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Introduction
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• Generative machine learning models 
are increasingly common in physics


• Most commonly Generative 
Adversarial Networks (GANs) 


• Applied to:

• Event generation

• Calorimeter simulation

• Cosmology

• Environmental physics
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Introduction
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• Potential problem

• If a GAN is trained on N data points, how many new points 

can I draw from the GAN?

• Standard assumption: no more than N new points

• Is that really true?


   Run tests using toy example
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1-D Toy Model
• Camel back function: double peak Gaussian 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p(X) =
1

2
(N�4,1(x) +N4,1(x))
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Quantiles
• Measurement how well 

function is described

• Define N quantiles on true 

distribution

• Each quantile contains equal 

probability
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Training Sample
• Draw 100 points from true 

camel back distribution

• This is designated as the 

(training) sample

• Calculate fraction of points in 

each quantile
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• Fit 5 parameter camel back 
function to training samples 
 
 

• Analytically calculate integral 
for each quantile


• Gives upper performance 
benchmark

Parameter Fit
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p(X) = a Nµ1,�1(x)

+(1� a)Nµ2,�2(x)
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• Train GAN on 100 data points from training sample

Generative Network
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• Mode-collapse and 
overfitting problematic

• Dropout

• Added training noise

• Batch-statistics
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• Generate             data points 
using GAN


• Calculate fraction of points in 
each quantile


• Define quantile MSE:

Generative Network
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• For 100 training samples,  
100 fits and 100 GANs 
compare MSE


• GAN describes distribution 
better than training data


• Needs 10,000 GANed points 
to match 150 true points


• Shifts statistical uncertainty 
to systematic uncertainty

Generative Network
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• How is this possible? 

• In terms of information:

• sample: only data points

• fit: data + true function

• GAN: data + smooth, 

continuous function

• This allows the GAN to 

interpolate

Generative Network
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• Interpolation more noticeable for sparser data
Generative Network
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• Extend setup into two 
dimension


• Ring with gaussian radius


• 2-D analogue of camel back


• GAN is trained on cartesian 
coordinates


• Quantiles are calculate in  
polar coordinates


     GAN has to learn correlations

2-D Toy Model
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2-D Toy Model
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• Once again: compare quantile MSE
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2-D Combined Quantile
• Combine quantiles in radius and angle direction 

• 2-D histogram with quantiles as bins
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• Similar behaviour to 50 
quantile case in 1-D


• GAN manages to interpolate 
in 2-D space as well


• Indicates use beyond simple 
toy model

2-D Combined Quantile
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• Further extend setup into five dimensions


• Surface of a 5-sphere with Gaussian radius


• Angles sampled uniform on 5-sphere


• Increased size of training samples to 500


• Perform similar quantile MSE comparison as before

5-D Toy Model
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5-D Toy Model
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• Plot amplification factor as 
function of N quantiles


• Interpolation power again 
gets greater for sparser data


• Very sparse data not 
commonly encountered


• Although still possible for 
high enough dimensions

5-D Toy Model
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Conclusion
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• If a GAN is trained on N data points, how many new points 
can I draw from the GAN?


• Of course dependant on GAN setup and dataset

• If dataset allows for smooth interpolation: 

       More then N points

• Condition is fulfilled for a lot of physics cases

       Promising for physics application



Thank you


