
XCache for analysis workflows

Nikolai Hartmann, Guenter Duckeck, Christoph Anton Mitterer, Rodney Walker

LMU Munich

September 22, 2020

1 / 17



What is XCache?

• Disk caching proxy using xrootd (libXrdFileCache.so)

• Data is cached in blocks

• Simply prepend xcache server url - e.g.
TFile::Open("root:[xcache-server]:[port]//[xrootd-path]")

• Optionally use rucio DIDs via N2N plugin:
https://github.com/xrootd/rucioN2N-for-Xcache

→ allows usage of rucio DIDs instead of xrootd path
→ tracks identical files distributed at different locations
(internal symlink .../scope/XX/YY/filename)

2 / 17

https://github.com/xrootd/rucioN2N-for-Xcache


Munich XCache Setup

• Hardware: Old dCache pool node (from 2012):
• Dell R710, 2x6 core Xeon L5640, 32 GB RAM, 10 Gb Ethernet
• 60 TB Raid (2x12x3TB HDD)
→ now operated as individual disks

• Second node with similar Hardware for testing new versions/setups
→ also want to test “cluster” of XCaches

• Xrootd version 4.11.3
→ recently also started testing version 5

• Setup using singularity SL6 image. Full configuration:
https://gitlab.physik.uni-muenchen.de/Nikolai.Hartmann/

xcache-singularity-lrz/

• XCache settings:

pfc.ram 14g

pfc.blocksize 1M

pfc.prefetch 10

→ also experimenting without prefetch

3 / 17

https://gitlab.physik.uni-muenchen.de/Nikolai.Hartmann/xcache-singularity-lrz/
https://gitlab.physik.uni-muenchen.de/Nikolai.Hartmann/xcache-singularity-lrz/


The WLCG-data-lake model
Discussed within DOMA/ACCESS

(Graphic by Xavier Espinal)

4 / 17

https://indico.cern.ch/category/10828/


From production to analysis

So far we mainly studied accessing files for ATLAS production
(see slides from meeting last year)

Reasons to look more carefully into analysis workflows:

• Different access pattern (production jobs currently copy the whole file to scratch disk)

• More data re-use expected (especially with future analysis formats)

• Different access patterns when we consider columnar data analysis (we might do that in
the future)

5 / 17

https://indico.physik.uni-muenchen.de/event/22/contributions/203/attachments/81/146/slides_xcache_munich_v2.pdf


Virtual placement

(Graphic by Ilija Vukotic)

• “virtually” place datasets to cache-only sites

• expected to ensure high hit rates

• started including a queue that uses our Xcache server

• first results promising, but currently deactivated due to several issues
(most of them now solved but take times to propagate fixes)

6 / 17



Bug: ROOT TChain with xcache paths

Already known (and fixed) since a while - ROOT bug parsing xcache paths with TChain:

root [0] TChain c

(TChain &) Name: Title:

root [1] c.Add("root://lcg-lrz-xcache1.grid.lrz.de:1094//root://fax.mwt2.org:1094//pnfs/uchicago.edu/atlasscratchdisk/rucio/user/bngair/1c/26/1058501._000721.output.root")

(int) 1

root [2] c.GetListOfFiles()->First()->GetTitle()

(const char *)

"root://lcg-lrz-xcache1.grid.lrz.de:1094//root://fax.mwt2.org:1094//pnfs/uchicago.edu/atlasscratchdisk/rucio/us"

• Fixed in ROOT 6.22, backported to 6.20, 6.18, 6.16
→ 6.16/02, 6.18/06, 6.20/06, 6.22/00 should have the fix (according to Philippe)
→ also see ROOT-10494 and the fix #4888

• Available in the lcg releases currently: 6.20/06, 6.22

• Takes time to propagate to analysis releases
(TChain mainly used by analysis jobs)

7 / 17

https://sft.its.cern.ch/jira/projects/ROOT/issues/ROOT-10494
https://github.com/root-project/root/pull/4888


The ATLAS plan for Run 3: change from this ...
See also ATL-COM-SOFT-2019-027

Main problem: Too many DAOD (skimmed/slimmed) formats, takes too much disk space

8 / 17

https://cds.cern.ch/record/2672527


... to this
See also ATL-COM-SOFT-2019-027

9 / 17

https://cds.cern.ch/record/2672527


Columnar data analysis - Motivation

Operate on columns - “array-at-a-time” instead of “event-at-a-time”

Advantages:

• Operations can be predefined, no for loops! Most prominent example: numpy
→ this paradigm removes slow performing organisational stuff out of the event loop

• These operations run on contiguous blocks in memory and are therefore fast (vectorizable,
good for CPU cache)

• Lots of advances in tools during the last years, since this kind of workflow is essential for
data science/machine learning

Disadvatages

• Arrays need to be loaded into memory
→ need to process chunk-wise if amount of data too large

• Some operations more difficult to think about
(e.g combinatorics, nested selections, variable length lists per event)

10 / 17



Columnar data analysis with ATLAS PHYSLITE

Idea:

• Most data is stored in “aux” branches (vector<basic-c-type>)
→ easily readable column-wise, also with uproot

• Reconstruction/Calibrations already applied
→ the rest might be “simple” enough to do with plain columnar operations

• Tools: uproot and awkward array

11 / 17

https://github.com/scikit-hep/uproot4
https://github.com/scikit-hep/awkward-1.0


I/O ballpark estimate

Take current situation for ATLAS SUSY 1L analysis as an example:

• ≈ 200 TB of data with ≈ 50 kb/evt

• DAOD_PHYSLITE: ≈ 10 kb/evt
→ need to process ≈ 40 TB of data
(probably a bit more since PHYSLITE unskimmed)

• Assume processing on local batch system: With 10 Gbit/s will take around 10 hours
(with saturated network/150 kHz total)

Ways to improve this (get around network limit):

• Faster network connection

• Caching on the level of worker nodes

• “Intelligent data delivery” a la ServiceX

• Only read part of the data (few columns)
→ can be interesting e.g. for nominal only, early stages of an analysis
→ study on the next slides

12 / 17

https://github.com/ssl-hep/ServiceX


I/O scaling tests

Some tests with a first PHYSLITE data sample (2015 data)

• read only few branches (same as in the 1L analysis test) of the ≈ 1 TB dataset
→ in theory ≈ 2% of the data

• Read with ≈ 100 parallel tasks (LMU batch system with dask)

• First test: read from LMU/LRZ dcache storage via xrootd (36 storage nodes)
• Some issues with uproot (files not properly closed)
→ workaround, will be fixed in uproot4
→ some tuning of requested block sizes (will also not be nescessary anymore in uproot4,
which supports xrootd vector reads)

• After these fixes: data could be read within 5-10 minutes (7k files)
• Some storage nodes get rather busy with this access pattern

• Second test: read through xcache at LMU (1 storage node)
• Gets extremely overloaded, not feasible anymore
• Might become better when xcache is also extended to a cluster
• But: maybe we can do better for this type of access (if we want to optimize for it)

13 / 17

https://gitlab.cern.ch/nihartma/awkward-1l/-/blob/master/awkward_1l.py


Columnar data storage

• With current basket sizes in PHYSLITE these file accesses result in very scattered reading
patterns

• A more columnar storage might help

• First try: store all “easily readable” branches in parquet files
• Reading parquet via xrootd (using a small wrapper)

(parquet files with 1 “row group” → one block per column)
• Could read quickly (≈ 3 min) even with single xcache node
• Also good for block-wise caching (currently set to 1MB block size)
• Not 100% fair comparison since only around 1/4 of data written to parquet

• Need to compare to very large basket sizes in ROOT
→ expect similar performance, but for the first test it was easier to produce the parquet
files (awkward supports writing to arrow buffers)

14 / 17

https://gitlab.cern.ch/nihartma/physlite-experiments/-/blob/master/proper_xrdfile.py


Access patterns

Default DAOD_PHYSLITE

DAOD_PHYSLITE converted to parquet files (just “easily readable” branches)

DAOD_PHYSLITE with “jumbo baskets” (1 basket per branch)

(plotting details: histogram (128kiB bin width) of number of bytes read, clipped at a maximum of 1000)

15 / 17



Monitoring plots

Reading default ROOT files Reading parquet files

16 / 17



Summary

• Analysis workflows are an interesting use case for caching
→ new data formats at ATLAS (and CMS) well suited

• In grid environment:
Hit rate could be increased by “virtually” placing datasets to cache sites

• XCache could also help for columnar data analysis use cases

• Storage formats could be optimized for columnar access
→ would increase throughput for workflows that access only specific columns
→ integrates nicely with block-wise caching of large blocks

17 / 17



Backup

18 / 17



branches to read

#AnalysisElectronsAuxDyn.
electron_vars = [

"pt",
"eta",
"phi",
"DFCommonElectronsLHLooseBL",
"DFCommonElectronsLHTight",
"topoetcone20",
"ptvarcone20_TightTTVA_pt1000",

]
#AnalysisMuonsAuxDyn.
muon_vars = [

"pt",
"eta",
"phi",
"DFCommonGoodMuon",
"topoetcone20",
"ptvarcone30",

]
#AnalysisJetsAuxDyn.
jet_vars = [

"pt",
"eta",
"phi",
"Jvt",

]

19 / 17


