Identification of Patterns in Cosmic-Ray Arrival Directions using **Dynamic Graph Convolutional Neural Networks**

Teresa Bister, Martin Erdmann, Jonas Glombitza **Niklas Langner**, Josina Schulte, Marcus Wirtz

Motivation

- → Identify patterns to identify sources
- → Pattern recognition task
- → Use convolutional neural networks

Approach

Single Source

EdgeConv¹ Layer

$$h_{\Theta}^{a}\left(x_{i,c}, x_{i,c}\right) = \sum_{c=1}^{M} \theta_{c}^{a} x_{i,c} + \sum_{c=1}^{M} \theta_{c}^{\prime a}(x_{i,c} - x_{i,c}) \qquad a = 1 \dots K \text{ (number of filters)}$$

¹ https://arxiv.org/abs/1801.07829

Network Architecture

¹ <u>https://arxiv.org/abs/1902.08570</u>

Simulation of a Single Source

Simplified scenario: one source pattern of N_S cosmic rays + isotropic background

Isotropy

Coherent deflection

Rotation in random

angles

direction with rotation

 $\delta_{\rm coh}(R = E/Z) = \frac{D}{R/EV}$ rad

1.

- **
- Turbulent deflection
 Scattering according to
 Fisher distribution of width

$$\sigma_{\rm turb}(R = E/Z) = \frac{T}{R/EV}$$
rad

Training

- 1000 cosmic rays with E > 40 EeV, spectrum similar to measurements of Pierre Auger
 Observatory
- Simulate on the fly during training → **no overfitting**
- Train on strong multiplets and let the network generalize

Sensitivity

Analyze cosmic-ray skies simulated using position-dependent deflection strengths from JF12

- Determine the **'signal'-output** of
 - 10^3 cosmic-ray skies for **varying** $N_{s}(x_{sig})$
 - 10⁷ isotropic cosmic-ray skies
- Calculate the relative amount of 'signal'-outputs from isotropy $\ge x_{sig}$

The Network's Working Principle

Individual Classification of Cosmic Rays

Individual Classification of Cosmic Rays

(of 1000 cosmic rays)

Multiple Sources: Simulation & Training

- Realistic **3D universe**: **uniformly distributed** and identical sources, accounting for:
 - 1. **Geometrical effect** on fluxes: $f_i \propto d_i^{-2}$
 - 2. Interactions, e.g. with photon fields
- Use parameters from Auger Combined Fit¹
- Only free parameter: source density $ho_{
 m S}$
- Apply deflection based on JF12

Adjust network to new simulation:

- EdgeConv-dimensions: 64/128/256
- Concatenation: Yes
- Train on $\rho_{\rm S} = 10^{-3}/{\rm Mpc^3}$
- Deflection strengths and directions maps from JF12
 randomly rotated and used for all cosmic rays to achieve global consistency

Sensitivity

Sensitivity: Effect of Limited Sky Coverage

Examplary sky coverage of observatory in galactic coordinates

Conclusion

- (Dynamic) GCNN well-suited for sparse cosmic-ray data, efficiently using all available information
- Network automatically performs clustering
- High **sensitivity for a single pattern** of one strong source $(5\sigma \text{ at } f_{sig} = 1.9\%)$
 - → Possibility to **identify individual source cosmic rays**
- Identify the **global structure** of simulated universe $(5\sigma \text{ at } \rho_{\rm S} \approx 1.2 \cdot 10^{-2}/{\rm Mpc^3})$
 - → Constrain source density
- → Great potential for data from current observatories (N_{CRs}~1000)

Backup

Dynamic Graph Convolutional Neural Network

¹ https://arxiv.org/abs/1801.07829

Comparison to 2pt auto-correlation

Conservative 2pt-*p*-values:

- Calculate using 180 angle-bins with 1000 skies
- Chose smallest value from all bins for each sky
- Calculate median of those 1000 values

Individual Classifier

Comparison of strategies to achieve classification of individual cosmic rays

- 1. 'Binary': Binary cosmic-ray sky classifier with threshold
- 2. 'Individual': Network explicitly trained to classify individual CRs (1000 outputs)

Training on simulation of multiple sources

- Based on Auger (parameters from Combined Fit): 1000 cosmic rays with E > 40 EeV,
- Simulate on the fly during training \rightarrow no overfitting
- Train on $\rho_{\rm S} = 10^{-3}/{\rm Mpc^3}$ or $\rho_{\rm S} = 10^{-2}/{\rm Mpc^3}$ (with exposure)
- Deflection strengths and directions maps from JF12 randomly rotated and used for all cosmic rays
- Turbulent deflection: 50% of maximum during training

EdgeConv dims	<u>Loss</u>
64/128/256	Categorical cross entropy
<u>Optimizer</u>	<u>Concatenation</u>
Adam	Yes

Graph Convolutional Neural Network

Source density limit from AGASA data

Akeno Giant Air Shower Array (AGASA): cosmic ray observatory, in operation from 1990 to 2007

1. Calculate *p*-value using equatorial scrambling as isotropy

 \rightarrow p = 0.82

2. Take *p***-value distribution** for varying ρ_S and determine the **probability of p** \ge **0.82**

