Area C Overview

Gregor Kasieczka (gregor.kasieczka@uni-hamburg.de) IDT-UM Meeting September 21, 2020

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

Bundesministerium für Bildung und Forschung

Partnership of Universität Hamburg and DESY

Introduction

Reminder: Structure of Area C Deep Learning, Erkenntnisgewinn durch fundierte datengetriebene Methoden

 C1) Sensornahe Verarbeitung von Daten Signalfilter, Rauschunterdrückung Verarbeitung von zeitabhängigen Signalen 	 C2) Objektrekonstruktion Spur- und Clusterrekonstruktion, Jet- bildung, Ereignisrekonstruktion Fragestellungen für Anordnung, Rei- henfolge, Zuordnungen von Daten Optimierungen zur Extraktion kleiner Signale bei großem Untergrund 	
 C3) Netzwerkbeschleunigte Simulationen Generative adversarial networks, Anpassung von Simulationen an Datenverteilungen Evaluationsverfahren für die Qualität der Netzwerksimulationen 	 C4) Qualität von Netzwerkvorhersagen Reduzierung experimenteller systematischer Unsicherheiten Spezielle Lernstrategien Vorhersagenrelevante Information Unsicherheiten von Vorhersagen 	

Updates

C1) Sensornahe Verarbeitung von Daten • Signalfilter, Rauschunterdrückung • Verarbeitung von zeitabhängigen Si- gnalen	 C2) Objektrekonstruktion Spur- und Clusterrekonstruktion, Jetbildung, Ereignisrekonstruktion Fragestellungen für Anordnung, Reihenfolge, Zuordnungen von Daten Optimierungen zur Extraktion kleiner Signale bei großem Untergrund
 C3) Netzwerkbeschleunigte Simulationen Generative adversarial networks, Anpassung von Simulationen an Datenverteilungen Evaluationsverfahren für die Qualität der Netzwerksimulationen Evaluationsverfahren für die Qualität der Netzwerksimulationen 	 C4) Qualität von Netzwerkvorhersagen Reduzierung experimenteller systematischer Unsicherheiten Spezielle Lernstrategien Vorhersagenrelevante Information Unsicherheiten von Vorhersagen

Fast processing of data close to sensors (CI)

Reminder: Aim of the project in Mainz

- Processing of detector data at extremely high rates
 - Not possible to store data due to its size
 - Usage of GPUs not possible due to their too high latency
 - Data has to be processed and filtered locally in real-time, maybe directly at the corresponding sensors
- Solution: deep neural networks as replacement for iterative algorithms, that can be efficiently evaluated on FPGAs
- Test environment: ATLAS L1 Trigger (40 MHz event rate)

Current status

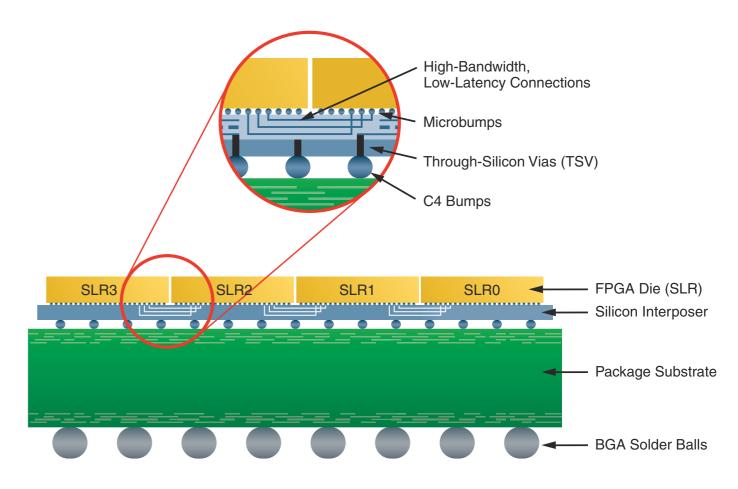
- First implementation of Dense, 2D-Convolution and MaxPooling layer done
 - Paper on implementation details as well as performance evaluation published: JINST 14, P09014 (2019)

(implementation only, assumes data already on FPGA)

- Ongoing firmware development to cope with technical details of modern large FPGAs
 - Not monolithic chips but several individual chips (i.e. 3 for our reference FPGA from Xilinx), *see next slide for details*
 - **Data IO** to and from FPGA via optical fibres and multi-gigabit transceivers (MGTs) **non-trivial** for our test case (different link speeds need to be handled simultaneously)

Modern FPGA: the devil is in the details ...

- Several chips connected with finite connection
 - Potential bottleneck
 depending on inputs
 and network architecture
 (only ~17k inter-chip
 connections)



- **Data input distributed over all SLRs**, especially problematic for larger convolution layers at the start of the network
 - Routing via design tool (Xilinx Vivado) becomes
 challenging once resource usage increases (larger networks)

Object reconstruction (C2)

FIAS

2.0

1.0

0.5

0.0

Mean error (fm)

+− Polyfil

M-hits S-hils

MS-tracks

10

12

16

14

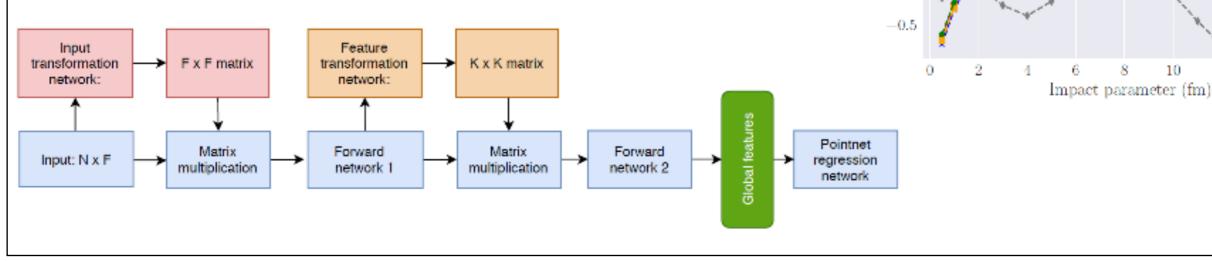
HT-combi

DL analysis tools for CBM (FIAS team)

Analysis of simulated CBM data using PointNet turned out to be accurate and fast

~O(1000) events per GPU (NVIDIA) without optimizing for speed.

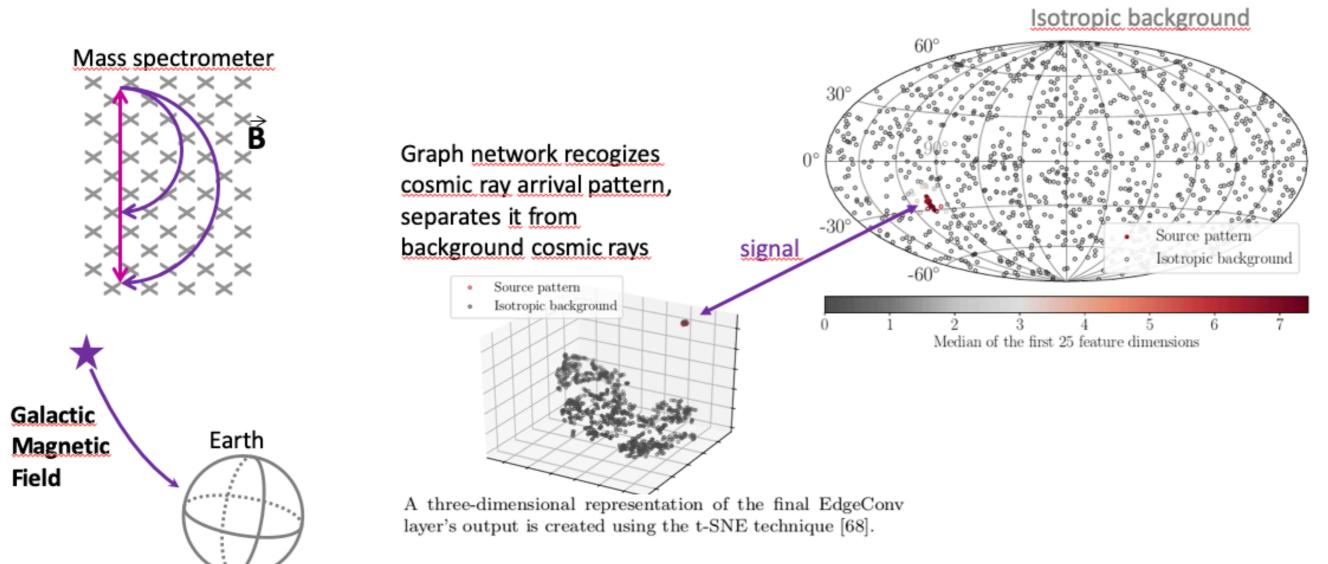
- Can do centrality selection or physics identification
 - M. O. Kuttan, J. Steinheimer, K. Zhou, A. Redelbach and H. Stoecker, ٠ [arXiv:2009.01584 [hep-ph]].
 - EoS classification : In preparation



Prediction of impact parameters from unordered sets of tracks/hits

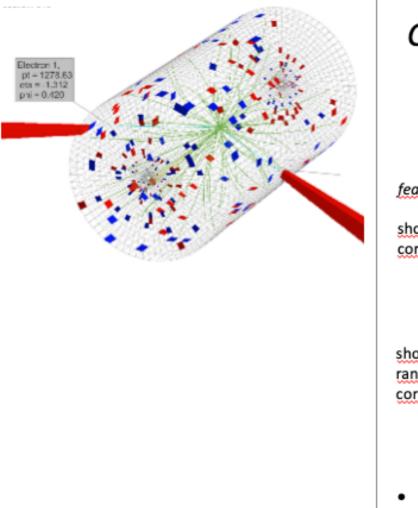
T. Bister, M. Erdmann, J. Glombitza, N. Langner, J. Schulte, M. Wirtz, arXiv:2003.13038

Patterns in cosmic ray arrival directions

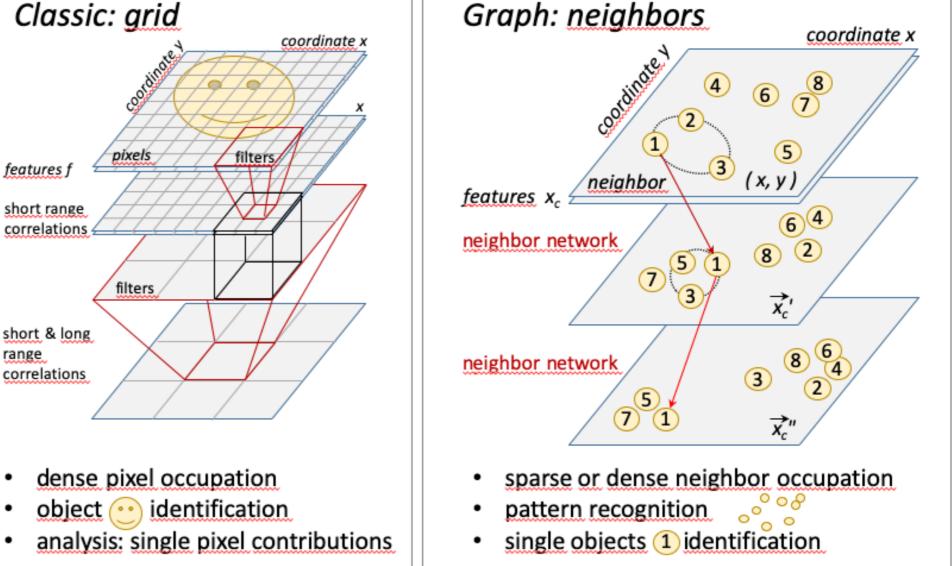


Martin Erdmann

Convolution: Classic versus Graph network

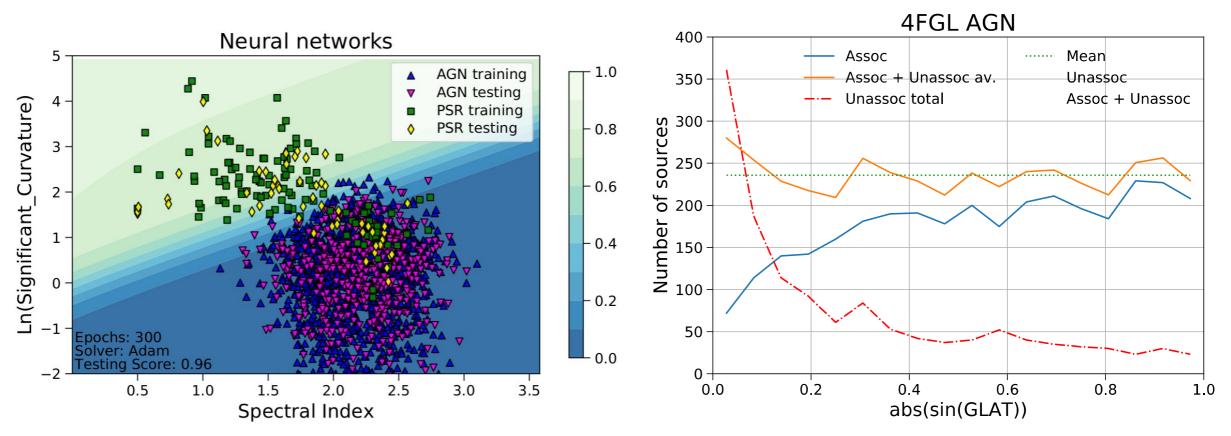


RNTHAACHEN



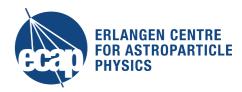
Martin Erdmann

- Fermi LAT gamma-ray astrophysics
 - Aakash Bhat, Dmitry Malyshev
 - Machine learning
 - Classification of unidentified point sources



We use associated sources to train four ML algorithms (RF, BDT, LR, NN) to classify sources into active galactic nuclei (AGNs) and pulsars.

Thorsten Glüsenkamp



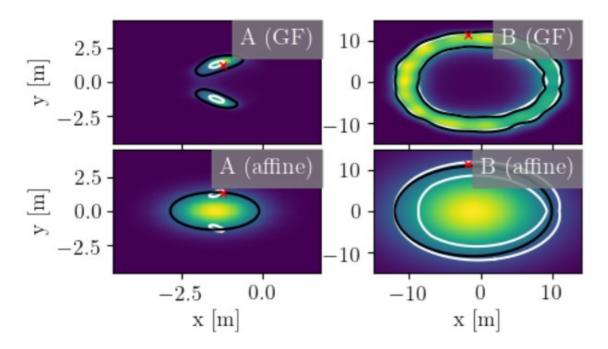
Normalizing flows \rightarrow generalize supervised learning as approx. likelihood-free inference (2008.05825 – or see talk this meeting) **Thorsten Glüsenkamp**

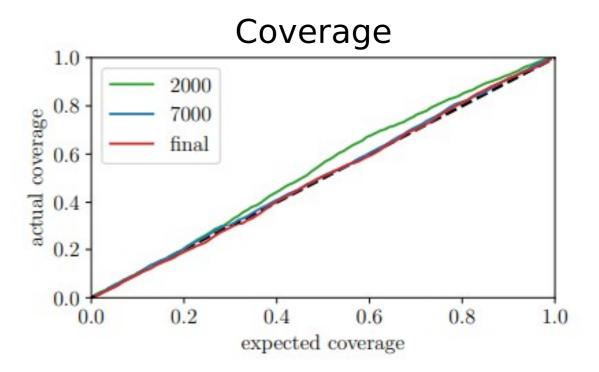
1) Systematics

- 2) Goodness of fit
- 3) Coverage

for Neural network Posterior

True Posterior (White contour) Approx Posterior (Black contour)





Thorsten Glüsenkamp

Classification Comparison

- ErUM domains work with a diverse set of data representations
 - Different detector geometries, different types of experiments, theory calculations...
- But: several approaches should be flexible enough:

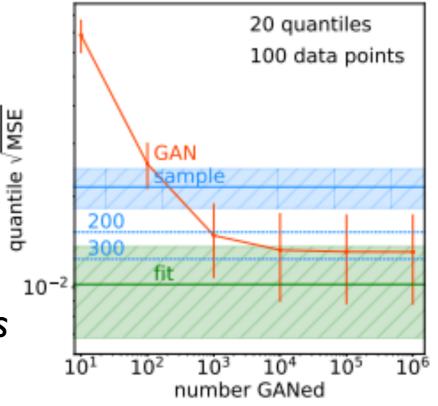
 Fully connected 	Datasets
 ID convolutions 	 Top Tagging at the LHC link, Publication: 1902.09914
 Graphs 	 Spinodal or not? link, Publication: 1906:06562
• Images	 EOSL or EOSQ link, Publication: 1910.11530
	Cosmic Airshower link
•?	 LHC Olympics 2020 (Unsupervised anomaly detection) link

- Collecting datasets to enable cross-experiment / cross-disciplinary benchmarking of data representations and algorithms for our applications
- Focusing on classification as it allows straightforward benchmarking
- See: <u>https://github.com/erum-data-idt/ClassifierComparison</u> (and contact me with more datasets/cross-dataset comparisons)

Fast generation (C3)

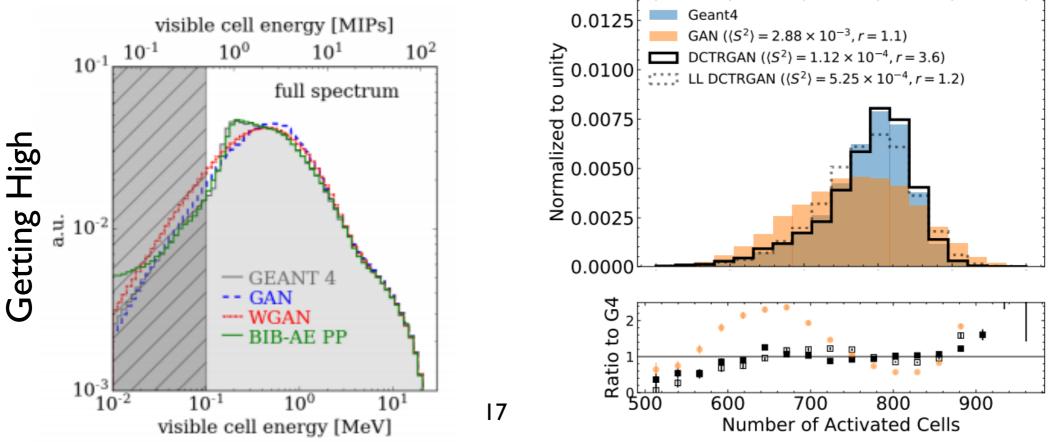
Hamburg

- Major motivation for generative models:
 - Speed-up event generation/simulation as they are computing bottle-necks
- How?
 - Generate N events using classical approach (e.g. Geant4)
 - Train generative model (e.g. GAN)
 - Sample M events from GAN
- Only helps if amplification (M>N) possible
- Sascha will present recent result tomorrow showing that this can be achieved for simple examples



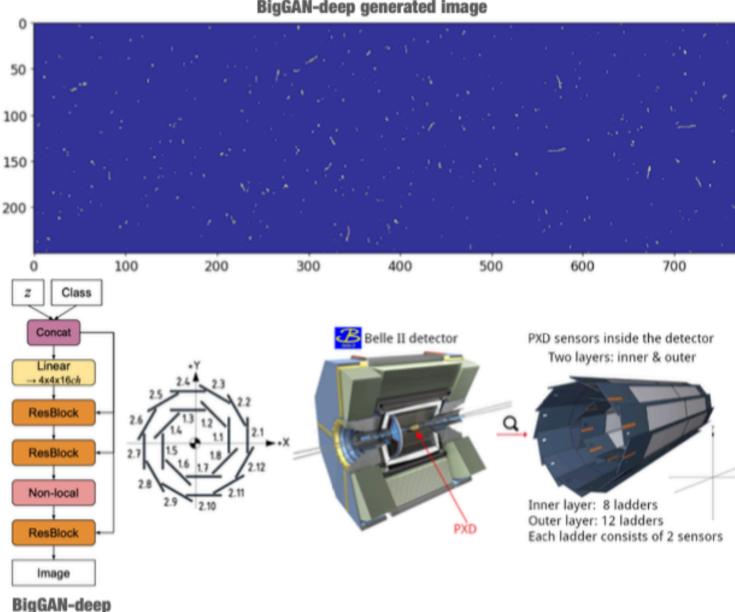
Hamburg Application: calorimeter showers for future colliders

- **BIB-AE** architecture achieves good fidelity
 - update by Erik in last meeting, paper out now: arXiv: 2005.05334 - Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed
- Further improvement via event-wise re-weighting (refinement)
 - Train classifier (full simulation vs GAN output) and use to derive weights arXiv: 2009.03796 - DCTRGAN: Improving the Precision of Generative Models with Reweighting

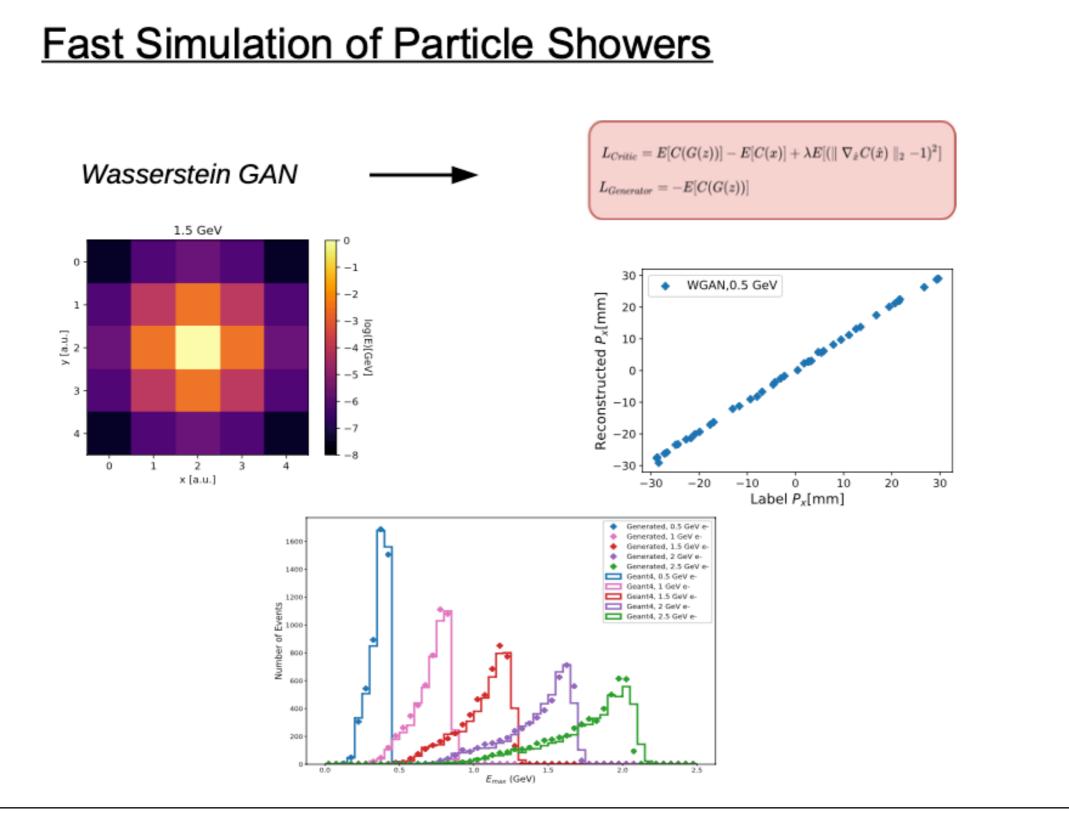


Generating PXD-bg heat-maps using GAN

- The Pixel Vertex Detector (PXD) is the innermost semi-conductor sub-detector at Belle II.
- Using GAN instead of huge samples of Geant4 simulation or recorded Data.
- Initial Model: WGAN-gp New Model: LOGAN
- Using <u>Class Conditional GAN</u> for increasing image fidelity and generate sensor-based images: <u>BigGAN-deep</u>
- Validation of generated images:
 - Impact parameter resolution: Frechet Distance
 - Track reconstruction efficiency
- Outlook Generate Images based on bkg type & capture correlation between layers

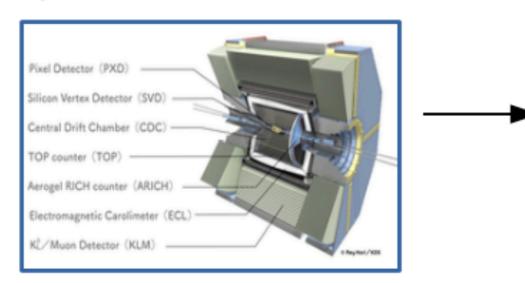


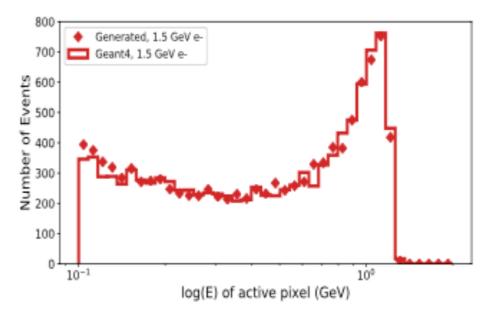
Hosein Hashemi



Jubna Jabbar

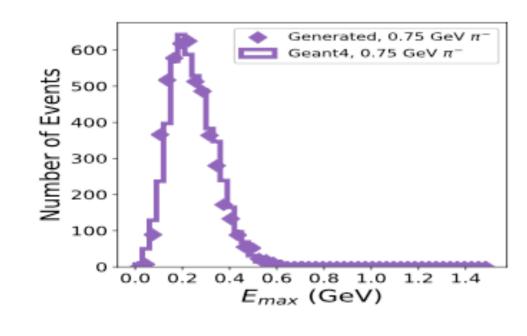
Testing the model for electron showers in Belle II ECL crystals

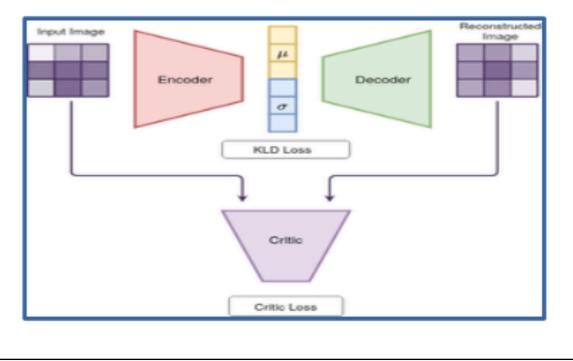




VAE-GAN

Hadronic shower simulation

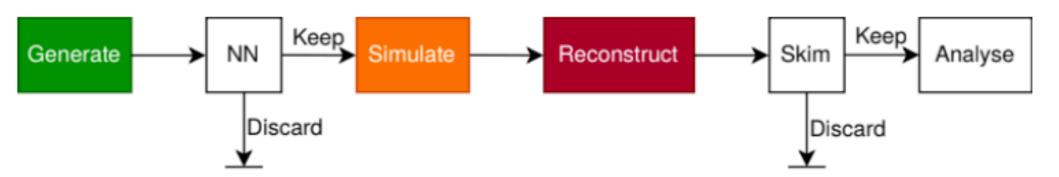




Jubna Jabbar

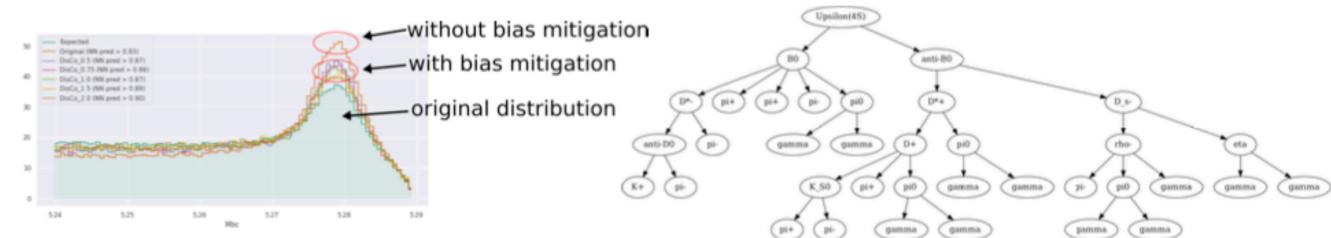
SmartBKG project at LMU

Try to filter Events already before expensive detector simulation and reconstruction



- Architectures based on graph convolutions have good performance
- Studied mitigation of bias due to false negatives
 - ➔ distance correlation term in loss function

(decorrelate classifier output from observables)



Inputs: Event decay tree

+ particle features (generator level)

Preparing dataset for Classifier comparison

Nikolai Hartmann

Closing

Summary

- Range of activities in ErUM-data C
- Algorithms suited to our data-structures
 - New results and convergence on similar approaches
 - New statistical tools for data analysis
- Machine learning close to hardware
 - Implementation of several key architectures done
 - The devil is in the details..
- Fast generative models
 - Many applications
 - First hints at possible amplification of statistics

Look forward to detailed updates tomorrow

Agenda for Tomorrow Session D+C

09:00	15 - Status of ACTS Deployment at FASER	Tobias Boeckh
D	16 - Status of Belle II ACTS Activities	Ralf Farkas
	17 - Impact paremeter for heavy ion collisions with a PointNet architecture	Manjunath Omana Kuttan
10:00	24 - Identification of Cosmic Rays from Sources using Dynamic Graph Convolutional Neural Networks	Niklas Langner
	Short coffee break	
	18 - Using Generative Networks to amplify statistics	Sascha Diefenbacher
Ć 11:00	19 - Flow-based networks and their benefits for high-energy physics	Thorsten Glüsenkamp
	20 - Fast simulation of particle showers	Jabbar Jubna
	21 - Selective Background Monte Carlo simulation with deep learning	Nikolai Hartmann
12:00	23 - PXD background image generation using GANs	Hosein Hashemi ⁄/

Just updated!!!