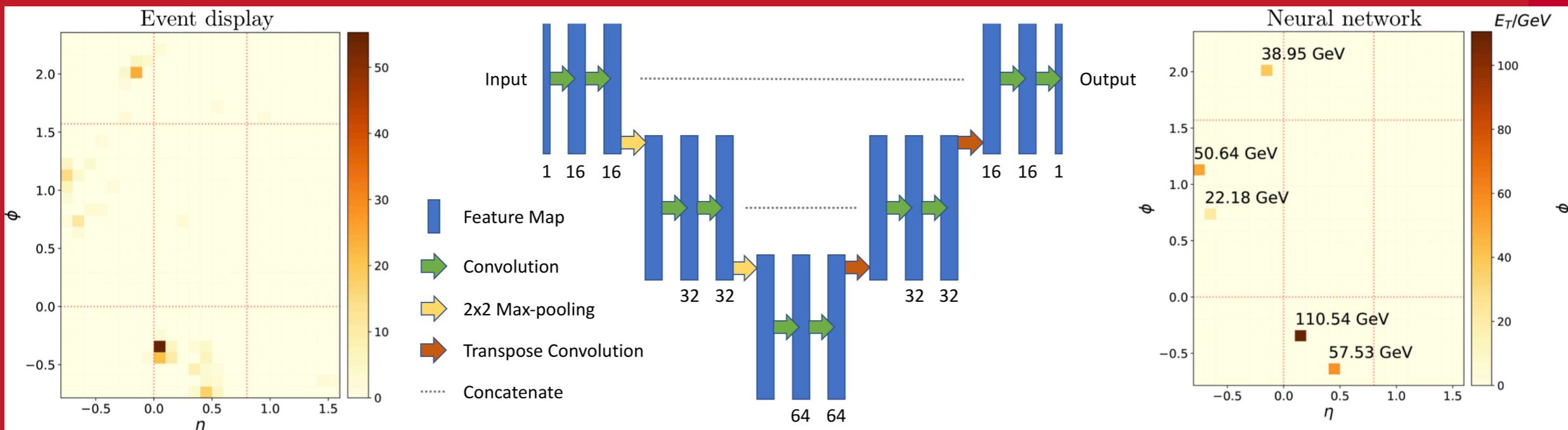


Development and implementation of deep neural networks close to sensors for object reconstruction and identification

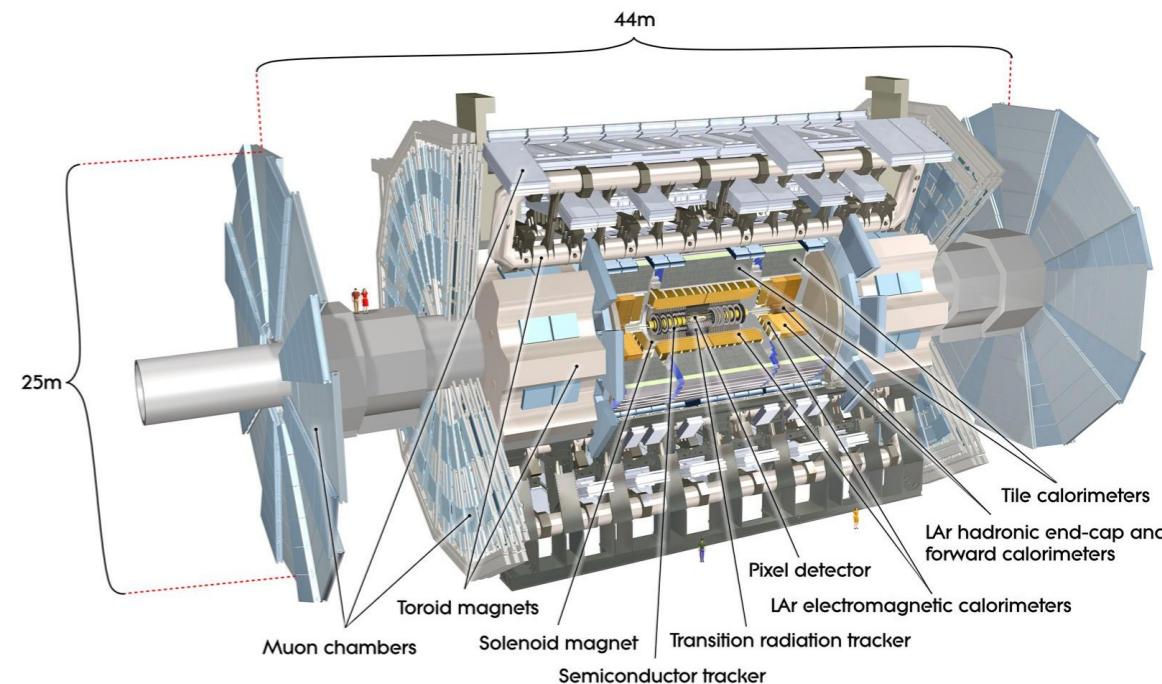
Christian Schmitt (Mainz)



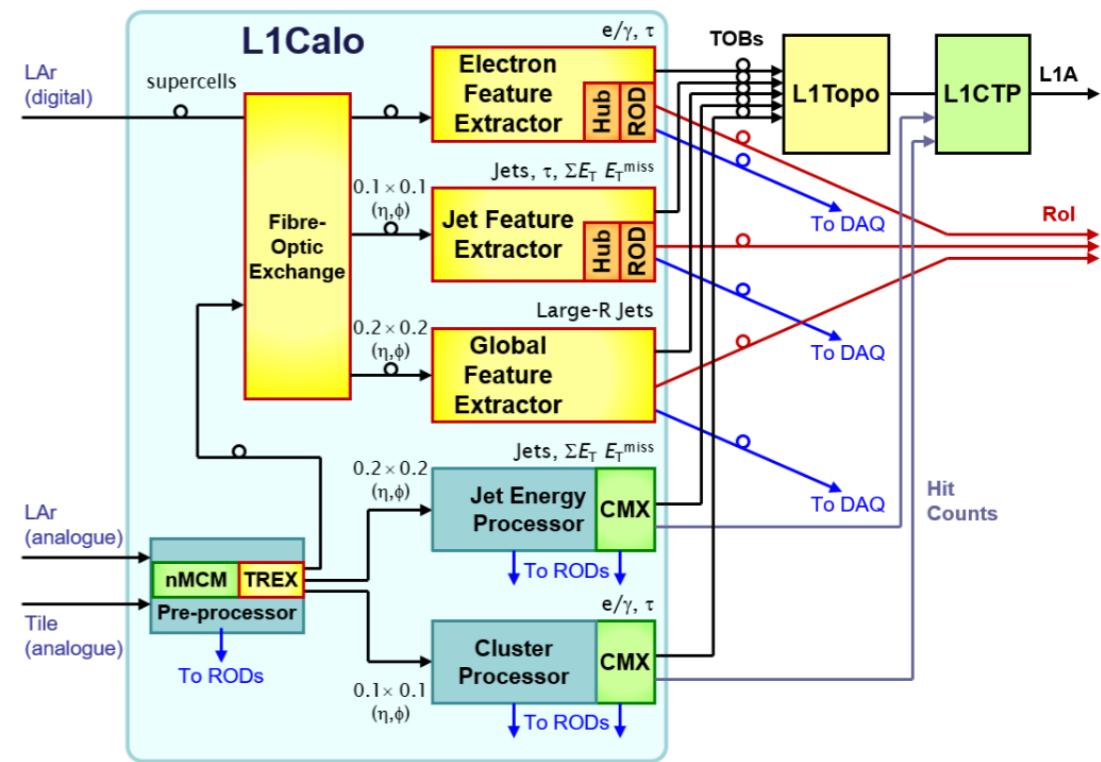
Aim of the project in Mainz

- **Processing of detector data at extremely high rates**
 - Not possible to store data due to its size
 - Usage of GPUs not possible due to their too high latency
 - Data has to be processed and filtered locally, maybe directly at the corresponding sensors
- **Solution: deep neural networks** as replacement for iterative algorithms, that can be efficiently evaluated on FPGAs
- **Test environment: ATLAS L1 Trigger (40 MHz rate)**

- Participation in ATLAS L1-Trigger
 - Expertise on the development and implementation of algorithms on FPGAs



- ATLAS physics analysis
 - Expertise on machine learning techniques
- Close collaboration with the Computer Science Institute



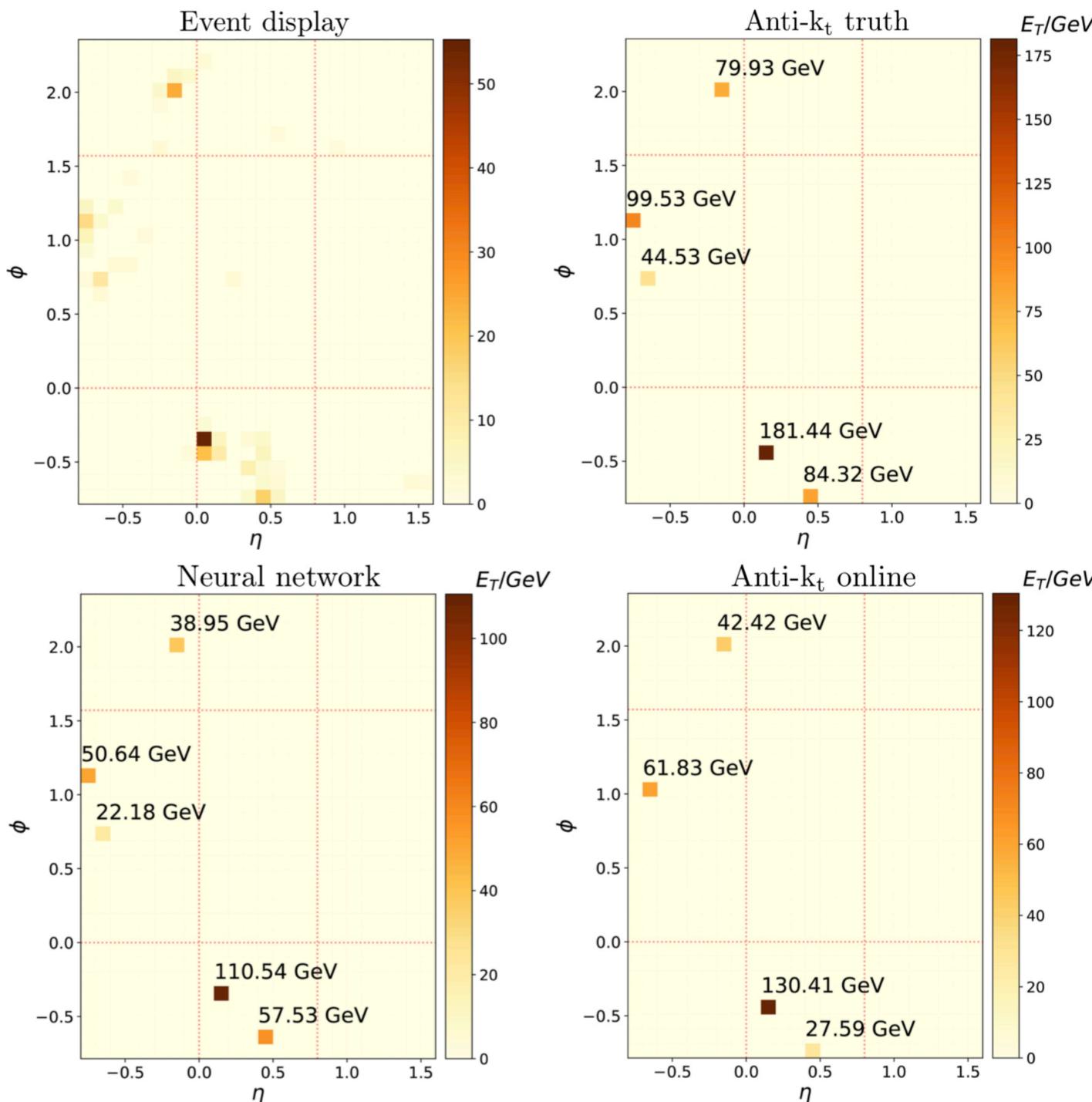
Example: jet reconstruction

- Optimal reconstruction of jets: anti- k_T algorithm
 - Iterative algorithm
 - Direct implementation on FPGAs possible, but latency too high ($O(\mu s)$)
 - Bachelor thesis N. Nottbeck (Mainz, 2016)
 - Not possible to perform in real time, only simplified algorithms are currently in use in the ATLAS L1 Trigger (“sliding window”)

⇒DNN as replacement for anti- k_T algorithm

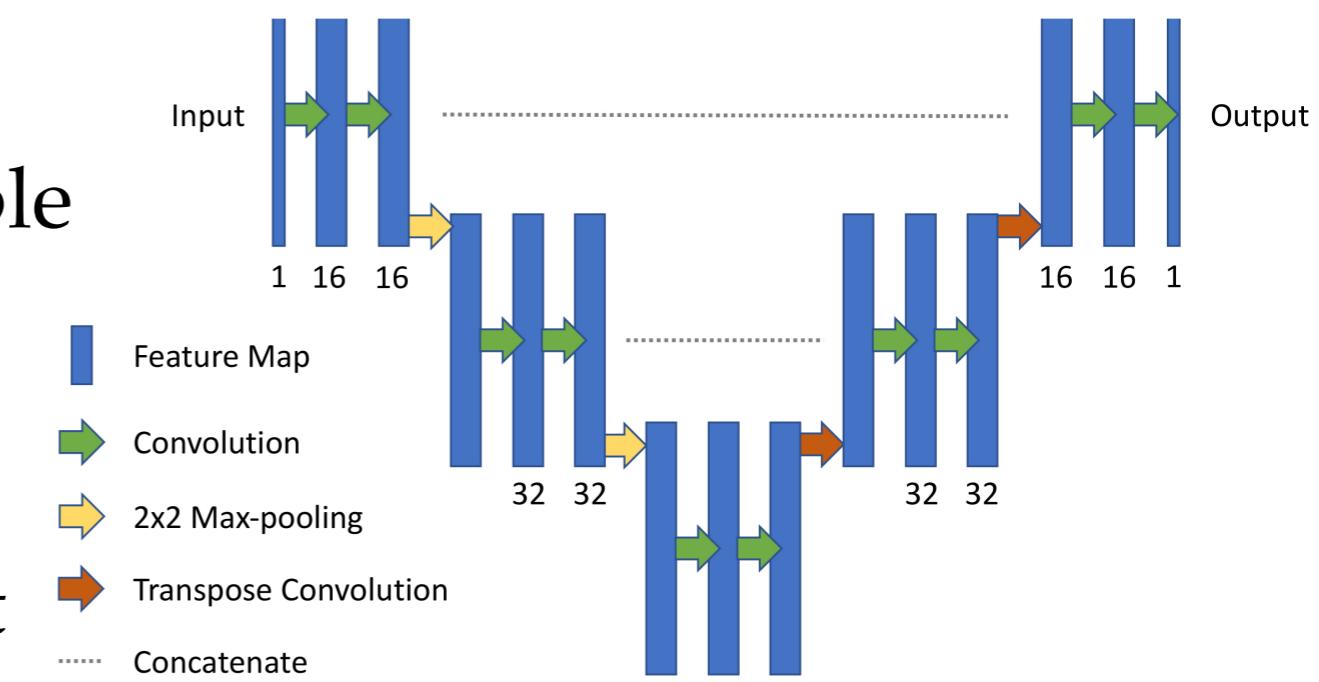
DNN instead of Anti- k_T

- Current status:
 - Jet reconstruction via DNN
 - Image recognition based on calorimeter images (Trigger towers)
 - DNN is able to reconstruct overlapping jets better than anti- k_T



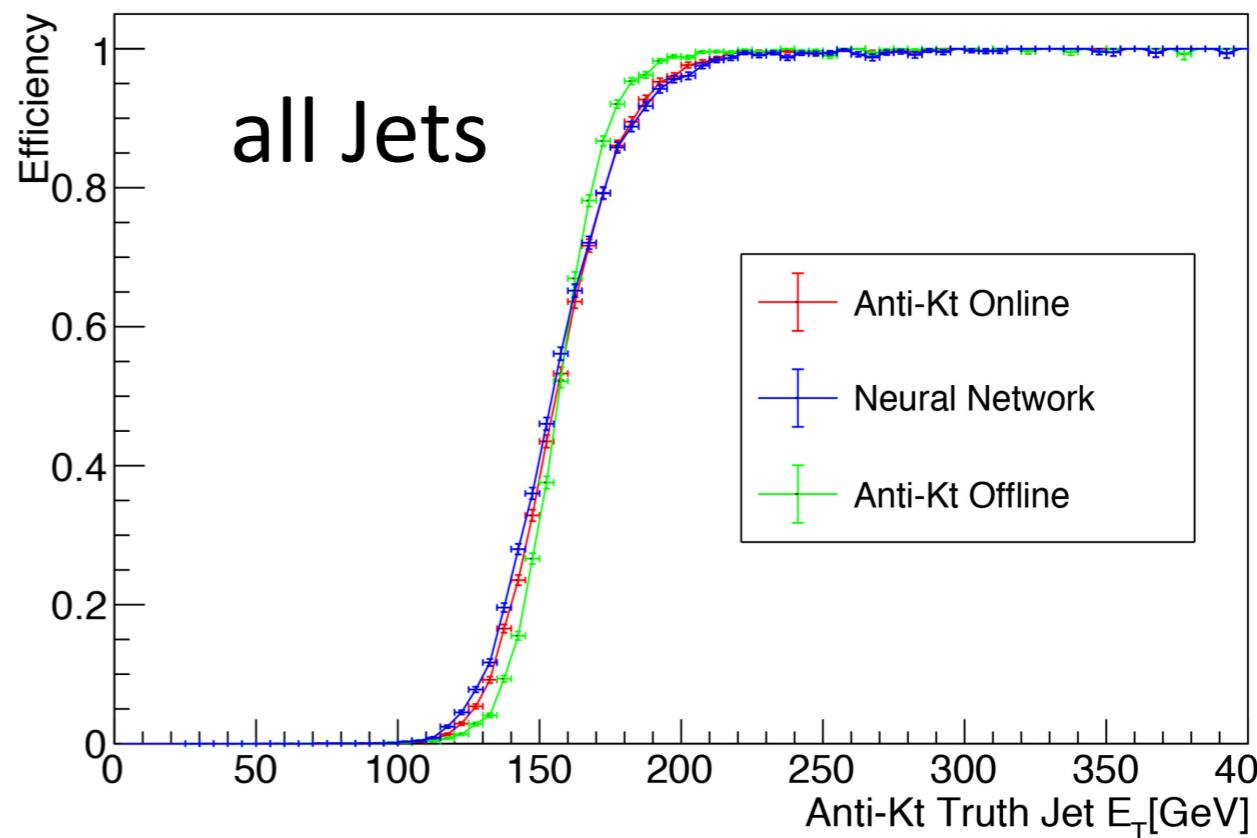
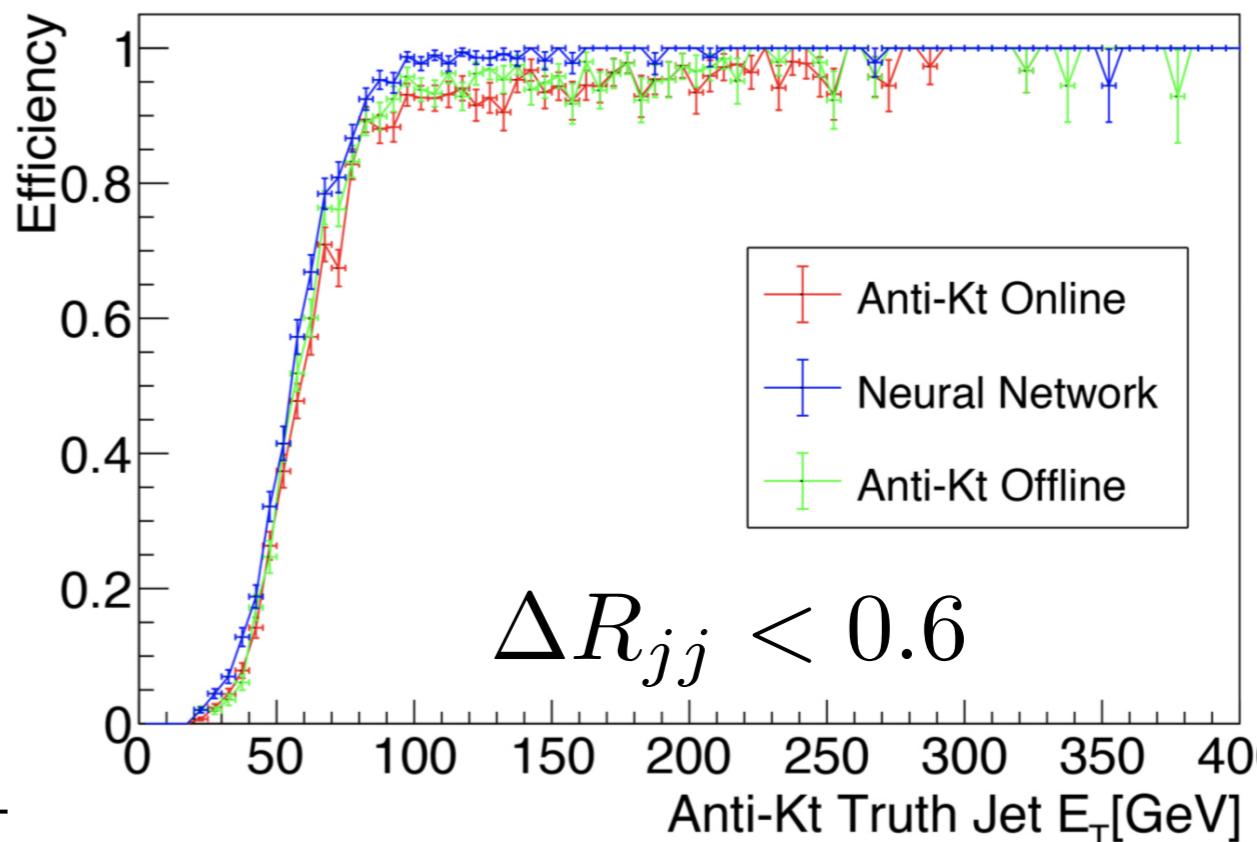
DNN Details

- DNN has to reconstruct **Position** as well as **Energy** of **arbitrary number** of jets!
 - Much more complex than simple image classification tasks
- Ansatz: create new image with jet information from calorimeter image (2D-conv with **U-net** architecture)
- **Additional connections between the layers avoids information loss by down-sampling**
- **ReLU as activation function (performant and ideal for FPGA!)**
- **3x3 kernel size for all layers \Rightarrow total of 116881 weights**



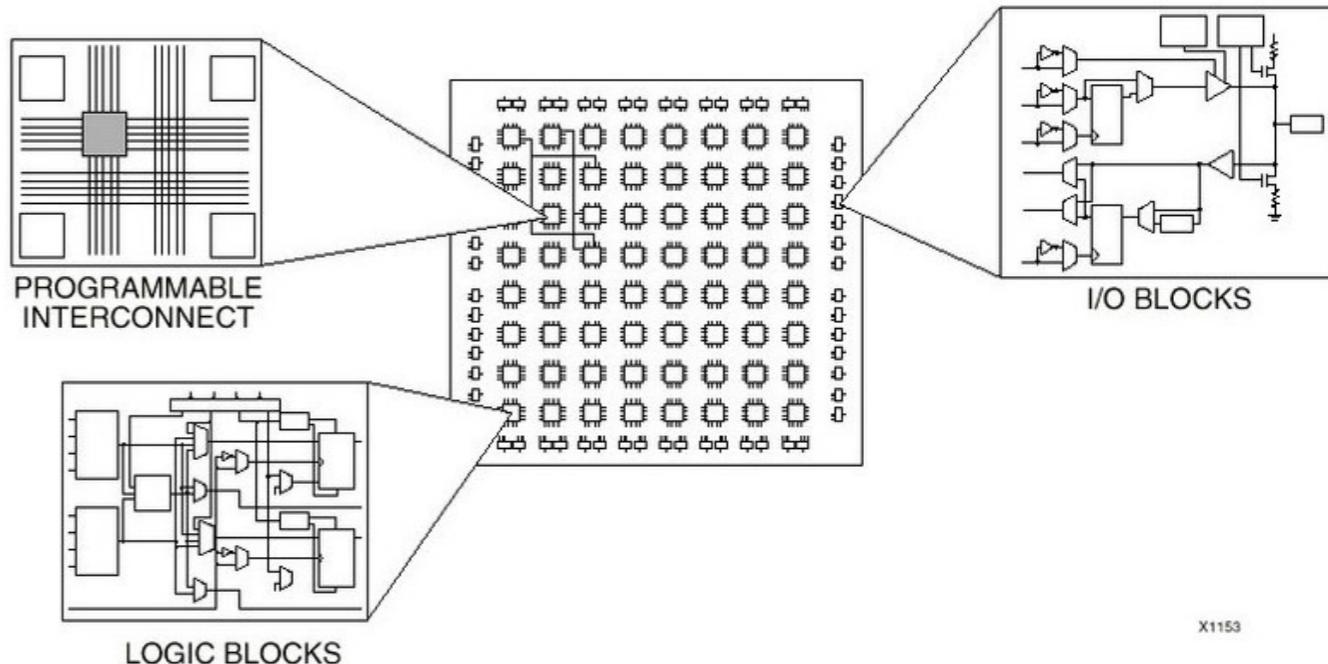
DNN results

- Trained on ttbar events using own fast detector simulation und $\mu=0$
- Results for fully simulated HH- $>4b$ events ($\mu=60$)
 - Identical performance as anti- kT !
 - Overlapping Jets: better than anti- kT ans even **better than anti- kT running on full detector resolution!**
- **Shows huge potential of such DNNs (even outside the trigger environment)**



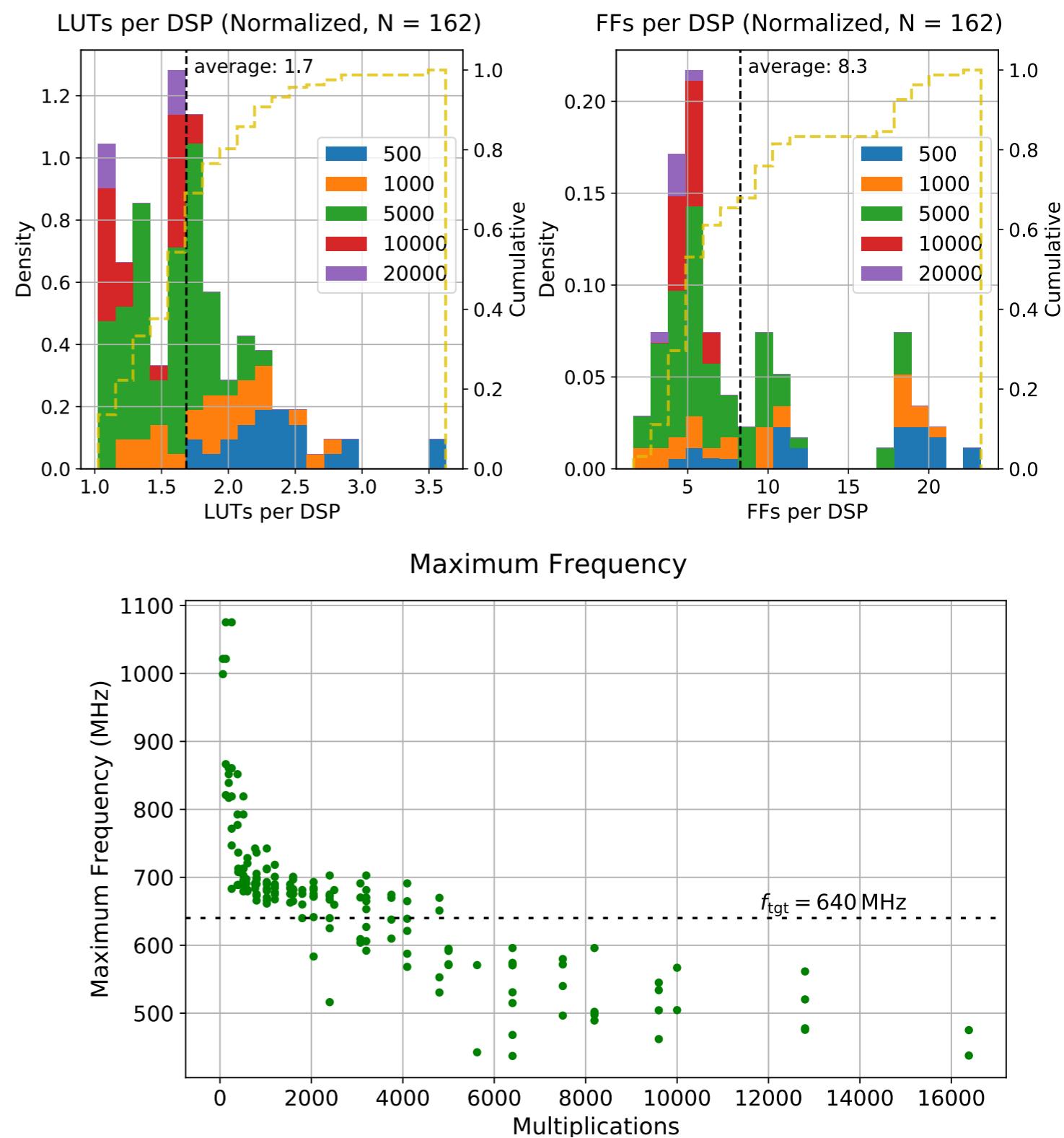
Implementation on FPGA

- FPGAs
 - Configurable integrated circuits with dedicated special units for e.g. multiplications (DPSs)
 - Advantages for this project compared to CPU or GPU:
very short latencies possible and **guaranteed timing**
 - Challenges:
 - Adaptation of network architecture needed
 - Arithmetic precision, signal propagation delay, resource usage on the FPGA, ...



First results for dense layers

- Dense layer successfully implemented on FPGAs
 - Calculations in DSPs
 - Only small additional resource overhead (LUT, FF)
 - High frequencies can be reached
- Target FPGA: Xilinx US+9P
 - 6840 DPSs; 2.4M FF, 1.2M LUT
 - ‘mid-range’ US+



Implementation on FPGAs

- Long term goal:
 - **Universal framework to implement DNN on FPGAs**
 - Starting point: pre-trained DNN (e.g. with Keras)
 - Framework creates VHDL code and all other files needed for implementation on FPGA
 - Other parameters: e.g. desired arithmetic precision for the calculations on the FPGA, chosen maximal latency / minimal frequency for the implementation

Plans for the next 2,5 years

- **Development of deep network architectures as replacement for iterative algorithms**
 - anti- kt jets, missing transverse energy, jet substructure
- **Adaptations and Improvements of existing deep neural network methods**
 - Optimal performance with limited resources (FPGAs)
- **Adaptations on FPGA resources and validation**