Performance monitoring of opportunistic resources at ATLAS-BFG

Michael Böhler, Anton J. Gamel, Stefan Kroboth*, Benjamin Rottler, Markus Schumacher

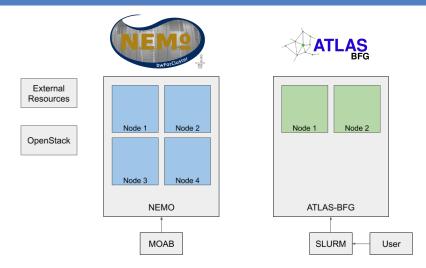
22.09.2020

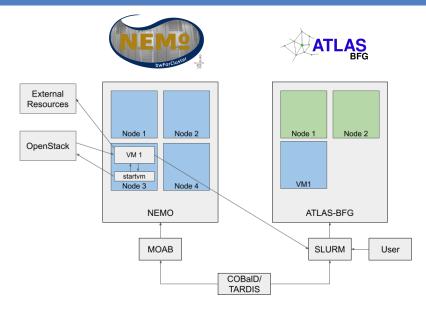
Albert-Ludwigs-Universität Freiburg

- Setup at Uni Freiburg using COBalD/TARDIS
- Our contributions to COBalD/TARDIS
- Monitoring of opportunistic resources and related infrastructure
- Bigger picture / future plans

Setup / Infrastructure

Two clusters available:

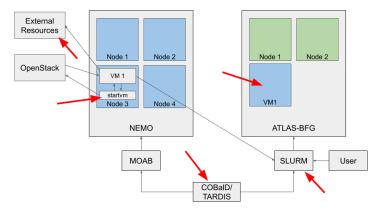

- ATLAS-BFG
 - ► ≈ 3600 cores
 - ATLAS production/analysis jobs
 - Local user jobs
 - Scheduler: SLURM
- NEMO
 - \blacktriangleright pprox 18000 cores
 - Local cluster by Freiburg University
 - Different software setup than ATLAS-BFG
 - Scheduler: MOAB



Utilize COBalD/TARDIS to opportunistically integrate resources from NEMO into ATLAS-BFG based on demand and availability

Setup / Infrastructure

Setup / Infrastructure



- COBalD/TARDIS requires knowledge about the workload on the drones to make decisions about whether to start or stop drones which can be obtained from SLURM
- Therefore a SLURM batch system adapter which regularly queries SLURM was added to COBaID/TARDIS

Monitoring

- Complex infrastructure with many components and interactions
- Varying temporal dependencies
- Difficult debugging in case of issues
- Difficult to assess the impact on performance when changes are made

COBaID/TARDIS

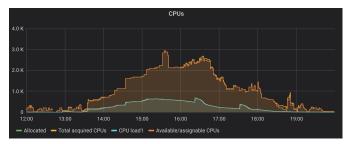

Elasticsearch monitoring plugin

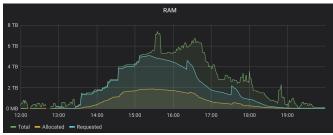
- Reports state changes of the drones to an Elasticsearch instance.
- This allows to continuously or retrospectively derive metrics

Prometheus monitoring plugin

- Keeps track of the current number of drones in each state
- Serves this information to the Prometheus scraper

Examples




- Top: Number of booting/running/stopped drones according to COBalD/TARDIS
- Bottom: Pending/ running jobs according to SLURM
- Exposes temporal relationship between the individual components

COBalD/TARDIS drone info				
drone_uuid	state	machine_type	created	updated
nemo-8773904	IntegrateState	tardis_c40m100	2020-09-15T14:09:38.870313	2020-09-15T14:21:38.962304
nemo-8773901	IntegrateState	tardis_c40m100	2020-09-15T14:07:34.736392	2020-09-15T14:21:34.812700
nemo-8773894	AvailableState	tardis_c40m100	2020-09-15T14:05:29.397396	2020-09-15T14:21:29.586682
nemo-8773958	AvailableState	tardis_c40m100	2020-09-15T14:14:08.567953	2020-09-15T14:21:08.709344
nemo-8773993	AvailableState	tardis_c40m100	2020-09-15T14:15:55.361620	2020-09-15T14:20:55.479032
nemo-8773913	AvailableState	tardis_c40m100	2020-09-15T14:11:49.038027	2020-09-15T14:20:52.793295

Monitoring of every state change of the drones in real-time

Examples

- Top: acquired and available CPUs
- Bottom: acquired and available RAM
- Exposes inefficient use of the resources by the users
- Data can be used to inform such users automatically

Future developments

Combine the collected data and derive meaningful metrics

- Time from requesting a resource to resource being available
- Measure for idle resources
- Monitor metrics over various time scales to detect drifts, sudden changes and anomalies
 - Aids in debugging and tuning
 - Increase overall performance and more efficient use of resources
 - Assess impact of job mix on performance
- Automatically give users feedback on their usage of the cluster
- Combine with alerting and event handling to automatically react to certain events