Selective Background Monte Carlo simulation with deep learning "SmartBKG"

Nikolai Hartmann, Yannick Bross (based on previous work by James Kahn, Andreas Lindner, Kilian Lieret)

September 22, 2020

Introduction

- Event generation takes much less computing time than detector simulation
- Many events discarded (e.g. by skim)
 - \rightarrow try to predict which events will be discarded, already after event generation

Status of the project

- Initiated by James thesis
 - models mainly based on CNNs (RNNs, MLPs also tested)
 - train on low-level event record data (MCParticles)
 - Feed graph structure via "decay string"
- At Dresden Deep Learning Hackathon Kilian, James, Andi, Emilio worked out some graph network architectures that are promising
 - \rightarrow See James talk last year and at CHEP
- Yannick is studying bias mitigations \rightarrow more later
- I'm starting to get back into the project

Graph convolutional networks (GCNs)

Aggregate neighboring node features - similar to neighboring pixels in CNNs:

Simple update rule from Kipf & Welling (arXiv:1609.02907):

 $H^{(l+1)}=\sigma(GH^lW^l)$ with $G=\tilde{D}^{-1/2}\tilde{A}\tilde{D}^{-1/2}$, $\tilde{A}=A+I$ and degree matrix D

 \rightarrow in contrast to CNNs no learnable relative weights between nodes \rightarrow can be added from knowledge about graph structure (e.g. here: tree decay - can apply learnable weights to parent and daughter edges)

The input features (generator level event record)

- Adjacency matrix with daughter mother connections
- PDG ids
 - \rightarrow fed through embedding layer
- p_x, p_y, p_z, E
- vertex position x, y, z
- Production time

Reference architecture

- Adjacency matrix format: Normalized (D^{-1/2}AD^{-1/2}), symmetrized (both Mother→Daughter, Daughter→Mother edges and self-loops)
- Particle transformation:
 - PDG embeddding, concatenate with other particle features
 - 3 Dense layers, 128 neurons each, relu
 - 3 GCN layers, 128 output features each, relu (also experimented with swapping the order etc.)
- GlobalAveragePooling1D (masking padded particles)
- Final transformation: 3 Dense layers, 128 neurons each, relu
- One output value (for classification, sigmoid)

Dataset and training

- FEI hadronic B0 skim on mixed samples:
 - Full reconstruction of hadronic B0 decays (tag side)
 - Filter on reconstructed candidate (e.g. beam constrained Mass) + event level quantities
- pprox 1M training events (roughly balanced)
- Preprocessing:
 - Particle lists cropped at/padded to 100
 - ightarrow actually works quite well with much less (40 used before)
 - \rightarrow mostly crops particles at final stages of decay
 - Adjacency matrix retrieved from one-hot encoding remapped mother particle indices
- Want to provide this (maybe reduced) for IDT ErUM-Data classifier comparison
- Train with batch size 1024
- Binary cross entropy loss
- Stop after no improvement on validation set (20% of training data, wait 10 epochs)

Performance comparison CNN/GCN

 \rightarrow GCN model slightly better than CNN model, but simpler (no decay strings)

Speedup factor

How many more events can you get with the same computing time?

Depends on:

- True positive rate, False positive rate
- Relative processing times between:
 - Simulation + reconstruction
 - Event generation
 - Getting the NN prediction
- Skim retention rate (inital purity)

Reference values (shamelessly rounded from James measurements):

- Ratio between simulation+reconstruction and event generation: \approx 1000
- Ratio between NN evaluation and event generation: \approx 10
- Skim retention rate (for FEI skim): pprox 0.05

Speedup factor for GCN model

(assuming numbers from previous slide)

Bias

Due to false negative events (True events that we rejected) we can get a bias in the distribution of certain quantities

 \rightarrow effect strongest for observables that the skim cuts on

Mitigation via distance correlation loss

Master thesis Yannick Bross

Try to mitigate this by adding a loss term that scales with the correlation between the NN output and one or more observables that should not be biased after a selection

 $L_{\text{tot}} = \text{BCE}(y_{\text{True}}, y_{\text{pred}}) + \lambda \cdot \text{dCorr}(x_{\text{decorr}}, y_{\text{pred}})$

Distance correlation (see Wikipedia for formula)

- Sensitive to non-linear correlations
- 0 If and only if there is no correlation between the quantities
- Usage in loss function for particle physics problems inspired by arXiv:2001.05310

 \rightarrow See https://github.com/gkasieczka/DisCo for a tf and pytorch implementation

Tuning the relative loss contributions

Master thesis Yannick Bross

Including many variables

Master thesis Yannick Bross

- Distance correlation contribution can in principle be added for arbitrary many variables
- Tried for all ≈ 30 variables considered
- Could reach best reduction in overall bias (in terms of average KL divergence of density histograms for these variables)

Experiment-overarching potential

Application for ATLAS? Bachelor theses by Michael Fichtner and Simon Graetz Example for suboptimal filtering:

- Motivation: Some filters suboptimal for certain selections → can we improve with ML?
- Tried to apply similar techniques to ATLAS MC
 - \rightarrow pp collisions are different

(number of generator particles \gg 1000 instead of < 100 at Belle II)

- · More difficult to extract meaningful information from low-level event-record
- MC generators also more compute-intense \rightarrow would need to apply NN in earlier stage

Ideas for the future

- Try to have one metric to summarize performance + bias mitigation
 → maybe statistical error after reweighting a set of distributions to correct remaining
 bias?
 - James thesis: train NN to distinguish between true and true positive events and reweight according to output histogram
 - \rightarrow stat error from accept/reject sampling
 - \rightarrow alternative: uncertainty on weighted events $\sqrt{\sum w_i^2}$
 - Another approach: BDT reweighting or reweighting according to predicted probability
- James idea: directly optimize for maximum speedup
- Different direction: More "classical filtering"
 - Simulate some rejected events as well, weight up by inverse filter efficiency
 - Can do this in "slices"
 - Continuous version: determine probability to be rejected individually per event (e.g. based on NN output)
 - \rightarrow can i train an NN to directly spit out the "optimal" sampling probability?
 - \rightarrow No biases with this approch, but comes at the price of increased stat error $\sqrt{\sum w_i^2}$

Backup

Tuning the relative loss contributions

Studies by Yannick

Bias gets reduced more with higher λ , but comes at cost of lower maximum achievable speedup

	VECMS			Mbc			
lambda	0	0.5	0.5	0.75	1.0	1.5	2.0
Max Speedup	7.6	7.4	6.7	6.7	6.5	6.4	6.1

Number of primary MCParticles per event

Vanilla CNN + wide CNN architecture (old ref.)

Graphics from James

Vanilla CNN + wide CNN architecture (old ref.)

Graphics from James, these studies: only one "Node" block for Vanilla CNN

Loss for maximum speedup

Preliminary/Experimental! Do not use without understanding everything it does wrong!

```
def inverse speedup(
    v true.
   v pred.
   skim retention=0.05.
   ratio gen simrec=0.001.
    ratio nn gen=10.
    from logits=True
):
    if from logits:
        v pred = tf.keras.activations.sigmoid(v pred)
    tpr = (
        tf.reduce sum(v pred[v true==1], axis=0)
        / tf.reduce sum(v true, axis=0)
    v false = tf.cast(v true == 0, tf.float32)
    fpr = (
        tf.reduce_sum(v_pred[v_true==0], axis=0)
        / tf.reduce_sum(v_false, axis=0)
    )
    r = skim retention
   pp = tpr / (tpr + (1 - r) / r * fpr) # purity with NN
   p = skim_retention # initial purity
    f_gr = ratio_gen_simrec
   f_ng = ratio_nn_gen
    return inv_speedup = (
        p / pp + p * (f gr * (f ng + 1.0)) * (1.0 / tpr + (1.0 / pp - 1.0) / fpr)
   ) / (1.0 + f_{gr})
```

Loss for minimum effective uncertainty (sampling method)

Preliminary/Experimental! Do not use without understanding everything it does wrong!

```
def effective uncertainty(v true, filter prob, class weights=[1, 0,05], from logits=True);
    if from logits:
        filter_prob = tf.keras.activations.sigmoid(filter_prob)
    effective selected true = tf.reduce sum(filter prob[v true==1]) * class weights[1]
    effective selected false = tf.reduce sum(filter prob[v true==0]) * class weights[0]
    filter eff = (
        (effective selected true + effective selected false)
        10
            tf.reduce sum(tf.cast(v true==1, tf.float32)) * class weights[1]
            + tf.reduce sum(tf.cast(y true==0, tf.float32)) * class weights[0]
        )
    )
    weights = 1. / filter_prob
    \# sum(w) = sum(n * 1 / n) = N
    \# sum(w^{*}2) = sum(p * (1 / p) ** 2) = sum(1 / p)
    sumw = tf.reduce_sum(tf.cast(v_true==1, tf.float32))
    sumw2 = tf.reduce_sum(weights[y_true==1])
    # effective sample size (sample size with same relative uncertainty)
    neff = (sumw ** 2) / sumw2
    neff *= class_weights[1]
    # i could have simulated this factor of more events. due to filtering
   neff /= filter eff
    return tf.sqrt(neff) / neff
```

Slicing: Relation filter efficiency - sampling probability

Suppose we want that a fraction f of a total number N_{tot} of events ends up in a certain slice that has a filter efficiency of ϵ . Then the number of events that will be generated for that slice is given by

$$fN_{\rm tot} = \epsilon p N_{\rm tot}$$

with the sampling probability p. Consequently the filter efficiency ϵ is given by

$$\epsilon = \frac{f}{p}$$

Since (up to luminosity/cross section normalization) each event is weighted by $\frac{\epsilon}{N}$ this corresponds to a weight with the inverse sampling probability and an overall normalization $\frac{1}{N_{\text{tot}}}$

$$w = \frac{\epsilon}{N} = \frac{f}{pfN_{\text{tot}}} = \frac{1}{pN_{\text{tot}}}$$

Metrics to evaluate bias

Studies by Yannick

Good quantities for measuring bias:

Relative difference in KL divergence or Mean squared error of histograms

First try: Directly optimize speedup NN output:

- Also here: instead of fixed cut, use NN output as sampling probability
- makes defining loss easy, e.g. number of true positives = $\sum_{i \in \mathsf{true events}} \mathrm{output}_i$
 - $\rightarrow~$ "NN decides which events to select"
- Minimize inverse speedup
 - \rightarrow achieved speedup of 5.6

(compared to ≈ 7.5 with original method of training with BCE and optimize cut)

 \rightarrow investigate more

Intermezzo: Filtering at ATLAS

"Classical filtering"

Compose each sample into a certain set of orthogonal "slices" with respective filter efficiencies $\epsilon_{\rm filter}$. If the filter of one samples lets N events pass through, the corresponding weight for each event in that sample is

$$w = \frac{\sigma_{\text{sample}} \cdot \epsilon_{\text{filter}}}{N} \int L \mathrm{d}t$$

That is equivalent to having several slices where each of them has a probability p to let an event through which consequently means to scale the events of that slice up by a factor of $\frac{1}{p}$.

This can be generalised to the continuous case where i assign each event a probability p (e.g. based on the NN output) to let it through and afterwards weight it up by a factor of $\frac{1}{p}$. The optimization problem: How to find the best assignment of p to the events?

First try 2: Optimize for lowest effective uncertainty NN output:

- Define loss by "effective uncertainty in skim (true) selection":
 - Effective sample size: $\frac{(\sum w_i)^2}{\sum w_i^2}$ (unweighted sample size that would have the same relative uncertainty)
 - Define weights by inverse NN output
 - Scale up effective sample size by inverse filter efficiency "i could have simulated this factor of more events"
 - Currently neglecting finite processing time for event generation + evaluation of NN $\,$
- First try: Decrease relative uncertainty by 30% (or: effective speedup factor 2)

Advantage of that method: No Bias

