
Selective Background Monte Carlo simulation
with deep learning

“SmartBKG”

Nikolai Hartmann, Yannick Bross
(based on previous work by James Kahn, Andreas Lindner, Kilian Lieret)

September 22, 2020

1 / 17

Introduction

Generate
Keep

Discard

SkimReconstruct AnalyseSimulate
Keep

Discard

NN

• Event generation takes much less computing time than detector simulation

• Many events discarded (e.g. by skim)
→ try to predict which events will be discarded, already after event generation

2 / 17

Status of the project

• Initiated by James thesis
• models mainly based on CNNs (RNNs, MLPs also tested)
• train on low-level event record data (MCParticles)
• Feed graph structure via “decay string”

• At Dresden Deep Learning Hackathon Kilian, James, Andi, Emilio worked out some graph
network architectures that are promising
→ See James talk last year and at CHEP

• Yannick is studying bias mitigations
→ more later

• I’m starting to get back into the project

3 / 17

https://indico.mpi-cbg.de/event/186/
https://indico.physik.uni-muenchen.de/event/22/contributions/215/attachments/109/160/kahn_smartBKG_graphNN_erum_talk.pdf
https://indico.cern.ch/event/773049/contributions/3474758/attachments/1937900/3212101/CHEP19_KIT.pdf

Graph convolutional networks (GCNs)

Aggregate neighboring node features - similar to neighboring pixels in CNNs:

Simple update rule from Kipf & Welling (arXiv:1609.02907):

H(l+1) = σ(GH lW l) with G = D̃−1/2ÃD̃−1/2, Ã = A+ I and degree matrix D

→ in contrast to CNNs no learnable relative weights between nodes
→ can be added from knowledge about graph structure
(e.g. here: tree decay - can apply learnable weights to parent and daughter edges)

4 / 17

https://arxiv.org/abs/1609.02907

The input features (generator level event record)
Upsilon(4S)

B0 anti-B0

D*- rho0 pi+ pi0 pi0 eta anti-p- p+ D*0

anti-D0 pi- pi+ pi- gamma gamma gamma gamma gamma pi- pi+ pi0 D0 gamma

K+ K- pi0 pi0 gamma gamma K_S0 pi+ pi- gamma

gamma gamma gamma gamma pi+ pi-

• Adjacency matrix with daughter - mother connections

• PDG ids
→ fed through embedding layer

• px, py, pz, E
• vertex position x, y, z

• Production time
5 / 17

Reference architecture

• Adjacency matrix format: Normalized (D−1/2AD−1/2), symmetrized
(both Mother→Daughter, Daughter→Mother edges and self-loops)

• Particle transformation:
• PDG embeddding, concatenate with other particle features
• 3 Dense layers, 128 neurons each, relu
• 3 GCN layers, 128 output features each, relu

(also experimented with swapping the order etc.)

• GlobalAveragePooling1D (masking padded particles)

• Final transformation: 3 Dense layers, 128 neurons each, relu

• One output value (for classification, sigmoid)

6 / 17

Particle Features

Concatenate

Embedding

PDG ids

Fully connected (3 layers, shared)

Graph Convolution (3 layers)

Global average pooling

Adjacency matrix (normalized)

Fully connected (3 layers)

1D Output

per-particle
transformation

event-level
feature extraction

7 / 17

Dataset and training

• FEI hadronic B0 skim on mixed samples:
• Full reconstruction of hadronic B0 decays (tag side)
• Filter on reconstructed candidate (e.g. beam constrained Mass)

+ event level quantities

• ≈ 1M training events (roughly balanced)

• Preprocessing:
• Particle lists cropped at/padded to 100
→ actually works quite well with much less (40 used before)
→ mostly crops particles at final stages of decay

• Adjacency matrix retrieved from one-hot encoding remapped mother particle indices

• Want to provide this (maybe reduced) for IDT ErUM-Data classifier comparison

• Train with batch size 1024

• Binary cross entropy loss

• Stop after no improvement on validation set (20% of training data, wait 10 epochs)

8 / 17

Performance comparison CNN/GCN

ROC curve

0.0 0.2 0.4 0.6 0.8 1.0
True positive rate

0.0

0.2

0.4

0.6

0.8

1.0

1
- F

al
se

 p
os

iti
ve

 ra
te

CNN (AUC: 0.897)
GCN (AUC: 0.910)

Purity/Precision, taking skim retention rate into account

0.0 0.2 0.4 0.6 0.8 1.0
True positive rate

0.2

0.4

0.6

0.8

1.0

Pu
rit

y
(p

re
cis

io
n)

CNN (AUC: 0.897)
GCN (AUC: 0.910)

→ GCN model slightly better than CNN model, but simpler (no decay strings)

9 / 17

Speedup factor

How many more events can you get with the same computing time?

Depends on:

• True positive rate, False positive rate

• Relative processing times between:
• Simulation + reconstruction
• Event generation
• Getting the NN prediction

• Skim retention rate (inital purity)

Reference values (shamelessly rounded from James measurements):

• Ratio between simulation+reconstruction and event generation: ≈ 1000

• Ratio between NN evaluation and event generation: ≈ 10

• Skim retention rate (for FEI skim): ≈ 0.05

10 / 17

Speedup factor for GCN model
(assuming numbers from previous slide)

0.0 0.2 0.4 0.6 0.8 1.0
True positive rate

0

1

2

3

4

5

6

7
Sp

ee
du

p
fa

ct
or

Speedup factor
Threshold cut

0.0

0.2

0.4

0.6

0.8

1.0

Th
re

sh
ol

d
cu

t

11 / 17

Bias

Events that pass skim (True events):

5.24 5.25 5.26 5.27 5.28 5.29
Mbc [GeV]

0

10

20

30

40

50

60

70

ar
b.

 u
ni

ts

original
NN > 0.6
NN > 0.7
NN > 0.8
NN > 0.9

Due to false negative events (True events that we rejected) we can get a bias in the
distribution of certain quantities
→ effect strongest for observables that the skim cuts on

12 / 17

Mitigation via distance correlation loss
Master thesis Yannick Bross

Try to mitigate this by adding a loss term that scales with the correlation between the NN
output and one or more observables that should not be biased after a selection

Ltot = BCE(yTrue, ypred) + λ · dCorr(xdecorr, ypred)

Distance correlation (see Wikipedia for formula)

• Sensitive to non-linear correlations

• 0 If and only if there is no correlation between the quantities

• Usage in loss function for particle physics problems inspired by arXiv:2001.05310

→ See https://github.com/gkasieczka/DisCo for a tf and pytorch implementation

13 / 17

https://en.wikipedia.org/wiki/Distance_correlation
https://arxiv.org/abs/2001.05310
https://github.com/gkasieczka/DisCo

Tuning the relative loss contributions
Master thesis Yannick Bross

Effective for the variable trained on
→ lower bias for same speedup factor

But: mitigation for one quantity
can make bias for others worse

The contribution for the additional loss term can be tuned via a weight λ

Ltot = BCE(yTrue, ypred) + λ · dCorr(xdecorr, ypred)

14 / 17

Including many variables
Master thesis Yannick Bross

• Distance correlation contribution can in principle be added for arbitrary many variables

• Tried for all ≈ 30 variables considered

• Could reach best reduction in overall bias
(in terms of average KL divergence of density histograms for these variables)

15 / 17

Experiment-overarching potential
Application for ATLAS? Bachelor theses by Michael Fichtner and Simon Graetz

Example for suboptimal filtering:

• Motivation: Some filters suboptimal for certain selections
→ can we improve with ML?

• Tried to apply similar techniques to ATLAS MC
→ pp collisions are different
(number of generator particles � 1000 instead of < 100 at Belle II)

• More difficult to extract meaningful information from low-level event-record

• MC generators also more compute-intense
→ would need to apply NN in earlier stage

16 / 17

Ideas for the future

• Try to have one metric to summarize performance + bias mitigation
→ maybe statistical error after reweighting a set of distributions to correct remaining
bias?
• James thesis: train NN to distinguish between true and true positive events and reweight

according to output histogram
→ stat error from accept/reject sampling
→ alternative: uncertainty on weighted events

√∑
w2

i
• Another approach: BDT reweighting or reweighting according to predicted probability

• James idea: directly optimize for maximum speedup

• Different direction: More “classical filtering”
• Simulate some rejected events as well, weight up by inverse filter efficiency
• Can do this in “slices”
• Continuous version: determine probability to be rejected individually per event

(e.g. based on NN output)
→ can i train an NN to directly spit out the “optimal” sampling probability?

→ No biases with this approch, but comes at the price of increased stat error
√∑

w2
i

17 / 17

http://arogozhnikov.github.io/2015/10/09/gradient-boosted-reweighter.html

Backup

18 / 17

Tuning the relative loss contributions
Studies by Yannick

Bias gets reduced more with higher λ, but comes at cost of lower maximum achievable speedup

vECMS Mbc

19 / 17

Number of primary MCParticles per event

20 / 17

Vanilla CNN + wide CNN architecture (old ref.)
Graphics from James

MCParticles Decay string

Particles NN Decay NN

Concatenate

Fully connected

Prediction

Embedding

21 / 17

Vanilla CNN + wide CNN architecture (old ref.)
Graphics from James, these studies: only one “Node” block for Vanilla CNN

Particle input

Conv1D (3, 64)

Prediction

PDG motherPDG

Embedding

Concatenate

Conv1D (3, 64)

AvgPool1D

Node (2, 3, 64, Avg)

Node (2, 3, 64, Avg)

Node (2, 3, 64, Avg)

GlobalAvgPool1D

Dense

Decay string

Prediction

Embedding

Dense

N paths
Conv1D (4, 64) Conv1D (5, 64) Conv1D (9, 64)

Concatenate

GlobalAvgPool GlobalAvgPool GlobalAvgPool

21 / 17

Loss for maximum speedup
Preliminary/Experimental! Do not use without understanding everything it does wrong!

def inverse_speedup(

y_true,

y_pred,

skim_retention=0.05,

ratio_gen_simrec=0.001,

ratio_nn_gen=10,

from_logits=True

):

if from_logits:

y_pred = tf.keras.activations.sigmoid(y_pred)

tpr = (

tf.reduce_sum(y_pred[y_true==1], axis=0)

/ tf.reduce_sum(y_true, axis=0)

)

y_false = tf.cast(y_true == 0, tf.float32)

fpr = (

tf.reduce_sum(y_pred[y_true==0], axis=0)

/ tf.reduce_sum(y_false, axis=0)

)

r = skim_retention

pp = tpr / (tpr + (1 - r) / r * fpr) # purity with NN

p = skim_retention # initial purity

f_gr = ratio_gen_simrec

f_ng = ratio_nn_gen

return inv_speedup = (

p / pp + p * (f_gr * (f_ng + 1.0)) * (1.0 / tpr + (1.0 / pp - 1.0) / fpr)

) / (1.0 + f_gr)

22 / 17

Loss for minimum effective uncertainty (sampling method)
Preliminary/Experimental! Do not use without understanding everything it does wrong!

def effective_uncertainty(y_true, filter_prob, class_weights=[1, 0.05], from_logits=True):

if from_logits:

filter_prob = tf.keras.activations.sigmoid(filter_prob)

effective_selected_true = tf.reduce_sum(filter_prob[y_true==1]) * class_weights[1]

effective_selected_false = tf.reduce_sum(filter_prob[y_true==0]) * class_weights[0]

filter_eff = (

(effective_selected_true + effective_selected_false)

/ (

tf.reduce_sum(tf.cast(y_true==1, tf.float32)) * class_weights[1]

+ tf.reduce_sum(tf.cast(y_true==0, tf.float32)) * class_weights[0]

)

)

weights = 1. / filter_prob

sum(w) = sum(p * 1 / p) = N

sum(w**2) = sum(p * (1 / p) ** 2) = sum(1 / p)

sumw = tf.reduce_sum(tf.cast(y_true==1, tf.float32))

sumw2 = tf.reduce_sum(weights[y_true==1])

effective sample size (sample size with same relative uncertainty)

neff = (sumw ** 2) / sumw2

neff *= class_weights[1]

i could have simulated this factor of more events, due to filtering

neff /= filter_eff

return tf.sqrt(neff) / neff

23 / 17

Slicing: Relation filter efficiency - sampling probability

Suppose we want that a fraction f of a total number Ntot of events ends up in a certain slice
that has a filter efficiency of ε. Then the number of events that will be generated for that slice
is given by

fNtot = εpNtot

with the sampling probability p. Consequently the filter efficiency ε is given by

ε =
f

p

Since (up to luminosity/cross section normalization) each event is weighted by ε
N this

corresponds to a weight with the inverse sampling probability and an overall normalization 1
Ntot

w =
ε

N
=

f

pfNtot
=

1

pNtot

24 / 17

Metrics to evaluate bias
Studies by Yannick

visible Energy of Event CMS Mbc

Good quantities for measuring bias:
Relative difference in KL divergence or Mean squared error of histograms

25 / 17

First try: Directly optimize speedup
NN output:

• Also here: instead of fixed cut, use NN output as sampling probability

• makes defining loss easy, e.g. number of true positives =
∑

i∈true events
outputi

→ “NN decides which events to select”

• Minimize inverse speedup
→ achieved speedup of 5.6
(compared to ≈ 7.5 with original method of training with BCE and optimize cut)
→ investigate more

26 / 17

Intermezzo: Filtering at ATLAS
“Classical filtering”

Compose each sample into a certain set of orthogonal “slices” with respective filter efficiencies
εfilter. If the filter of one samples lets N events pass through, the corresponding weight for each
event in that sample is

w =
σsample · εfilter

N

∫
Ldt

That is equivalent to having several slices where each of them has a probability p to let an
event through which consequently means to scale the events of that slice up by a factor of 1

p .

This can be generalised to the continuous case where i assign each event a probability p (e.g.
based on the NN output) to let it through and afterwards weight it up by a factor of 1

p . The
optimization problem: How to find the best assignment of p to the events?

27 / 17

First try 2: Optimize for lowest effective uncertainty
NN output:

0.0 0.2 0.4 0.6 0.8 1.0
NN output (sampling probability)

0

1000

2000

3000

4000

5000

6000
False
True

• Define loss by “effective uncertainty in skim (true) selection”:

• Effective sample size: (
∑

wi)
2∑

w2
i

(unweighted sample size that would have the same relative uncertainty)
• Define weights by inverse NN output
• Scale up effective sample size by inverse filter efficiency

“i could have simulated this factor of more events”
• Currently neglecting finite processing time for event generation + evaluation of NN

• First try: Decrease relative uncertainty by 30% (or: effective speedup factor 2)
28 / 17

Advantage of that method: No Bias

5.24 5.25 5.26 5.27 5.28 5.29
Mbc [GeV]

0

10

20

30

40

ar
b.

 u
ni

ts

Original
Filtered + weighted

29 / 17

