = 60

di↵erent energy
calibrations:

calorimeter jets have about
half the truth jet energy

NN able to cope with new
type of data

NN even able to resolve
two close-by jets that
anti-kt online merges (left)
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NN on Hardware Trigger FPGAs Backup

Network Architecture

segmentation-like architecture ) creating new image

additional concatenations: allow important information to skip
down-sampling

all kernels have size 3⇥ 3 ) 116,881 weights in total

ReLU activation functions

loss function: mean squared error
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• DNN has to reconstruct Position as well as Energy of  arbitrary 
number  of jets!
• Much more complex than simple  

image classification tasks 

• Ansatz: create new image with jet  
information from calorimeter image  
(2D-conv with U-net architecture)

• Additional connections between the layers avoids information 
loss by down-sampling

• ReLU as activation function (performant and ideal for FPGA!)
• 3x3 kernel size for all layers ⇒ total of 116881 weights

1

DNN Details
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DNN results
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NN on Hardware Trigger FPGAs Motivation

Network Performance Results

evaluate: full ATLAS Di-Higgs MC, µ = 60

(all jets) (close-by jets, �Rtruth < 0.5)

NN close to Anti-kt online, outperforms for close-by jets
) learns underlying truth information

117k weights, ⇠ 17M MACCs

Smaller net with ⇠ 3M MACCs still outperforms for close-by jets
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�Rjj < 0.6
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• Trained on ttbar events using own 
fast detector simulation und  !=0

• Results for fully simulated HH-
>4b events (!=60)
• Identical performance as anti-

kT!
• Overlapping Jets: better than 

anti-kT ans even better than 
anti-kT running on full 
detector resolution! 

• Shows huge potential of such 
DNNs (even outside the trigger 
environment)

all	Jets
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Implementation on FPGA
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• FPGAs
• Configurable integrated  

circuits with dedicated  
special units for e.g.  
multiplications (DPSs)

• Advantages for this project compared to CPU or GPU:  
       very short latencies possible and guaranteed timing

• Challenges:
• Adaptation of network architecture needed
• Arithmetic precision, signal propagation delay, resource 

usage on the FPGA, …

2.3 FPGAs

2.3.1 FPGAs in General

’FPGA’ stands for field-programmable gate array. Historically, the first FPGAs
were developed in the mid-1980s, at a time when apart from hard-wired CPUs and
other ASICs, only less complex devices such as small once-programmable logic
devices (PLDs) existed, but no truly re-programmable integrated circuits. FP-
GAs were developed to provide that true reprogrammability, which was achieved
by combining programmable logic blocks with an also programmable routing net-
work. The programmable logic part consists of an array of so called look-up tables
(LUTs) for implementing small binary functions and of flipflop registers (FFs)
for storing data and enabling clocked data propagation. A simplified schematic is
shown in figure 7. Instead of making it necessary to hard-wire on a metal basis,
etch or fuse, this programmability is obtained by having memory cells all over
the chip, which determine the contents of the LUTs, control which signal lines
are connected to each other in the routing network and also provide other config-
uration data. Thereby, it is in principle possible to implement any digital circuit
within an FPGA, as long as the FPGA specifications (i.e. amount of resources
and timing characteristics) are suited.

The first FPGAs were small from a modern point of view, with an equivalent
of approximately 1000 gates for logic realization, corresponding to 64 configurable
logic blocks (CLBs) with one LUT each, and a comparable amount of I/O blocks
[15]. Over the decades, FPGAs have not only grown significantly, nowadays con-
sisting of billions of transistors realizing millions of CLBs, but their functionality
was also extended by new specialized building blocks. Apart from various types
of I/O blocks ranging from ’slow’ general purpose I/O pins to components for sig-
nal rates of up to many Gbit/s, there was also other specialized circuitry added,
especially for providing significantly more and denser memory capabilities, as

Figure 7: Simplified example schematic of an FPGA [14].
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First results for dense layers
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• Dense layer successfully 
implemented on FPGAs
• Calculations in DSPs
• Only small additional 

resource overhead (LUT, 
FF) 

• High frequencies can be 
reached 

• Target FPGA: Xilinx US+9P
• 6840 DPSs; 2.4M FF,  

1.2M LUT
• ‘mid-range’ US+

(a) Distribution of the LUT requirement per
DSP.

(b) Distribution of the FF requirement per
DSP.

Figure 30: Amount of LUTs and FFs required per DSP for the pipelined dense
layer. The color encodes which amount of multiplications were necessary in the
respective layer, e.g. green refers to all those implemented designs with 1000 to
5000 multiplications. The yellow dashed line is the cumulated distribution.

Figure 31: Maximum processing frequency depending on the size of the pipelined
dense layer.
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(a) Distribution of the LUT requirement per
DSP.

(b) Distribution of the FF requirement per
DSP.

Figure 30: Amount of LUTs and FFs required per DSP for the pipelined dense
layer. The color encodes which amount of multiplications were necessary in the
respective layer, e.g. green refers to all those implemented designs with 1000 to
5000 multiplications. The yellow dashed line is the cumulated distribution.

Figure 31: Maximum processing frequency depending on the size of the pipelined
dense layer.
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Implementation on FPGAs
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• Long term goal: 
• Universal  framework to implement DNN on FPGAs
• Starting point: pre-trained DNN (e.g. with Keras)
• Framework creates VHDL code and  all other files needed 

for implementation on FPGA
• Other parameters: e.g. desired arithmetic precision for the 

calculations on the FPGA, chosen maximal latency/ 
minimal frequency for the implementation
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Plans for the next 2,5 years
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• Development of deep network architectures as 
replacement for iterative algorithms
• anti-kt jets, missing transverse energy, jet substructure  

• Adaptations and Improvements of existing deep neural 
network methods
• Optimal performance with limited resources (FPGAs)  

• Adaptations on FPGA resources and validation


