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Overview

• Motivation

• Joint KL-divergence

• Flows generalize MSE

• Coverage

• Systematics

• Goodness of fit
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Motivation (here astronomical Posteriors)

• Standard recos: Coverage + correct systematics big issue (since years)
                             (what about goodness-of-fit !? )

• Can we maybe solve all issues with neural networks?
Indeed, just using a simple upgrade of our existing networks,
using so called „normalizing flows“.
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What is a Monte Carlo simulation?
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Supervised learning loss
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Meaning of the KL-divergence viewpoint

…
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Meaning of the KL-divergence viewpoint
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Meaning of the KL-divergence viewpoint

…

Standard supervised learning
is performing approximate
Likelihood-free inference

„Neural networks learn to 
approximate the true 
posterior“

! This is a VERY useful viewpoint for us in physics !
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This viewpoint unifies various approaches!

13

Supervised learning Semi-Supervised Learning
Unsupervised learning
(Variational Autoencoders)

Joint KL-Divergence

Extended Supervised 
Learning

obs. labels
both labels

unobs. labels (latent variables)



This viewpoint unifies various approaches!
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Supervised learning Semi-Supervised Learning

Joint KL-Divergence

Extended Supervised 
Learning

classification regression

Normalizing Flows

Goodness-of-Fit

Coverage of posterior regions

Systematics

obs. labels
both labels

unobs. labels (latent variables)

Unsupervised learning
(Variational Autoencoders)

qΦ( zo ; x)

1414

1) Data Encoding
• CNN
• LSTMs
• Graph NN
• ...

2) PDF description



This viewpoint unifies various approaches!

qΦ( zo ; x)
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Supervised learning Semi-Supervised Learning

Joint KL-Divergence

Extended Supervised 
Learning

classification regression

Normalizing Flows

Goodness-of-Fit

Coverage of posterior regions

Systematics

Unsupervised learning
(Variational Autoencoders)

obs. labels
both labels

unobs. labels (latent variables)

This talk

1) Data Encoding
• CNN
• LSTMs
• Graph NN
• ...

2) PDF description



 

Predicting parameters of any complex distribution? E.g. a sum of 
gaussians? Possible, but there is something better …

Normalizing flows: (1912.02762 for a recent review)
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Predicting parameters of any complex distribution? E.g. a sum of 
gaussians? Possible, but there is something better …

Normalizing flows: (1912.02762 for a recent review)

Final distribution

Base distribution
(typically standard normal)

Invertible mapping (inverse required for density evaluation)

Generic Flow:

Parameters of mapping
are output of Neural Network (here conditional on x)

17



 

Predicting parameters of any complex distribution? E.g. a sum of 
gaussians? Possible, but there is something better …

Normalizing flows: (1912.02762 for a recent review)

Final distribution

Base distribution
(typically standard normal)

Invertible mapping

Parameters of mapping
are output of Neural Network (here conditional on x)

Final Gaussian distribution

A Gaussian PDF is an affine normalizing flow:

Generalizes MSE loss …
MSE loss corresponds
to an affine flow with no scaling!

Generic Flow: A particular Flow:

Invertible mapping (inverse required for density evaluation)
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Example Posteriors

Complex flow

Affine flow
(MSE + sigma)
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Example Posteriors
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Example Posteriors

Data encoding
is bottleneck,
not the flow!
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Coverage

•  
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Coverage

•  

Rapid initial training phase to obtain coverage
Slow training phase (diffusive phase) shrinks posterior regions
while maintaining coverage!
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Coverage

Rapid initial training phase to obtain coverage
Slow training phase (diffusive phase) shrinks posterior regions
while maintaining coverage!

24

Also works for arb. posteriors of directions (on spheres)
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Red: True Label White: True Posterior 68% region                      Black: Predicted Posterior 68% region
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Red: True Label True Posterior region: Black                        Colors: Approximated Posterior at various stages of learning



Systematics
 

Coverage for a distribution fitted with systematics (red) applied
to a standard dataset with a fixed systematic value (green)

Overcoverage 
is desired when including
systematics
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Goodness-of-fit
•  

Any event sufficiently dissimilar to training data
has a low p-value …
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Summary

• Supervised Learning learns to approximate the true posterior with a conditional PDF
-> Bayesian systematics: approximates marginalized Posterior

• Normalizing flows (NFs) can be designed to make this conditional PDF as precise as possible
-> supervised learning can be „upgraded“ to behave as usable likelihood-free inference 
(standard MSE loss is not good enough for that)

• Furthermore, normalizing flows allow to
• Calculate exact coverage of the approximate posterior of ANY shape

• Coverage is obtained very quickly in the training, even before it finishes!
• Calculate a goodness-of-fit that is precise and can potentially be used in event

selection (similar to reduced llh)

• We can upgrade our existing supervised learning models (CNN/LSTM) with NFs, get 
improved performance, and get coverage/g-o-f automatically (incl. systematics when 
trained on snowstorm)
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Summary

• Supervised Learning learns to approximate the true posterior with a conditional PDF
-> Bayesian systematics: approximates marginalized Posterior

• Normalizing flows (NFs) can be designed to make this conditional PDF as precise as possible
-> supervised learning can be „upgraded“ to behave as usable likelihood-free inference 
(standard MSE loss is not good enough for that)

• Furthermore, normalizing flows allow to
• Calculate exact coverage of the approximate posterior of ANY shape

• Coverage is obtained very quickly in the training, long before it finishes!
• Calculate a goodness-of-fit that can potentially be used in event

selection

• We can upgrade our existing supervised learning models (CNN/LSTM) with NFs, get 
improved performance (most for non-gaussian Posteriors), and get coverage/g-o-f (incl. 
systematics)

More info: arXiv:2008.05825
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