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Reconstruction Challenges in CMS and CBM
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Track finding is a complicated time consuming combinatorial problem!
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Many-Core CPU/GPU Architectures
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gl;ny Integrated Cores architecture announced at ISC10 (June 2@10) . General purpose RISC processor (PowerPC)

sed on the x86 architecture * 8 co-processors (SPE, Synergistic Processor Elements)
. Mam/ cores + 4-way multithreaded + 512-bit wide vector unlt/ * 128-bit wide SIMD units

Future systems are heterogeneous. Fundamental redesign of traditional approaches to data processing is necessary



Cellular Automaton (CA) Track Finder
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Cellular Automaton:
v . .
) —_ * strongly coupled to the detector system as its extension
Cellular Automaton: : 2. Counters * intended for detection of particle trajectories
1. Build short track seaments : 3 4 * expands elementary measurements over 2-3 detectors
2' Connect them accosr; din to- the track model * works with misaligned or faulty detector systems
: ; ) ) g & * useful for investigation of the detector performance
estimate their location in a track. ; + gradual accumulation and extraction of information
3. Tree structures appear, _ ; * decision can be taken at any stage
collect segments into track candidates. - 3T k Candid * many sources of intrinsic parallelism

4, Select the best track candidates. @ - frac _an idates * appropriate for many-core CPU/GPU

o * very simple algorithm
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4. Tracks

Useful for complicated event topologies with heavy combinatorics




CMS Example: Phase |l Pixel Detector

fourth detector layer . new seeding alaorithm
quadruplet seeding: propagate triplets to fourth layer g agorit N
natural extension of current algorithm . ?gsl?dl onAparaIIeI-frl)endIy algorithmic structure
o . . ellular Automaton
computing time grows exponential with PU . computing time grows linear with PU
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CMS Physics Performance
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Efficient and fast tracking



CMS Timing Performance

Time/event CPU (ms) Time/event GPU (ms)
Triplet Propagation 66.3
Cellular Automaton 22.0 1.6

Hardware used:
— CPU Intel 4771K
— GPU NVIDIA K40

improve physics performance at the same cost (easily run tracking on all events in HLT)
or save millions of EUR at same physics performance

— Change our approach to algorithm development



CBM CA Track Finder at High Track Multiplicity

A number of minimum bias events is gathered into a group (super-event), which is then treated by the CA track finder
as a single event.

1 mbias event, <N o> = 109 5 mbias events, <N o> =572 100 mbias events, <No.,> = 10340
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Reliable reconstruction efficiency and time as a second order polynomial w.r.t. to the track multiplicity
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~_ Hits at high input rates

CBM 4D Event Building at 10 MHz

Hits 10 MHz
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Reconstructed tracks clearly represent groups, which correspond to the original events
Kickoff Meeting, Munich, 21.02.2019 9/14
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Kalman Filter (KF) based Track Fit

Estimation of the track parameters at one or more hits along the track — Kalman Filter (KF)

3 .
q Q Correction ) ( Detector layers )
' m— | I [ [ [ i [
Initialization )

(r, C)

( Precision ) @ Prediction ) [ r — Track parameters ]

C — Covariance matrix

KF Block-diagram 1 Initial estimates State vector Position, direction and momentum ’
for rpand ¢

r={xVY, 2z py Py P, }

Filtering step Kalman Filter:

1. Start with an arbitrary initialization.

2. Add one hit after another.

3. Improve the state vector.

State estimate  I'n 4. Get the optimal parameters after the last hit.
Error covariance C,

KF as a recursive least sauares method Nowadays the Kalman Filter is used in almost all HEP experiments




Kalman Filter Track Fit Library

Kalman Filter Methods

Kalman Filter Tools:

« KF Track Fitter

« KF Track Smoother

» Deterministic Annealing Filter

Kalman Filter Approaches:

» Conventional DP KF

» Conventional SP KF

» Square-Root SP KF

* UD-Filter SP

» Gaussian Sum Filter

* 3D (x,y,z) and 4D (x,y,z,t) KF

Track Propagation:
* Runge-Kutta
* Analytic Formula

Detector Types:
* Pixel
* Strip
* Tube
* TPC

Implementations

Vectorization (SIMD):

* Header Files

* Vc Vector Classes

» ArBB Array Building Blocks
* OpenCL

Parallelization (many-cores):
* Open MP

* ITBB

» ArBB

* OpenCL

Precision:
* single precision SP
* double precision DP

( Conventional KF DP vs. SP )
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Strong many-core scalability of the Kalman filter library
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Kalman Filter Track Fit
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» Precise estimation of the parameters of particle trajectories is the core of the reconstruction procedure.

+ Scalability with respect to the number of logical cores in a CPU is one of the most important parameters of the algorithm.
» The scalability on the Intel Xeon Phi coprocessor is similar to the CPU, but running four threads per core instead of two.

+ In case of the graphics cards the set of tasks is divided into working groups of size local item size and distributed among
compute units (or streaming multiprocessors) and the load of each compute unit is of the particular importance.

« The track fit performance on a single node: 2*CPU+2*GPU = 109 tracks/s = (100 tracks/event)* 107 events/s = 107 events/s.

» Assingle compute node is enough to estimate parameters of all particles produced at the maximum 107 interaction rate!

The fastest implementation of the Kalman filter in the world



Summary
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+ Concrete next step for CMS: extend pixel tracking to the whole cylinder
+ Concrete next step for CMS: port CBM tracking to the endcap

« Frankfurt and Aachen groups have started collaborative effort (e.g. try to run CBM tracking on CMS endcap)
+ Need a common cross-experiment pool of expertise, as the problems are of highest complexity

+ Possible vision: Experiment independent approach



Consolidate Efforts: A Common Reconstruction Package

ATLAS (CERN)

Muon Detectors Electromagnetic Calorimeters

ALICE (CERN)

CBM (FAIR)




