

Deep neural networks @ ECAP

Synergy of deep learning techniques among experiments

ERLANGEN CENTRE
FOR ASTROPARTICLE
PHYSICS

Gisela Anton, Stefan Funk, Thorsten Glüsenkamp

Overview

- What we have done so far
- What we plan to do

What we have done so far

Application 1: (1+1)-d data from EXO-200/nEXO

Energy reconstruction using
raw charge signals trained on MC

Publication on Event reconstruction
(2018 JINST 13 P08023)

Application 2: 2-d data from Hess/CTA

Publication on Event
reconstruction / classification
[1803.10698](https://arxiv.org/abs/1803.10698)

(a) ROC curves with matching AUC values.

Application 3: 3+1-d data from Orca/Arca

„projection technique“

XT projection of the 4D „image“ for a ν_μ - CC event

Particle ID / Energy reconstruction

Preliminary

Application 4 (3+1)-d data from IceCube

LSTM network
(temporal structure)

Preliminary

What we want to do

What we want to do

- Studies of uncertainty estimation!
 - Various techniques on the market .. MC Dropout / Bayesian neural nets / Predicting uncertainty (like in variational autoencoder)
 - Thorough comparison
 - Leverage similarity between experiments (convolutional , convolutional+lstm)

What we want to do

- Studies of uncertainty estimation!
 - Various techniques on the market .. MC Dropout / Bayesian neural nets / Predicting uncertainty (like in variational autoencoder)
 - Thorough comparison
 - Leverage similarity between experiments (convolutional , convolutional+lstm)
- Work on astronomical blazar data (multiwavelength modelling)
 - Investigate unsupervised techniques

What we want to do

- Studies of uncertainty estimation!
 - Various techniques on the market .. MC Dropout / Bayesian neural nets / Predicting uncertainty (like in variational autoencoder)
 - Thorough comparison
 - Leverage similarity between experiments (convolutional , convolutional+lstm)
- Work on astronomical blazar data (multiwavelength modelling)
 - Investigate unsupervised techniques
- 1 PostDoc to oversee these developments full time

Summary

- Data structures vary slightly between experiments

2d (Hess/CTA/n-EXO)

(3+1)d (IceCube/Arca/Orca)

- But: Similar techniques
Combinations of convolutional Neural nets / LSTMs
- Uncertainty quantification
MC-Dropout / Predicting uncertainties
- Unsupervised astronomical use case: blazar spectra