
XCache plans and studies at LMU Munich

Nikolai Hartmann, G. Duckeck, C. Mitterer, R. Walker

LMU Munich

February 22, 2019

1 / 16



LMU ATLAS group

• Active in ATLAS Computing since the start
• Operate ATLAS-T2 and HPC resources at LRZ

• Participating in projects A2, A3, B1
• People: G. Duckeck, N. Hartmann, C. Mitterer, R. Walker

• N. Hartmann funded by ErUM-Data, 50% A/B, 50% C

• Focus currently on evaluation of caching use-cases in ATLAS

• Substantial past experience on Analysis of ATLAS job- and
data-transfer logs:

• job-parameter (CPU/WallTime, IO Rate IO Volume, ...)
• dynamic data placement (CHEP-2018 talk/proceedings)
• caching efficiency studies

2 / 16



Use cases for caching

Caches can supplement manual/automatic data placement. Interesting
scenarios:

• Processing on local batch systems without the need to replicate data

• Sites with small storage but available computing resources

• “Hospital” queues where jobs can be processed for which all slots on
sites where data is available are full

• Caching for additional data - metadata, containers (http?)

→ Testing in Munich with an XCache server

3 / 16



XCache

• Data access caching service using xrootd

• Simply prepend xcache server url - e.g.
TFile::Open("root:[xcache-server]:[port]//[xrootd-path]")

• Works also with rucio data identifiers
(server looks up replicas via rucio)

• Data is cached in blocks

4 / 16



XCache hardware/software at LRZ-LMU

• Hardware: Old dCache pool node (from 2012):
• Dell R710, 2x6 core Xeon L5640, 32 GB RAM, 10 Gb Ethernet
• 60 TB Raid-6 (2x12x3TB HDD)

• Xrootd version 4.8.5

• Setup w/ singularity SL6 image following Wei’s instructions:
https://github.com/wyang007/rucioN2N-for-Xcache/wiki/

Deploy-Xcache-via-a-Singularity-Container

• XCache settings:

pfc.ram 14g

pfc.blocksize 1M

pfc.prefetch 10

5 / 16

https://github.com/wyang007/rucioN2N-for-Xcache/wiki/Deploy-Xcache-via-a-Singularity-Container
https://github.com/wyang007/rucioN2N-for-Xcache/wiki/Deploy-Xcache-via-a-Singularity-Container


Testing the XCache server (local batch)

• Test cases: user analysis job and ATLAS derivation

• Analysis job I/O: ≈ 0.5− 1.5 MB/s

• Derivation job I/O: ≈ 3 MB/s

• Analysis job test dataset: ≈ 340GB in 366 Files
(reading via DESY Hamburg)

• Derivation job test dataset: ≈ 33GB in 10 Files

6 / 16



Job run times
Analysis Job, data stored on well-connected DESY Hamburg site

0 500 1000 1500 2000 2500 3000 3500
Wall time (s)

DIRECT I/O

XCACHE (366 Jobs, cached)

XCACHE (100 Jobs, cached)

XCACHE (100 Jobs, first)

Percentiles
99th
95th
75th
50th

00:10:00 00:25:00 00:40:00 00:55:00
Wall time (H:M:S)

No large difference between first and second processing via cache, direct
I/O has similar performance

7 / 16



XCache server monitoring
366 Analysis Jobs at once - “stress test”

Server got busy for a short period of time, but analysis job runtimes
basically unaffected

8 / 16



Processing from different sites
Derivation Jobs (≈ 3MB/s) - process 500 Events

0 100 200 300 400 500 600 700
Wall time (s)

xcache (second)

xcache (first)

direct I/O (local xcache)

direct I/O (TTreeCache)

xcache (second)

xcache (first)

direct I/O (local xcache)

direct I/O (TTreeCache)
Percentiles

99th
95th
75th
50th

00:03:00 00:08:00
Wall time (H:M:S)

BEIJING_LCG2_DATADISK

DESY_HH_DATADISK

→ Differences for direct I/O and cached visible for far away sites
→ Local XCache (on each node) can serve as alternative to TTreeCache

9 / 16



First and second processing via Cache
Difference visible only for far away sites - Example: BEIJING

50 100 150 200 250
Wall time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Re
ad

 M
B/

s (
av

er
ag

ed
 o

ve
r ~

34
.5

s)

first
second

00:01:00 00:02:00 00:03:00 00:04:00
Wall time (H:M:S)

10 / 16



Integration into ATLAS grid production and analysis

• Set up test queues for analysis and production

• Including a “hospital” queue

• So far reading from a limited set of nearby storage elements
(MPP Munich, DESY Hamburg)

• First tests successful - jobs automatically read files via XCache

11 / 16



Test during scheduled downtime of SE

• Setup production queue that read via XCache from neighbour site
MPPMU

• Regular queue went into downtime
→ all ∼3200 cores/slots used by XCache queue

• By chance mostly pileup jobs requiring large input volume
→ ∼25 GB per 8 core job, running for ∼6 hours, avg read rate 300 MB/s via XCache

• XCache server heavily overloaded, but didn’t break

• Subsequent transition to simulation jobs
→ no problem to serve all 3k slots with single XCache node

12 / 16



Job statistics compared to nominal running

13 / 16



XCache for Hospital queue

• Sometimes problems to schedule user-analysis jobs at site where data is
located

• Often T1 sites: big storage but low analysis share

• Concept of “Hospital” queues at other sites:
• Analysis jobs which time out waiting for a free slot can get re-scheduled to

remote site which is configured access data remotely from original site

• Good use-case for XCache
• Setup at LRZ since ∼1 week, configured to pick-up jobs for Taiwan T1 site
• Rather varying load
• XCache issues with open-file limit

14 / 16



XCache experience: problems and issues

• Setup & deployment rather straightforward, except for some tricky
details ...

• Checking cache status and cleanup for tests rather cumbersome

• Found weird bug: xcache crashes when reading same file
simulateneously by different clients from different locations
(fix in v4.9)

• Read failures due to open-file system limit (16k on our system)
(Investigating, not clear if xcache or client problem)

• Overall positive experience: robust and performant

15 / 16



Backup

16 / 16



All sites

0 100 200 300 400 500 600 700
Wall time (s)

xcache (second)
xcache (first)

direct I/O (local xcache)
direct I/O (TTreeCache)

xcache (second)
xcache (first)

direct I/O (local xcache)
direct I/O (TTreeCache)

xcache (second)
xcache (first)

direct I/O (local xcache)
direct I/O (TTreeCache)

xcache (second)
xcache (first)

direct I/O (local xcache)
direct I/O (TTreeCache)

xcache (second)
xcache (first)

direct I/O (local xcache)
direct I/O (TTreeCache)

xcache (second)
xcache (first)

direct I/O (local xcache)
direct I/O (TTreeCache)

xcache (second)
xcache (first)

direct I/O (local xcache)
direct I/O (TTreeCache)

xcache (second)
xcache (first)

direct I/O (local xcache)
direct I/O (TTreeCache)

xcache (second)
xcache (first)

direct I/O (local xcache)
direct I/O (TTreeCache)

xcache (second)
xcache (first)

direct I/O (local xcache)
direct I/O (TTreeCache) Percentiles

99th
95th
75th
50th

00:08:00 00:18:00 00:28:00
Wall time (H:M:S)

BEIJING_LCG2_DATADISK

TOKYO_LCG2_LOCALGROUPDISK

RU_PROTVINO_IHEP_DATADISK

UKI_SCOTGRID_GLASGOW_DATADISK

NDGF_T1_DATADISK

SARA_MATRIX_DATADISK

CERN_PROD_DATADISK

DESY_ZN_DATADISK

DESY_HH_DATADISK

LRZ_LMU_DATADISK

17 / 16



Without TTreeCache

0 1000 2000 3000 4000 5000
Wall time (s)

xcache (second)
xcache (first)

direct I/O
xcache (second)

xcache (first)
direct I/O

xcache (second)
xcache (first)

direct I/O
xcache (second)

xcache (first)
direct I/O

xcache (second)
xcache (first)

direct I/O
xcache (second)

xcache (first)
direct I/O

xcache (second)
xcache (first)

direct I/O
xcache (second)

xcache (first)
direct I/O

xcache (second)
xcache (first)

direct I/O
xcache (second)

xcache (first)
direct I/O Percentiles

99th
95th
75th
50th

00:22:00 00:52:00 01:22:00
Wall time (H:M:S)

BEIJING_LCG2_DATADISK

TOKYO_LCG2_LOCALGROUPDISK

RU_PROTVINO_IHEP_DATADISK

UKI_SCOTGRID_GLASGOW_DATADISK

NDGF_T1_DATADISK

SARA_MATRIX_DATADISK

CERN_PROD_DATADISK

DESY_ZN_DATADISK

DESY_HH_DATADISK

LRZ_LMU_DATADISK

18 / 16



Run times without TTreeCache vs ping vs speed

SA
RA

-M
AT

RI
X_

DA
TA

DI
SK

DE
SY

-Z
N_

DA
TA

DI
SK

CE
RN

-P
RO

D_
DA

TA
DI

SK

ND
GF

-T
1_

DA
TA

DI
SK

RU
-P

RO
TV

IN
O-

IH
EP

_D
AT

AD
IS

K

TO
KY

O-
LC

G2
_L

OC
AL

GR
OU

PD
IS

K

BE
IJI

NG
-L

CG
2_

DA
TA

DI
SK

1000

2000

3000

4000

Jo
b 

wa
ll 

tim
e 

(s
)

50

100

150

200

250

Pi
ng

 (m
s)

0

10

20

30

xr
dc

p 
M

B/
s

→ processing time correlates with ping, not (xrdcp) transfer speed
→ reading in larger blocks better (use TTreeCache)

19 / 16



XCache server I/O monitoring

20 / 16



Analysis job “stress test” via lrz batch system

366 Jobs (one per file) at once still work fine
(total dataset size: ≈ 340 GB)

21 / 16



Load and IO on XCACHE server during pileup run

22 / 16



CPU on XCACHE server during pileup run

23 / 16


