QMA-hardness of Consistency of Local Density Matrices
with Applications to Quantum Zero-Knowledge

Anne Broadbent * Alex B. Grilo f
Abstract

We provide several advances to the understanding of the class of Quantum Merlin-Arthur proof sys-
tems (QMA), the quantum analogue of NP. Our central contribution is proving a longstanding conjecture
that the Consistency of Local Density Matrices (CLDM) problem is QMA-hard under Karp reductions. The input of
CLDM consists of local reduced density matrices on sets of at most k qubits, and the problem asks if there is an
n-qubit global quantum state that is locally consistent with all of the k-qubit local density matrices. The contain-
ment of CLDM in QMA and the QMA-hardness under Turing reductions were proved by Liu [APPROX-RANDOM
2006]. Liu also conjectured that CLDM is QMA-hard under Karp reductions, which is desirable for applications,
and we finally prove this conjecture. We establish this result using the techniques of simulatable codes of Grilo,
Slofstra, and Yuen [FOCS 2019], simplifying their proofs and tailoring them to the context of QMA.

In order to develop applications of CLDM, we propose a framework that we call locally simulatable proofs
for QMA: this provides QMA proofs that can be efficiently verified by probing only k qubits and, furthermore,
the reduced density matrix of any k-qubit subsystem of a good witness can be computed in polynomial time,
independently of the witness. Within this framework, we show several advances in zero-knowledge in the
quantum setting. We show for the first time a commit-and-open computational zero-knowledge proof system for
all of QMA, as a quantum analogue of a “sigma” protocol. We then define a Proof of Quantum Knowledge, which
guarantees that a prover is effectively in possession of a quantum witness in an interactive proof, and show that
our zero-knowledge proof system satisfies this definition. Finally, we show that our proof system can be used to
establish that QMA has a quantum non-interactive zero-knowledge proof system in the secret parameter setting.
Full version available at: arxiv:1911.07782!

In a QMA proof system, an all-powerful prover produces a quantum proof that is verified by a quantum
polynomially-bounded verifier. Given the probabilistic nature of quantum computation, we require that for
true statements, there exists a quantum proof that makes the verifier accept with high probability (this is
called completeness), whereas all “proofs” for false statements are rejected with high probability (which is called
soundness). On top of being the generalization of one of the most important complexity classes, the importance
of QMA from a physical perspective comes from the fact that Kitaev also proved that a problem very relevant to
physics, the local Hamiltonian problem, is QMA-complete. Much follow-up work focused on understanding the
complete problems for QMA, mostly by improving the parameters of the QMA-hard Local Hamiltonian problem,
or making it closer to models more physically relevant, e.g. [7,14,16].

Despite the importance of this class, relatively few QMA-complete problems are known. In 2014, a survey of
QMA-complete languages [2] contained a list of 21 problems that are known to be QMA-complete?, and since
then, the situation has not drastically changed. This contrasts with the development of NP, where only a few years
after the developments surrounding 3-SAT, hundreds of NP-complete problems were known [10, 15].

The Consistency of Local Density matrices problem (CLDM), is a related and conceptually interesting problem,
and is defined as follows. Given the classical description of local density matrices p1, ..., pm, €ach on a set of at
most k qubits and for a global system of n qubits, is there a state 7 that is consistent with such reduced states?
Liu [18] showed that this problem is in QMA and that it is QMA-hard under Turing reductions, i.e., a deterministic
polynomial-time algorithm with access to an oracle that solves CLDM in unit time can solve any problem in QMA;
however, Liu left as open problem to determine if CLDM is also QMA-complete under standard Karp reductions,
i.e., to show an efficient mapping between yes- and no-instances of any QMA problem to yes- and no-instances
of CLDM, respectively. We remark that Turing reductions are rather troublesome for QMA, since the class is not
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known (nor expected) to be closed under complement, i.e., it is widely believed that QMA # coQMA. If this is
indeed the case, then Turing reductions do not allow a black-box generalization of results regarding the CLDM
problem to all problems in QMA, and this highlights the importance of Karp reductions.

The main result of our work is to show that the CLDM problem is QMA-hard under Karp reductions, solving
the 14-year-old problem proposed by Liu [18].

Result 1. The CLDM problem is QMA-complete under Karp reductions.

To prove this result, we build on a tool developed in [13] called locally simulatable codes. Roughly, a code is
s-simulatable if there is a classical algorithm (the simulator), that can compute the reduced density matrix of the
encoding of some n-qubit state p on any set of at most s qubits of the encoding. Moreover, we also require that we
can compute the density matrices of the computation on encoded state.® Importantly, the simulator must run in
time poly(n, 2°).*

In [13], the authors show that the concatenated Steane code is a locally simulatable code, using extensive
calculations with the stabilizers of such a code. A conceptual contribution of our work is to provide a simpler proof
of this fact, using solely the connections between quantum error correcting codes and secret sharing protocols [5].

We first recall the quantum Cook-Levin theorem proved by Kitaev [17]. In his proof, Kitaev uses the
circuit-to-Hamiltonian construction [8], mapping an arbitrary QMA verification circuit V' = Up...U; to a local
Hamiltonian Hy that enforces that low energy states are history states of the computation, i.e., a superposition of
the snapshots of V' for every timestep 0 < ¢t < T
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In the above, the first register is called the clock register, and it encodes the timestep of the computation, while the
second register contains the snapshot of the computation at time ¢, i.e., the quantum gates Uy, ..., U, applied to the
initial state |1;n:¢) = |¢)|0)®4, that consists of the quantum witness and auxiliary qubits. The Hamiltonian Hy
also guarantees that |v;,,;;) has the correct form at ¢ = 0, and that the final step accepts, i.e., the output qubit is
close to |1).

The solution is to consider a different verification algorithm V"’ that implements V' on encoded data, much like
in the theory of fault-tolerant quantum computing. In more details, for a fixed locally simulatable code, V' expects
the encoding of the original witness Enc(|¢)) and then, with her raw auxiliary states, she creates encodings of
auxiliary states Enc(|0)) and magic states Enc(|MS)), and then performs the computation V' through transversal
gates and magic state gadgets, and finally decodes the output qubit. This gives rise to a new history state:
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where |¢, ..} = Enc(|¢))|0)®4" and U}, ..., Uy~ are the gates of V' described above. Using the techniques from [13],
we can show that from the properties of the locally simulatable codes, the reduced density matrix on every set of 5
qubits of |®’) can be efficiently computed. In this work, we prove that these reduced density matrices are in fact
QMA-hard instances of CLDM. More concretely, we show that these reduced density matrices of a hypothetical
history state of an accepting QMA-verification can always be computed, and there exists a global state (namely the
history state) consistent with these reduced density matrices if and only if the original QMA verification accepts

with overwhelming probability (and therefore we are in the case of a yes-instance).

Applications to Zero-Knowledge Protocols

Intuitively, a proof system (such as QMA) is said to be zero-knowledge if the verifier does not learn anything from
interacting with the prover. This property is formalized by showing the existence of an efficient simulator, which is

3 This is reminiscent of the theory of fault-tolerant quantum computation, according to which some quantum error-correcting codes
allow computations over encoded data by using “transversal” gates and encoded magic states.

“*Note that a straightforward classical simulation of a computation would lead to a runtime O(2") and our simulation exponentially
improves on the dependency on n.



able to reproduce (i.e., simulate) the output of any given verifier on a yes instance (without having direct access to
the actual prover or witness). As paradoxical as it sounds, statistical zero-knowledge interactive proof systems are
known to be possible for a host of languages; their impact is profound and applicable to multiple areas, including
cryptography [11] and complexity theory [20].

Zero-Knowledge Proofs for QMA. There has been a recent effort to devise efficient and simpler zero-knowledge
protocols for QMA. We point out that Liu [18] observed very early on that the CLDM problem could admit a
simple zero-knowledge proof system following the “commit-and-open” approach, as in the 3-COL protocol (this is
called a X-protocol). Inspired by this observation, recent progress has established the existence of zero-knowledge
protocols for all of QMA [3]. We note that although the proof system used there is reminiscent of a X-protocol,
there are a number of reasons why it is not a “natural” quantum analogue of a ¥ protocol (which we call a =
protocol). These include: (i) the use of a coin-flipping protocol, increasing the communication cost; (ii) the
verifier’s message is not a random challenge; and (iii) the final answer is not restricted to the opening of some
committed values. In our work, we finally show a simple = protocol for QMA via our hardness result for CLDM.

Result 2. All problems in QMA admit a computational zero-knowledge =-proof system.

Zero-Knowledge Proofs of Knowledge (PoK). In a zero-knowledge proof, the verifier becomes convinced of the
existence of a witness, but this a priori has no bearing on the prover actually having in her possession such a
witness. In some circumstances, it is important to guarantee that the prover actually has a witness. This is the
realm of a gero-knowledge proof of knowledge (PoK) [1,12].

We give an example to depict this subtlety. Let us consider the task of anonymous credentials [4]. In this
setting, Alice wants to authenticate into some online service using her private credentials. In order to protect
her credentials, she could engage in a zero-knowledge proof; this, however would be unsatisfactory, since the
verifier in this scenario would be become convinced of the existence of accepting credentials, which does not
necessarily translate to Alice actually being in the possession of these credentials. To remedy this situation, the PoK
property establishes an “if-and-only-if” situation: if the verifier accepts, then we can guarantee that the prover
actually knows a witness. This notion is formally defined by requiring the existence of an extractor, which is a
polynomial-time process K that outputs a valid witness when given oracle access to some prover P* that makes
the verifier accept with high enough probability.

In the quantum case, there has been some positive results in terms of the security of classical proofs of
knowledge for NP against quantum adversaries [19]. However, in the fully quantum case (that is, proofs of
quantum knowledge for QMA), no scheme has been proposed. One of the possible reasons why no such proof of
quantum knowledge protocols was proposed is the lack of a simple zero-knowledge proof for QMA.

We provide the definition of a Proof of Quantum Knowledge (PoQ).> In short, we say that a proof system is
a PoQ if there exists a quantum polynomial-time extractor K that has oracle access to a quantum prover which
makes the verifier accept with high enough probability, and the extractor is able to output a sufficiently good
witness for a “QMA-relation”. We note that this definition for a PoQ is not a straightforward adaptation of the
classical definition; this is because NP has many properties such as perfect completeness, perfect soundness and
even that proofs can be copied, that are not expected to hold in the QMA case. We are then able to show that our
= protocols for QMA described in Result 2 is a PoQ. This is the first proof of knowledge for QMA.°

Result 3. All problems in QMA admit a zero-knowledge proof of quantum knowledge proof system.

We remark that using techniques for post-hoc delegation of quantum computation [9], our PoQ for QMA may
be understood as a proof-of-work for quantum computations, since it could be used to convince a verifier that the
prover has indeed created the history state of some pre-defined computation. This is very relevant in the scenario
of testing small-scale quantum computers in the most adversarial model possible: the zero-knowledge property
ensures that the verifier learns nothing but the truth of the statement, while the PoQ property means that the
prover has indeed prepared a ground state with the given properties.

Remark 1. We note that in our work, we also present other results concerning the concept of locally simulatable
proofs, statistical zero-knowledge arguments and non-interactive zero-knowledge protocols in the secret parameters
scenario. Given that these contributions easily follow from the ones presented here, we omit them in this abstract.

>This definition is joint work with Coladangelo, Vidick and Zhang [6].
®See also independent and concurrent work by Coladangelo, Vidick and Zhang [6].
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