
ErUM-Data Wuppertal Update

T.	Harenberg,	M.	Sandhoff,	M.	Vogel,	C.	Zeitnitz

1



• The	Wuppertal	group	is	currently	active	in	topic	area	A:	work-package	1	
(Containerization	of	user	jobs,	Containerization	of	services)	
• Work	with	standalone	containers	proved	seminal	to	the	containerization	of	ATLAS	
production	workflows	
• These	images	are	provisioned	with	a	local	conditions	database	(SQLite),	a	resource	
typically	accessed	through	the	network	
• Images	are	being	used	at	selected	HPCs	(NERSC)	to	run	detector	simulation.	Work	is	
starting	on	deploying	images	for	MC	reconstruction	and	for	the	dataset	formats	that	
derive	from	it	
• ATLAS	and	CMS	are	currently	are	converging	on	a	similar	data	model	for	their	detector	
conditions	databases	(CREST,	a	RESTful	client-server	architecture)	
• This	opens	the	possibility	for	developing	common	tools	for	handling	conditions

222	September	2020 Wuppertal	-	ErUM	Collaboration	Meeting

Containerization of services: conditions data



Log analysis framework for user jobs
• We	are	also	active	in	topic	area	A:	Work-package	3	(Workflow	Control)	
• Drawing	on	the	example	provided	by	the	ATLAS	job	validation	and	reporting	software,	we	are	
developing	a	log	analysis	framework	for	deployment	in	containers	
• Deployment:	in	pre-existing	containers	where	payload	execution	produces	log	files.	Available	via	a	
Git-Repository	(Dockerfiles	and	configuration	files	for	installing	the	framework	as	additional	
container	layers)	
• Core	components:		

• Message	collecting	and	processing	unit	(structuring	of	log	lines	by	matching	regular	
expressions)	
• Storage	unit	(optionally	a	search-engine	index)	
• Software	layer	for	configuration,	customization	and	report	generation	(JSON	formatted	
summary	of	errors	and	anomalous	messages)	

• Message	processing:	structuring	of	log	lines	by	matching	regular	expressions	provided	by	the	user.	
Structured	data	is	stored	in	a	local	search-engine	index

3Wuppertal	-	ErUM	Collaboration	Meeting22	September	2020



Framework’s core components
• After	a	review	of	several	well-known	open-source	projects,	we	chose	fluentd	and	
elasticsearch	as	the	core	component	services	
• fluentd:	light	weight,	open-source	data	collection	software	project	written	in	Ruby	
• It	processes	unstructured	data	from	different	sources	via	their	corresponding	
input	plugins	
• The	data	is	matched	and	structured	(and	possibly	filtered	and/or	enriched)	
before	it	is	saved	to	different	output	formats	via	their	corresponding	output	
plugins	

• elasticsearch:	search	engine	based	on	the	Lucene	library.	An	elasticsearch	output	
plugin	stores	the	structured	data	in	a	local	elasticsearch	instance	via	a	RESTful	
interface

4Wuppertal	-	ErUM	Collaboration	Meeting22	September	2020



• Software	layer:	
• Initialization	scripts	for	configuring	the	overall	deployment:	elasticsearch	or	file	storage,	
user	defined	regular	expressions	and	modules	
• A	python	package	with	classes	and	functions,	and	a	main	script	for	steering	and	
customizing	data	processing	

• The	main	script	instantiates	classes	and	implements	queries	to	the	elasticsearch	engine	via	
class	functions	
• Functions	to	process	the	structured	data	returned	by	queries	based	on	the	values	of	the	
index	fields	(e.g.	logging	severity	level)	
• User	defined	modules	to	process	unstructured	messages.	A	minimal	set	is	provided	to	
process	common	errors,	e.g.,	std::bad_alloc	
• A	log	report	is	produced	in	JSON	format	containing	the	full	result	of	the	query	and	
identified	special	messages	
• Base	classes	and	minimal	implementations	will	be	provided,	which	can	be	easily	customized

5Wuppertal	-	ErUM	Collaboration	Meeting22	September	2020



A first prototype as proof of concept
• The	first	use	case	is	a	prototype	tuned	to	analyze	ATLAS	reconstruction	job	
logs	
• Regular	expressions	match:	service,	level	and	message	fields	
• The	level	field	is	a	discreet	ordered	record	with	values:	DEBUG,	INFO,	
WARNING,	ERROR,	CRITICAL,	FATAL	

• A	JSON	job	report	is	generated	with	all	messages	with	level	>=	ERROR	
• The	report	also	contains:	
• 	the	worst	message,	or	the	first	message	with	the	highest	logging	level	
severity	
• 	the	first	error,	or	the	first	message	with	a	chosen	logging	level	severity

6Wuppertal	-	ErUM	Collaboration	Meeting22	September	2020



Next steps
• Immediate	steps	

• Submit	the	first	prototype	container	to	the	Grid	and	generate	a	job	report	from	the	job’s	log	file	
• Test	that	all	components	work	in	a	containerized	environment		

• To-do’s	(components	still	missing	for	a	first	full	product	release)	
• Modules	to	process	and	report	on	common	errors.	Provide	documentation	(or	interface)	on	how	
users	can	add	their	own	
• Interfaces	to	structure	data	and	implement	queries	in	ES	DSL	

• Users	can	provide	regular	expressions	for	structuring	the	data	(configures	fluentd)	
• Users	can	provide	a	list	of	specific	values	to	query	in	order	to	produce	a	report	(e.g.,	all	
messages	with	level	=	WARNING,	ERROR	and	worse)	

• Make	the	job	report	customizable.	Bases	classes	are	provided.	Perhaps	documentation	is	enough	
• Support	other	report	formats:	text,	XML	and	pickle	(currently	JSON)	
• Address	performance	issues,	compare	different	solutions	for	core	components	(e.g.,	Lucene	vs	ES)

7Wuppertal	-	ErUM	Collaboration	Meeting22	September	2020


