XCache plans and studies at LMU Munich

Nikolai Hartmann, G. Duckeck, C. Mitterer, R. Walker

LMU Munich

February 22, 2019

LMU

LUDWIG-

MAXIMILIANS-

UNIVERSITAT
MUNCHEN

1/16

LMU ATLAS group

Active in ATLAS Computing since the start
® Operate ATLAS-T2 and HPC resources at LRZ
Participating in projects A2, A3, Bl
® People: G. Duckeck, N. Hartmann, C. Mitterer, R. Walker
® N. Hartmann funded by ErUM-Data, 50% A/B, 50% C

Focus currently on evaluation of caching use-cases in ATLAS

Substantial past experience on Analysis of ATLAS job- and
data-transfer logs:

® job-parameter (CPU/WallTime, 10 Rate IO Volume, ...)

® dynamic data placement (CHEP-2018 talk/proceedings)

® caching efficiency studies

2/16

Use cases for caching

Caches can supplement manual/automatic data placement. Interesting
scenarios:

® Processing on local batch systems without the need to replicate data
® Sites with small storage but available computing resources

® “Hospital” queues where jobs can be processed for which all slots on
sites where data is available are full

® Caching for additional data - metadata, containers (http?)

— Testing in Munich with an XCache server

3/16

XCache

Data access caching service using xrootd

Simply prepend xcache server url - e.g.
TFile: :Open("root: [xcache-server] : [port]//[xrootd-path]")

Works also with rucio data identifiers
(server looks up replicas via rucio)

Data is cached in blocks

4/16

XCache hardware/software at LRZ-LMU

Hardware: Old dCache pool node (from 2012):
® Dell R710, 2x6 core Xeon L5640, 32 GB RAM, 10 Gb Ethernet
* 60 TB Raid-6 (2x12x3TB HDD)

Xrootd version 4.8.5

Setup w/ singularity SL6 image following Wei's instructions:
https://github.com/wyang007/rucioN2N-for-Xcache/wiki/
Deploy-Xcache-via-a-Singularity-Container

XCache settings:

pfc.ram 1l4g

pfc.blocksize 1M

pfc.prefetch 10

5/16

https://github.com/wyang007/rucioN2N-for-Xcache/wiki/Deploy-Xcache-via-a-Singularity-Container
https://github.com/wyang007/rucioN2N-for-Xcache/wiki/Deploy-Xcache-via-a-Singularity-Container

Testing the XCache server (local batch)

® Test cases: user analysis job and ATLAS derivation

Analysis job I/0: =~ 0.5 — 1.5 MB/s

® Derivation job 1/0: ~ 3 MB/s

Analysis job test dataset: ~ 340GB in 366 Files
(reading via DESY Hamburg)

® Derivation job test dataset: =~ 33GB in 10 Files

6/16

Job run times

Analysis Job, data stored on well-connected DESY Hamburg site

Wall time (H:M:S)
00:10:00 00:25:00 00:40:00 00:55:00

Percentiles
Bl 99th
95th
75th
mmm 50th

XCACHE (100 Jobs, first) 4
XCACHE (100 Jobs, cached) 4
XCACHE (366 Jobs, cached) 1

DIRECT 1/0O 1

%‘
ﬂhﬁtm__‘
P
%—x

0 500 1000 1500 2000 2500 3000 3500
Wall time (s)

No large difference between first and second processing via cache, direct
[/O has similar performance

7/16

XCache server monitoring

366 Analysis Jobs at once - “stress test”

Leg- Urz-xcache0 Load Last 6_hours Leg-Lrz-xcacheo CPU last 6_hours

s

W user U Oice cru W systen U

Server got busy for a short period of time, but analysis job runtimes
basically unaffected

8/16

Processing from different sites
Derivation Jobs (=~ 3MB/s) - process 500 Events

Wall time (H:M:S)

00:03:00 00:08:00
Percentiles
direct I/O (TTreeCache) ﬁ]—;'\r\ﬁ mm 99th
95th
) (0 T
direct 1/0 (local xcache) Ll 75th
mm 50th

xcache (first) I DESY_HH_DATADISK

xcache (second)

direct 1/0 (TTreeCache)

direct 1/0 (local xcache) Ll 11|

xcache (first) I BEIJING_LCG2_DATADISK

k[

xcache (second) A

0 100 200 300 400 500 600 700
Wall time (s)

— Differences for direct 1/0O and cached visible for far away sites
— Local XCache (on each node) can serve as alternative to T TreeCache

9/16

Read MB/s (averaged over ~34.5s)

First and second processing via Cache

Difference visible only for far away sites - Example: BEIJING

Wall time (H:M:S)

00:01:00 00:02:00 00:03:00 00:04:00
351 — first
——— second
3.0 A
2.5 1
2.0 A
1.5 4
1.0 A
0.5 1
0.0 A
50 100 150 200 250
Wall time (s)

10/16

Integration into ATLAS grid production and analysis

Set up test queues for analysis and production

Including a “hospital” queue

So far reading from a limited set of nearby storage elements
(MPP Munich, DESY Hamburg)

® First tests successful - jobs automatically read files via XCache

11/16

Test during scheduled downtime of SE

Setup production queue that read via XCache from neighbour site
MPPMU

Regular queue went into downtime
— all ~3200 cores/slots used by XCache queue

By chance mostly pileup jobs requiring large input volume
— ~25 GB per 8 core job, running for ~6 hours, avg read rate 300 MB/s via XCache

XCache server heavily overloaded, but didn’t break

Subsequent transition to simulation jobs
— no problem to serve all 3k slots with single XCache node

12/16

les of CPU eff per core

Job

GD plle Lf

statistics

RZ-LMU

compared to nominal running

Full screen

share Clone Edit CAuto-refresh

bg sitename: Descending

b sitename: Descending

b sitename: Descending

< Olast7days

XCache for Hospital queue

® Sometimes problems to schedule user-analysis jobs at site where data is
located

® Often T1 sites: big storage but low analysis share

® Concept of “Hospital’ queues at other sites:

® Analysis jobs which time out waiting for a free slot can get re-scheduled to
remote site which is configured access data remotely from original site

® Good use-case for XCache

® Setup at LRZ since ~1 week, configured to pick-up jobs for Taiwan T1 site
® Rather varying load
® XCache issues with open-file limit

14/16

XCache experience: problems and issues

Setup & deployment rather straightforward, except for some tricky
details ...

Checking cache status and cleanup for tests rather cumbersome

Found weird bug: xcache crashes when reading same file
simulateneously by different clients from different locations
(fix in v4.9)

Read failures due to open-file system limit (16k on our system)

(Investigating, not clear if xcache or client problem)

Overall positive experience: robust and performant

15/16

Backup

direct I/0 ﬁ'l'l'reecache
direct 1/0 (local xcache
e (first

(second

direct 10 WreeCache
direct 1/0 (local xcache

xcache (first)

(second

direct IIO (TTreeCache,

direct I/0 (Ho:al xcache 1

e (firs!
xcac e (secun
direct I/O ﬁ'l'l'reeCache

direct 1/0 (local xcache,

e (first
cac e (se:ond

direct I/O \'I'I'reecache 1
direct I/0 (local xcache) 4

e (first

(second 1

direct IIO HTI'reeCache
direct /O (local xcache
cache (first]

e (second) 1

direct IIO ﬁTTreeCache
direct /O (local xcache,

xcache (first) 4
xcache (second) 4

direct /O ﬁ'l'l'reecache
direct 1/0 (local xc?fChe
cac e (second

direct I/O ﬁTI'reeCache
direct 1/0 (local Xc?'che!
irs!

e (second

direct IIO \ reeCache
direct 1/0 (ocalhxc?fche(
e (firs

xcache (second

Wall time (H:

00:08:00

All sites

M:S)
00: 18 00

00:28:00

Percentiles
s 99th

95th
75th

mmm 50th

I LRZ_LMU_DATADISK
[DESY_HH_DATADISK

I DESY_ZN_DATADISK

I CERN_PROD_DATADISK

I SARA_MATRIX_DATADISK

I NDGF_T1_DATADISK

I UKI_SCOTGRID_GLASGOW_DATADISK

I RU_PROTVINO_IHEP_DATADISK

I TOKYO_LCG2_LOCALGROUPDISK

I BEIJING_LCG2_DATADISK

0 100 200

300 400 500

Wall time (s)

600 700

17/16

Without TTreeCache

Wall time (H:M:S)

00:22:00 00:52:00 01:22:00
direct 1/0 =2~ Percentiles
he (first) === I
e w00t [LRZ_LMU_DATADISK
direct /0 95th
xcache (irst) 12 L DESY_HH_DATADISK
xcache (second) == 75th
direct 1/0 d4e®
xcache (st 1= = 50th | pEsy zN DATADISK

xcache (second)
direct I/O
xcache (first) 4
xcache (second)
direct 1/0
xcache (first) ==
xcache (second) -
direct 1/0
xcache (first)
xcache (second) -
direct 1/0
xcache (first) -
xcache (second) 4
direct 1/0
xcache (first) =*
xcache (second) ="
direct I/O
xcache (first) 4
xcache (second)

I CERN_PROD_DATADISK

I SARA_MATRIX_DATADISK

I NDGF_T1_DATADISK

| UKI_SCOTGRID_GLASGOW_DATADISK

I RU_PROTVINO_IHEP_DATADISK

I TOKYO_LCG2_LOCALGROUPDISK

direct 1/0 e
xcache (first) I BEIJING_LCG2_DATADISK
xcache (second)
0 1000 2000 3000 4000 5000

Wall time (s)

18/16

Run times without TTreeCache vs ping vs speed

250
4000 -

s 200 r30

2 3000 ~ o

£ £ g

: R

3] o -

E 2000 L 100 & B

=3 r 10
1000 F50

SARA-MATRIX_DATADISK
DESY-ZN_DATADISK -
CERN-PROD_DATADISK
NDGF-T1_DATADISK
RU-PROTVINO-IHEP_DATADISK
TOKYO-LCG2_LOCALGROUPDISK
BEIJING-LCG2_DATADISK

— processing time correlates with ping, not (xrdcp) transfer speed
— reading in larger blocks better (use TTreeCache)

19/16

400 M
390 M
380 M
370 M
360 M
350 M
340 M
330 M
320 M
310 M
300 M
290 M
280 M
270 M
260 M
250 M
240 M
230 M
220 M
210 M
200 M
190 M
180 M
70 M
160 M
150 M
140 M
130 M
120 M
110 M
100 M

Bytes/sec

M
60 M

XCache server 1/0O monitoring

leg-Llrz-xcached Network last hour

CERN-PROD_DATADISK

BEIJING-LCG2_DATADISK

DESY -HH_DATADISK

DESY-ZN_DATADISK

12:35

12:40 12:45 12:50 12:55 13:00

13:05 13:10 13:15

13:20

13:25

13:30

| out

20/16

Analysis job “stress test” via Irz batch system

Teg- Lrz-xcache0 Network last hour
80 11
o m
20
o0 m
560 11
seom
401
s20m
s00 11
150w
450
o m
w0
400 1
30 m
00
0 m
20w
00 1
0
20 m
20
20m
200
1800
150 1
Lo m
120
100
a0 n
Gon
son
20m

Bytes/sec

13730 FEED) 1340 fERT 13150 1355 1400 1205 1%10 s 1e20 Te2s
Bin B out

366 Jobs (one per file) at once still work fine
(total dataset size: ~ 340 GB)

21/16

Load and 10 on XCACHE server during pileup run

30
=0
0
=0
w0
130
0
130
120
10
100

0

w©

=

<
=
==
—_
==
{

L

22/16

CPU on XCACHE server during pileup run

leg-Llrz-xcached cPU last hour

.
=
T
o
o
a

09:10 03:15 09: 20 03:25 09: 30

03:35 09: 40 09: 45 09:50 09:55
B User CPU O Nice cPU

1le: 00
W System CPU O waIT cPU

O 1dle cru

