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LMU ATLAS group

Active in ATLAS Computing since the start
® Operate ATLAS-T2 and HPC resources at LRZ
Participating in projects A2, A3, Bl
® People: G. Duckeck, N. Hartmann, C. Mitterer, R. Walker
® N. Hartmann funded by ErUM-Data, 50% A/B, 50% C

Focus currently on evaluation of caching use-cases in ATLAS

Substantial past experience on Analysis of ATLAS job- and
data-transfer logs:

® job-parameter (CPU/WallTime, 10 Rate IO Volume, ...)

® dynamic data placement (CHEP-2018 talk/proceedings)

® caching efficiency studies
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Use cases for caching

Caches can supplement manual/automatic data placement. Interesting
scenarios:

® Processing on local batch systems without the need to replicate data
® Sites with small storage but available computing resources

® “Hospital” queues where jobs can be processed for which all slots on
sites where data is available are full

® Caching for additional data - metadata, containers (http?)

— Testing in Munich with an XCache server
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XCache

Data access caching service using xrootd

Simply prepend xcache server url - e.g.
TFile: :Open("root: [xcache-server] : [port]//[xrootd-path]")

Works also with rucio data identifiers
(server looks up replicas via rucio)

Data is cached in blocks
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XCache hardware/software at LRZ-LMU

Hardware: Old dCache pool node (from 2012):
® Dell R710, 2x6 core Xeon L5640, 32 GB RAM, 10 Gb Ethernet
* 60 TB Raid-6 (2x12x3TB HDD)

Xrootd version 4.8.5

Setup w/ singularity SL6 image following Wei's instructions:
https://github.com/wyang007/rucioN2N-for-Xcache/wiki/
Deploy-Xcache-via-a-Singularity-Container

XCache settings:

pfc.ram 1l4g

pfc.blocksize 1M

pfc.prefetch 10
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https://github.com/wyang007/rucioN2N-for-Xcache/wiki/Deploy-Xcache-via-a-Singularity-Container
https://github.com/wyang007/rucioN2N-for-Xcache/wiki/Deploy-Xcache-via-a-Singularity-Container

Testing the XCache server (local batch)

® Test cases: user analysis job and ATLAS derivation

Analysis job I/0: =~ 0.5 — 1.5 MB/s

® Derivation job 1/0: ~ 3 MB/s

Analysis job test dataset: ~ 340GB in 366 Files
(reading via DESY Hamburg)

® Derivation job test dataset: =~ 33GB in 10 Files
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Job run times

Analysis Job, data stored on well-connected DESY Hamburg site
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No large difference between first and second processing via cache, direct
[/O has similar performance
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XCache server monitoring

366 Analysis Jobs at once - “stress test”

Leg- Urz-xcache0 Load Last 6_hours Leg-Lrz-xcacheo CPU last 6_hours

s

W user U Oice cru W systen U

Server got busy for a short period of time, but analysis job runtimes
basically unaffected
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Processing from different sites
Derivation Jobs (=~ 3MB/s) - process 500 Events

Wall time (H:M:S)

00:03:00 00:08:00
Percentiles
direct I/O (TTreeCache) ﬁ]—;'\r\ﬁ mm 99th
95th
) (0 T
direct 1/0 (local xcache) Ll 75th
mm 50th

xcache (first) I DESY_HH_DATADISK

xcache (second)

direct 1/0 (TTreeCache)

direct 1/0 (local xcache) Ll 11|

xcache (first) I BEIJING_LCG2_DATADISK

k[

xcache (second) A

0 100 200 300 400 500 600 700
Wall time (s)

— Differences for direct 1/0O and cached visible for far away sites
— Local XCache (on each node) can serve as alternative to T TreeCache
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Read MB/s (averaged over ~34.5s)

First and second processing via Cache

Difference visible only for far away sites - Example: BEIJING

Wall time (H:M:S)

00:01:00 00:02:00 00:03:00 00:04:00
351 — first
——— second
3.0 A
2.5 1
2.0 A
1.5 4
1.0 A
0.5 1
0.0 A
50 100 150 200 250
Wall time (s)

10/16



Integration into ATLAS grid production and analysis

Set up test queues for analysis and production

Including a “hospital” queue

So far reading from a limited set of nearby storage elements
(MPP Munich, DESY Hamburg)

® First tests successful - jobs automatically read files via XCache
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Test during scheduled downtime of SE

Setup production queue that read via XCache from neighbour site
MPPMU

Regular queue went into downtime
— all ~3200 cores/slots used by XCache queue

By chance mostly pileup jobs requiring large input volume
— ~25 GB per 8 core job, running for ~6 hours, avg read rate 300 MB/s via XCache

XCache server heavily overloaded, but didn’t break

Subsequent transition to simulation jobs
— no problem to serve all 3k slots with single XCache node
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XCache for Hospital queue

® Sometimes problems to schedule user-analysis jobs at site where data is
located

® Often T1 sites: big storage but low analysis share

® Concept of “Hospital’ queues at other sites:

® Analysis jobs which time out waiting for a free slot can get re-scheduled to
remote site which is configured access data remotely from original site

® Good use-case for XCache

® Setup at LRZ since ~1 week, configured to pick-up jobs for Taiwan T1 site
® Rather varying load
® XCache issues with open-file limit
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XCache experience: problems and issues

Setup & deployment rather straightforward, except for some tricky
details ...

Checking cache status and cleanup for tests rather cumbersome

Found weird bug: xcache crashes when reading same file
simulateneously by different clients from different locations
(fix in v4.9)

Read failures due to open-file system limit (16k on our system)

(Investigating, not clear if xcache or client problem)

Overall positive experience: robust and performant
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Backup
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Without TTreeCache
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Run times without TTreeCache vs ping vs speed
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— processing time correlates with ping, not (xrdcp) transfer speed
— reading in larger blocks better (use TTreeCache)
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Analysis job “stress test” via Irz batch system
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366 Jobs (one per file) at once still work fine
(total dataset size: ~ 340 GB)
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Load and 10 on XCACHE server during pileup run
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CPU on XCACHE server during pileup run
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