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ldentifying Spinodal clumps using deep learning

« An important goal of HIC is the search for the QCD phase transition

« Spinodal decomposition is a unique feature of dynamical phase
transitions

« But: How to design observables and what to expect event-by-event
wise.

—~—
&
—

Spatial density correlation C(r)
! 1.08
I 1.04
1.00

i :Io.ge
0.92

70

llllll

N
o

—_—]

—_
o

N
(o]
Distance r [fm]

=
—

92}

30 40 50
Time t [fm/c]

21 Feb, FIAS

60 80

time= 0.32 fm/c time=29.44 fm/c



ldentifying Spinodal clumps using deep learning

Maxwell Spinodal

input layer
hidden layer 1 hidden layer 2

Results (almost TBP):

* A CNN works well to identify the clumps in coordinate space event-
by-event

* Momentum space it is much worse: correlations are more hidden

 Will lead to “outlier” events.
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Unsupervised learning for event classification

* Experiments measured ,,non-random® multiplicity distributions
* Defined by the cumulants of the multiplicity distribution.
* C.B.M. maybe at sweet-spot for non-statistical outliers
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Work In progress

* Measurement's can be 101 T T T ]
explained by two event-classes! 10
* We cannot assume the idea of  103[
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» In order to understand the physics we need to be able to identify the
systematic outliers
» Unsupervised learning

» Simulate with model and try to find unbiased way to separate event classes

for further study
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Al for future Detectors (O. Linnyk)

Challenges:

- 10°-107 collisions per second, high data flux
. High radiation load, aging

. Many particles/tracks per collision

Solutions:

. Al allows online decoding of underlying physics
for the event selection, with controlled accuracy

- Al-algorithms for frequent recalibration and
guality control of detector sub-systems

. Great speed-up of tracking and realignment
algorithms by Al-optimisation

Courtesy O.Linnyk, I.Kisel, CBM Collaboration
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Al for future Detectors (Real example)

Consider a TPC or a solid-state-based detector sub-system, which records hits on
individual pads or pixels. During operation, a fraction of the activated pads/pixels
Is defect or registers noise. Identifying these will improve the accuracy and
significance of the measurement.

Solution:

An Al-algorithm was trained to distinguish “good” pads from “bad” ones
based on the patterns of the ADC signal from single pads.

The filter maps for entire TPCs were created within seconds, accuracy 95%.
Algorithm performance generalizes to different conditions (drift velocity,...)
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Courtesy O.Linnyk, NA61/SHINE and CLEO Collaborations
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See Manuel Lorenz talk

The HADES experiment used a neural network to improve
Lambda detection efficiency.

e Used an old package of root.

e Can we find new state-of-the-art methods to improve?

e Use for other particles

e Use less information.
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What/who are are looking for? (i I eiHeg =

Many more possible projects in theoretical physics, experimental physics.
Even other fields of science (seismology, industrial applications, medicine etc.)

* Trying to apply ML methods to physical sciences.

* We are looking for (stipend based) enthusiastic PhD students and young postdocs for
Al, DL and ML applications to physical sciences and especially C.B.M. physics.

* Broad field of interest.

* Interdisciplinary environment.
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