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LMU ATLAS group

• Active in ATLAS Computing since the start
• Operate ATLAS-T2 and HPC resources at LRZ

• Participating in projects A2, A3, B1
• People: G. Duckeck, N. Hartmann, C. Mitterer, R. Walker

• N. Hartmann funded by ErUM-Data, 50% A/B, 50% C

• Focus currently on evaluation of caching use-cases in ATLAS

• Substantial past experience on Analysis of ATLAS job- and
data-transfer logs:

• job-parameter (CPU/WallTime, IO Rate IO Volume, ...)
• dynamic data placement (CHEP-2018 talk/proceedings)
• caching efficiency studies
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Use cases for caching

Caches can supplement manual/automatic data placement. Interesting
scenarios:

• Processing on local batch systems without the need to replicate data

• Sites with small storage but available computing resources

• “Hospital” queues where jobs can be processed for which all slots on
sites where data is available are full

• Caching for additional data - metadata, containers (http?)

→ Testing in Munich with an XCache server
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XCache

• Data access caching service using xrootd

• Simply prepend xcache server url - e.g.
TFile::Open("root:[xcache-server]:[port]//[xrootd-path]")

• Works also with rucio data identifiers
(server looks up replicas via rucio)

• Data is cached in blocks
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XCache hardware/software at LRZ-LMU

• Hardware: Old dCache pool node (from 2012):
• Dell R710, 2x6 core Xeon L5640, 32 GB RAM, 10 Gb Ethernet
• 60 TB Raid-6 (2x12x3TB HDD)

• Xrootd version 4.8.5

• Setup w/ singularity SL6 image following Wei’s instructions:
https://github.com/wyang007/rucioN2N-for-Xcache/wiki/

Deploy-Xcache-via-a-Singularity-Container

• XCache settings:

pfc.ram 14g

pfc.blocksize 1M

pfc.prefetch 10
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Testing the XCache server (local batch)

• Test cases: user analysis job and ATLAS derivation

• Analysis job I/O: ≈ 0.5− 1.5 MB/s

• Derivation job I/O: ≈ 3 MB/s

• Analysis job test dataset: ≈ 340GB in 366 Files
(reading via DESY Hamburg)

• Derivation job test dataset: ≈ 33GB in 10 Files
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Job run times
Analysis Job, data stored on well-connected DESY Hamburg site
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No large difference between first and second processing via cache, direct
I/O has similar performance
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XCache server monitoring
366 Analysis Jobs at once - “stress test”

Server got busy for a short period of time, but analysis job runtimes
basically unaffected
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Processing from different sites
Derivation Jobs (≈ 3MB/s) - process 500 Events
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→ Differences for direct I/O and cached visible for far away sites
→ Local XCache (on each node) can serve as alternative to TTreeCache

9 / 16



First and second processing via Cache
Difference visible only for far away sites - Example: BEIJING
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Integration into ATLAS grid production and analysis

• Set up test queues for analysis and production

• Including a “hospital” queue

• So far reading from a limited set of nearby storage elements
(MPP Munich, DESY Hamburg)

• First tests successful - jobs automatically read files via XCache
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Test during scheduled downtime of SE

• Setup production queue that read via XCache from neighbour site
MPPMU

• Regular queue went into downtime
→ all ∼3200 cores/slots used by XCache queue

• By chance mostly pileup jobs requiring large input volume
→ ∼25 GB per 8 core job, running for ∼6 hours, avg read rate 300 MB/s via XCache

• XCache server heavily overloaded, but didn’t break

• Subsequent transition to simulation jobs
→ no problem to serve all 3k slots with single XCache node
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Job statistics compared to nominal running
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XCache for Hospital queue

• Sometimes problems to schedule user-analysis jobs at site where data is
located

• Often T1 sites: big storage but low analysis share

• Concept of “Hospital” queues at other sites:
• Analysis jobs which time out waiting for a free slot can get re-scheduled to

remote site which is configured access data remotely from original site

• Good use-case for XCache
• Setup at LRZ since ∼1 week, configured to pick-up jobs for Taiwan T1 site
• Rather varying load
• XCache issues with open-file limit
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XCache experience: problems and issues

• Setup & deployment rather straightforward, except for some tricky
details ...

• Checking cache status and cleanup for tests rather cumbersome

• Found weird bug: xcache crashes when reading same file
simulateneously by different clients from different locations
(fix in v4.9)

• Read failures due to open-file system limit (16k on our system)
(Investigating, not clear if xcache or client problem)

• Overall positive experience: robust and performant
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Backup
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All sites
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Without TTreeCache
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Run times without TTreeCache vs ping vs speed
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→ processing time correlates with ping, not (xrdcp) transfer speed
→ reading in larger blocks better (use TTreeCache)
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XCache server I/O monitoring
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Analysis job “stress test” via lrz batch system

366 Jobs (one per file) at once still work fine
(total dataset size: ≈ 340 GB)
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Load and IO on XCACHE server during pileup run
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CPU on XCACHE server during pileup run
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