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Overview

 What we have done so far

* What we plan to do



EEEEEEEEEEEEEE
RRRRRRRRRRRRRRRR

What we have done so far



Application 1: (1+1)-d data from EXO-200/nEXO

Energy reconstruction using
raw charge signals trained on MC
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Application 2: 2-d data from Hess/CTA
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https://arxiv.org/abs/1803.10698

Application 3: 3+1-d data from Orca/Arca

»projection technique”
Particle ID / Energy reconstruction

OrcaNet: Track like (v, — CC)
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Application 4 (3+1)-d data from |IceCube

Energy loss pattern of muon
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What we want to do
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What we want to do

* Studies of uncertainty estimation!

 Various techniques on the market .. MC Dropout / Bayesian neural nets /
Predicting uncertainty (like in variational autoencoder)

* Thorough comparison
* Leverage similarity between experiments (convolutional , convolutional+Ilstm)
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* 1 PostDoc to oversee ﬁkﬁ :ﬁ I

these developments full time ...... FANT




Ssummary

* Data structures vary slightly between experiments
2d (Hess/CTA/n-EXO) (3+1)d (iceCube/Arca/Orca)

e But: Similar techniques
Combinations of convolutional Neural nets / LSTMs

e Uncertainty quantification
MC-Dropout / Predicting uncertainties

* Unsupervised astronomical use case: blazar spectra
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