

QMA-hardness of Consistency of local density matrices with applications to quantum ZK

Alex Bredariol Grilo

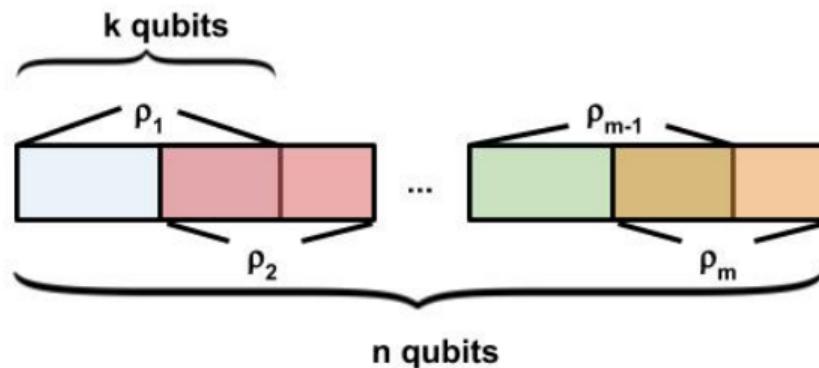
joint work with Anne Broadbent (U. of Ottawa)
arxiv:1911.07782

Consistency of local density matrices problem

Consistency of local density matrices problem

Input: Reduced density matrices ρ_1, \dots, ρ_m on k -qubits

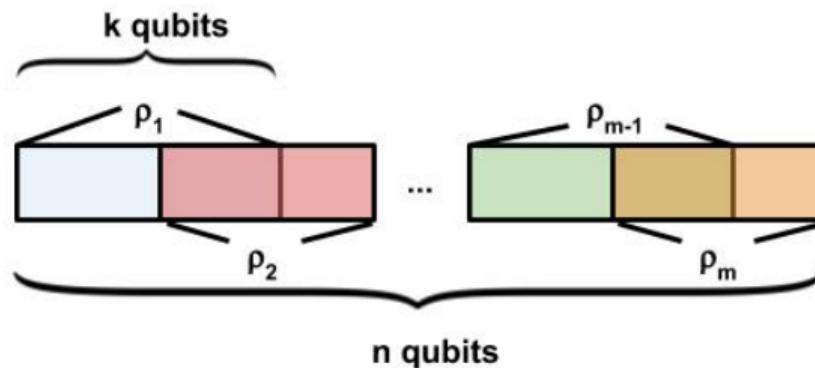
Output: yes: $\exists \psi$ such that $\forall i : \left\| \text{Tr}_{\overline{S_i}}(\psi) - \rho_i \right\| \leq \frac{1}{\exp(n)}$
no: $\forall \psi, \exists i : \left\| \text{Tr}_{\overline{S_i}}(\psi) - \rho_i \right\| \geq \frac{1}{\text{poly}(n)}$



Consistency of local density matrices problem

Input: Reduced density matrices ρ_1, \dots, ρ_m on k -qubits

Output: yes: $\exists \psi$ such that $\forall i : \left\| \text{Tr}_{\overline{S_i}}(\psi) - \rho_i \right\| \leq \frac{1}{\exp(n)}$
no: $\forall \psi, \exists i : \left\| \text{Tr}_{\overline{S_i}}(\psi) - \rho_i \right\| \geq \frac{1}{\text{poly}(n)}$

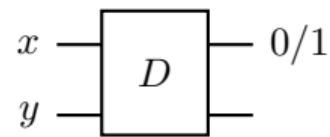


How hard is this problem?

Complexity theory background

Complexity theory background

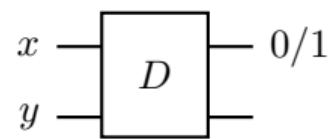
Problem $L \in \text{NP}$



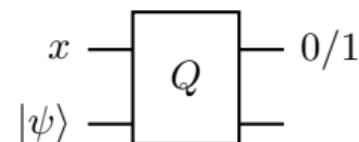
for $x \in L_{\text{yes}}$,
 $\exists y D(x, y) = 1$
for $x \in L_{\text{no}}$,
 $\forall y D(x, y) = 0$

Complexity theory background

Problem $L \in \text{NP}$



Problem $L \in \text{QMA}$



for $x \in L_{\text{yes}}$,
 $\exists y D(x, y) = 1$
for $x \in L_{\text{no}}$,
 $\forall y D(x, y) = 0$

for $x \in L_{\text{yes}}$,
 $\exists |\psi\rangle \Pr[Q(x, |\psi\rangle) = 1] \geq \frac{2}{3}$
for $x \in L_{\text{no}}$,
 $\forall |\psi\rangle \Pr[Q(x, |\psi\rangle) = 0] \geq \frac{2}{3}$

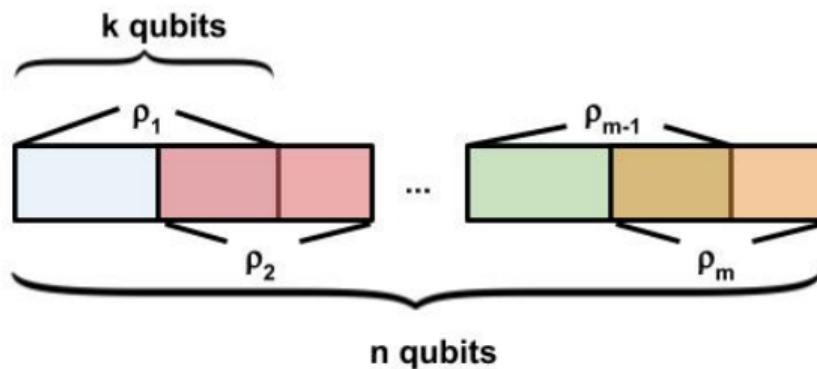
Consistency of local density matrices problem

Consistency of local density matrices problem

Input: Reduced density matrices ρ_1, \dots, ρ_m on k -qubits

Output: yes: $\exists \psi$ such that $\forall i : \left\| \text{Tr}_{\overline{S_i}}(\psi) - \rho_i \right\| \leq \frac{1}{\exp(n)}$

no: $\forall \psi, \exists i : \left\| \text{Tr}_{\overline{S_i}}(\psi) - \rho_i \right\| \geq \frac{1}{\text{poly}(n)}$

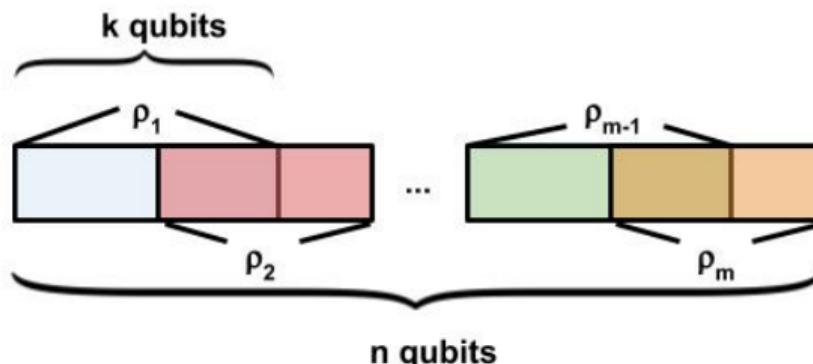


Consistency of local density matrices problem

Input: Reduced density matrices ρ_1, \dots, ρ_m on k -qubits

Output: yes: $\exists \psi$ such that $\forall i : \left\| \text{Tr}_{\overline{S_i}}(\psi) - \rho_i \right\| \leq \frac{1}{\exp(n)}$

no: $\forall \psi, \exists i : \left\| \text{Tr}_{\overline{S_i}}(\psi) - \rho_i \right\| \geq \frac{1}{\text{poly}(n)}$



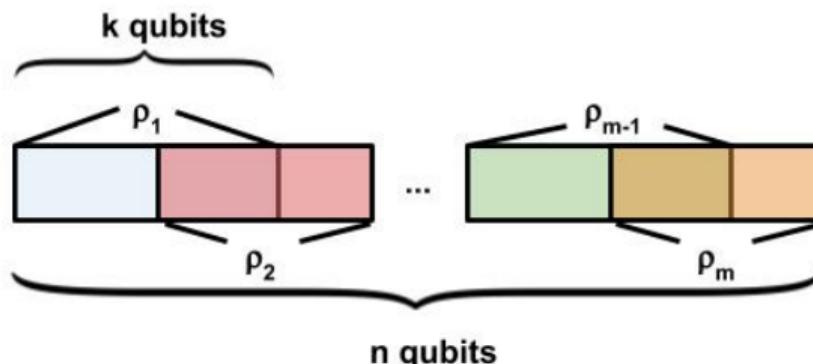
- Liu'06: containment in QMA, and partial result on QMA-hardness

Consistency of local density matrices problem

Input: Reduced density matrices ρ_1, \dots, ρ_m on k -qubits

Output: yes: $\exists \psi$ such that $\forall i : \left\| \text{Tr}_{\overline{S_i}}(\psi) - \rho_i \right\| \leq \frac{1}{\exp(n)}$

no: $\forall \psi, \exists i : \left\| \text{Tr}_{\overline{S_i}}(\psi) - \rho_i \right\| \geq \frac{1}{\text{poly}(n)}$



- Liu'06: containment in QMA, and partial result on QMA-hardness
- Our work:
 - ▶ QMA-hardness of CLDM
 - ▶ Applications to complexity theory and quantum cryptography

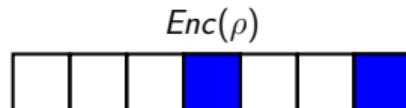
Simulatable codes - warm up

Simulatable codes - warm up

$$\begin{aligned} |0\rangle &\mapsto \frac{1}{2\sqrt{2}} (|0000000\rangle + |1010101\rangle + |0110011\rangle + |1100110\rangle \\ &\quad + |0001111\rangle + |1011010\rangle + |0111100\rangle + |1101001\rangle) \\ |1\rangle &\mapsto \frac{1}{2\sqrt{2}} (|1111111\rangle + |0101010\rangle + |1001100\rangle + |0011001\rangle \\ &\quad + |1110000\rangle + |0100101\rangle + |1000011\rangle + |0010110\rangle) \end{aligned}$$

Simulatable codes - warm up

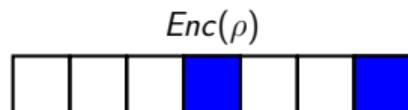
$$\begin{aligned} |0\rangle &\mapsto \frac{1}{2\sqrt{2}}(|0000000\rangle + |1010101\rangle + |0110011\rangle + |1100110\rangle \\ &\quad + |0001111\rangle + |1011010\rangle + |0111100\rangle + |1101001\rangle) \\ |1\rangle &\mapsto \frac{1}{2\sqrt{2}}(|1111111\rangle + |0101010\rangle + |1001100\rangle + |0011001\rangle \\ &\quad + |1110000\rangle + |0100101\rangle + |1000011\rangle + |0010110\rangle) \end{aligned}$$



- For every ρ and $i, j \in [7]$, $Tr_{\overline{\{i,j\}}} (Enc(\rho)) = \frac{I}{4}$

Simulatable codes - warm up

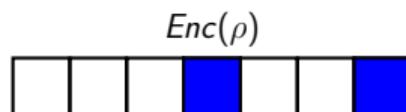
$$\begin{aligned} |0\rangle &\mapsto \frac{1}{2\sqrt{2}}(|0000000\rangle + |1010101\rangle + |0110011\rangle + |1100110\rangle \\ &\quad + |0001111\rangle + |1011010\rangle + |0111100\rangle + |1101001\rangle) \\ |1\rangle &\mapsto \frac{1}{2\sqrt{2}}(|1111111\rangle + |0101010\rangle + |1001100\rangle + |0011001\rangle \\ &\quad + |1110000\rangle + |0100101\rangle + |1000011\rangle + |0010110\rangle) \end{aligned}$$



- For every ρ and $i, j \in [7]$, $Tr_{\overline{\{i,j\}}} (Enc(\rho)) = \frac{I}{4}$
 - ▶ The reduced density matrix on 2 qubits can be *efficiently computed*

Simulatable codes - warm up

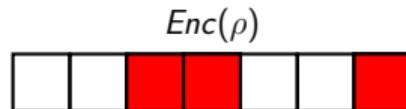
$$\begin{aligned} |0\rangle &\mapsto \frac{1}{2\sqrt{2}}(|0000000\rangle + |1010101\rangle + |0110011\rangle + |1100110\rangle \\ &\quad + |0001111\rangle + |1011010\rangle + |0111100\rangle + |1101001\rangle) \\ |1\rangle &\mapsto \frac{1}{2\sqrt{2}}(|1111111\rangle + |0101010\rangle + |1001100\rangle + |0011001\rangle \\ &\quad + |1110000\rangle + |0100101\rangle + |1000011\rangle + |0010110\rangle) \end{aligned}$$



- For every ρ and $i, j \in [7]$, $Tr_{\overline{\{i,j\}}} (Enc(\rho)) = \frac{I}{4}$
 - ▶ The reduced density matrix on 2 qubits can be *efficiently computed*
 - ▶ Independently of the logical state

Simulatable codes - warm up

$$\begin{aligned}|0\rangle &\mapsto \frac{1}{2\sqrt{2}}(|0000000\rangle + |1010101\rangle + |0110011\rangle + |1100110\rangle \\&\quad + |0001111\rangle + |1011010\rangle + |0111100\rangle + |1101001\rangle) \\|1\rangle &\mapsto \frac{1}{2\sqrt{2}}(|1111111\rangle + |0101010\rangle + |1001100\rangle + |0011001\rangle \\&\quad + |1110000\rangle + |0100101\rangle + |1000011\rangle + |0010110\rangle)\end{aligned}$$



- For every ρ and $i, j \in [7]$, $Tr_{\overline{\{i,j\}}} (Enc(\rho)) = \frac{I}{4}$
 - ▶ The reduced density matrix on 2 qubits can be *efficiently computed*
 - ▶ Independently of the logical state
- Not true anymore for $i, j, k \in [7]$

Simulatable codes

Simulatable codes

$\log_3(s)$ -fold concatenated Steane code is s -simulatable

Simulatable codes

$\log_3(s)$ -fold concatenated Steane code is s -simulatable

- ① There is a $\text{poly}(2^s)$ -time *classical* algorithm that compute any reduced density matrix of $\text{Enc}(\rho)$ on s qubits, without knowing ρ

Simulatable codes

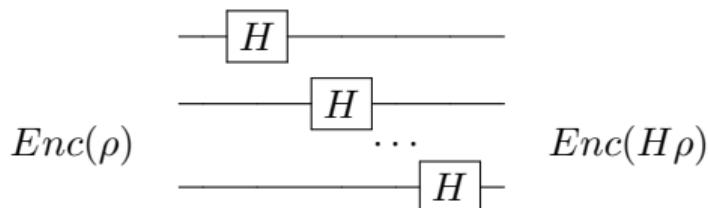
$\log_3(s)$ -fold concatenated Steane code is s -simulatable

- ① There is a $\text{poly}(2^s)$ -time *classical* algorithm that compute any reduced density matrix of $\text{Enc}(\rho)$ on s qubits, without knowing ρ
- ② There is a $\text{poly}(2^s)$ -time *classical* algorithm that compute any reduced density matrix of s qubits of (partial) computation on $\text{Enc}(\rho)$

Simulatable codes

$\log_3(s)$ -fold concatenated Steane code is s -simulatable

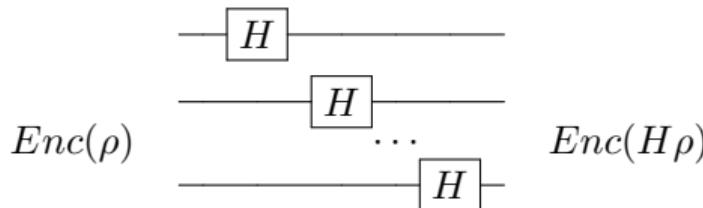
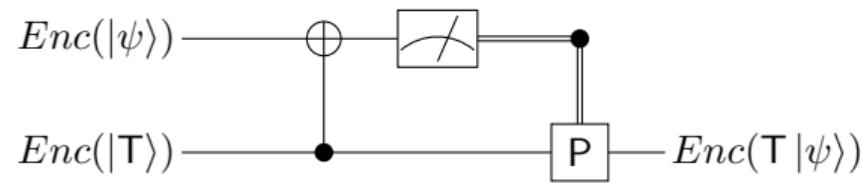
- ① There is a $\text{poly}(2^s)$ -time *classical* algorithm that compute any reduced density matrix of $\text{Enc}(\rho)$ on s qubits, without knowing ρ
- ② There is a $\text{poly}(2^s)$ -time *classical* algorithm that compute any reduced density matrix of s qubits of (partial) computation on $\text{Enc}(\rho)$
 - ▶ transversal Clifford gates



Simulatable codes

$\log_3(s)$ -fold concatenated Steane code is s -simulatable

- 1 There is a $\text{poly}(2^s)$ -time *classical* algorithm that compute any reduced density matrix of $\text{Enc}(\rho)$ on s qubits, without knowing ρ
- 2 There is a $\text{poly}(2^s)$ -time *classical* algorithm that compute any reduced density matrix of s qubits of (partial) computation on $\text{Enc}(\rho)$
 - ▶ transversal Clifford gates
 - ▶ T-gadgets



CLDM is QMA-hard

Circuit-to-hamiltonian construction

Given a circuit $V = U_T \dots U_1$ and initial state $|\psi_{init}\rangle = |\phi\rangle |0^a\rangle$, there is a reduction to a 5-Local Hamiltonian H_V such that

CLDM is QMA-hard

Circuit-to-hamiltonian construction

Given a circuit $V = U_T \dots U_1$ and initial state $|\psi_{init}\rangle = |\phi\rangle |0^a\rangle$, there is a reduction to a 5-Local Hamiltonian H_V such that

- If V accepts with high probability, then the *history state*

$$\frac{1}{\sqrt{T+1}} \sum_{t \in [T+1]} |t\rangle \otimes U_t \dots U_1 |\psi_{init}\rangle$$

has low energy in respect to H_V .

CLDM is QMA-hard

Circuit-to-hamiltonian construction

Given a circuit $V = U_T \dots U_1$ and initial state $|\psi_{init}\rangle = |\phi\rangle |0^a\rangle$, there is a reduction to a 5-Local Hamiltonian H_V such that

- If V accepts with high probability, then the *history state*

$$\frac{1}{\sqrt{T+1}} \sum_{t \in [T+1]} |t\rangle \otimes U_t \dots U_1 |\psi_{init}\rangle$$

has low energy in respect to H_V .

- If V accepts with low probability, then all states have high energy in respect to H_V .

CLDM is QMA-hard

Circuit-to-hamiltonian construction

Given a circuit $V = U_T \dots U_1$ and initial state $|\psi_{init}\rangle = |\phi\rangle |0^a\rangle$, there is a reduction to a 5-Local Hamiltonian H_V such that

- If V accepts with high probability, then the *history state*

$$\frac{1}{\sqrt{T+1}} \sum_{t \in [T+1]} |t\rangle \otimes U_t \dots U_1 |\psi_{init}\rangle$$

has low energy in respect to H_V .

- If V accepts with low probability, then all states have high energy in respect to H_V .

Goal

Tweak the verification algorithm such that we can compute the reduced density matrices of history states.

CLDM is QMA-hard

Encoded circuit

Instead of $V = U_T \dots U_1$ and proof $|\phi\rangle$, we use the following circuit V' :

- ① Receive $Enc(|\phi\rangle \langle \phi|)$ from Prover
- ② Check encoding of the witness
- ③ Create $Enc(|0\rangle)$ and $Enc(|T\rangle)$
- ④ Perform logical V on encoded states
- ⑤ Decode the output

CLDM is QMA-hard

Encoded circuit

Instead of $V = U_T \dots U_1$ and proof $|\phi\rangle$, we use the following circuit V' :

- ① Receive $\frac{1}{2^n} \sum_{a,b} Enc(|a, b\rangle \langle a, b| \otimes X^a Z^b |\phi\rangle \langle \phi| Z^b X^a)$ from Prover
- ② Check encoding of the witness
- ③ Undoes the OTP of the witness
- ④ Create $Enc(|0\rangle)$ and $Enc(|T\rangle)$
- ⑤ Perform logical V on encoded states
- ⑥ Decode the output

CLDM is QMA-hard

Encoded circuit

Instead of $V = U_T \dots U_1$ and proof $|\phi\rangle$, we use the following circuit V' :

- ① Receive $\frac{1}{2^n} \sum_{a,b} Enc(|a, b\rangle \langle a, b| \otimes X^a Z^b |\phi\rangle \langle \phi| Z^b X^a)$ from Prover
- ② Check encoding of the witness
- ③ Undoes the OTP of the witness
- ④ Create $Enc(|0\rangle)$ and $Enc(|T\rangle)$
- ⑤ Perform logical V on encoded states
- ⑥ Decode the output

Theorem

There is a classical simulator that computes in polynomial time the 5-qubit reduced density matrices of the history state of the encoded verifier.

CLDM is QMA-hard

Encoded circuit

Instead of $V = U_T \dots U_1$ and proof $|\phi\rangle$, we use the following circuit V' :

- ① Receive $\frac{1}{2^n} \sum_{a,b} Enc(|a, b\rangle \langle a, b| \otimes X^a Z^b |\phi\rangle \langle \phi| Z^b X^a)$ from Prover
- ② Check encoding of the witness
- ③ Undoes the OTP of the witness
- ④ Create $Enc(|0\rangle)$ and $Enc(|T\rangle)$
- ⑤ Perform logical V on encoded states
- ⑥ Decode the output

Theorem

There is a classical simulator that computes in polynomial time the 5-qubit reduced density matrices of the history state of the encoded verifier. Moreover there is a global state consistent with the reduced density matrices iff it is a yes-instance.

CLDM is QMA-hard - Overview of the proof

- ① There is a polynomial-time algorithm that computes the density matrices of snapshot of the computation at time t
 - ▶ At every step, every qubit is encoded and if it is decoded, we know exactly its value

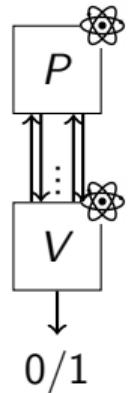
CLDM is QMA-hard - Overview of the proof

- ① There is a polynomial-time algorithm that computes the density matrices of snapshot of the computation at time t
 - ▶ At every step, every qubit is encoded and if it is decoded, we know exactly its value
- ② There is a polynomial-time algorithm that computes the density matrices of “invervals” of the computation
 - ▶ Uses the snapshot simulation with some loss in the parameters

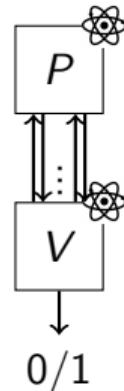
CLDM is QMA-hard - Overview of the proof

- ① There is a polynomial-time algorithm that computes the density matrices of snapshot of the computation at time t
 - ▶ At every step, every qubit is encoded and if it is decoded, we know exactly its value
- ② There is a polynomial-time algorithm that computes the density matrices of “invervals” of the computation
 - ▶ Uses the snapshot simulation with some loss in the parameters
- ③ There is a polynomial-time algorithm that computes the density matrices of the history state
 - ▶ Most of clock qubits are traced-out, so the remaining state is a mixture of intervals

Quantum Zero-knowledge for L

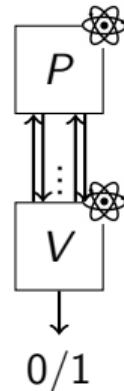


Quantum Zero-knowledge for L



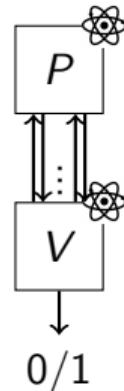
1. If $x \in L_{yes}$, V accepts whp
2. If $x \in L_{no}$, V rejects whp

Quantum Zero-knowledge for L



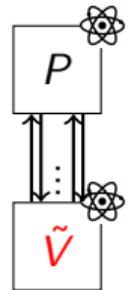
1. If $x \in L_{\text{yes}}$, V accepts whp
2. If $x \in L_{\text{no}}$, V rejects whp
3. If $x \in L_{\text{yes}}$, V learns nothing

Quantum Zero-knowledge for L

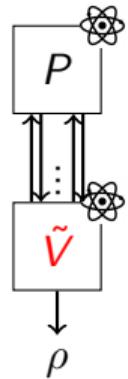


1. If $x \in L_{yes}$, V accepts whp
2. If $x \in L_{no}$, V rejects whp
3. If $x \in L_{yes}$, V learns nothing

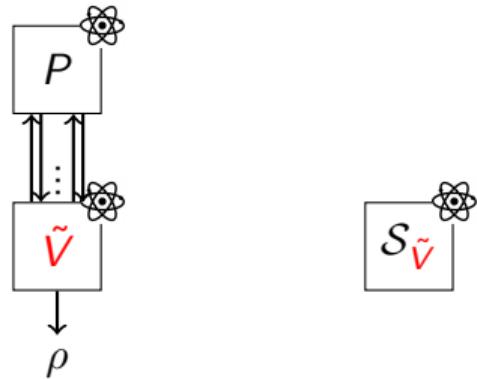
Quantum Zero-knowledge for L



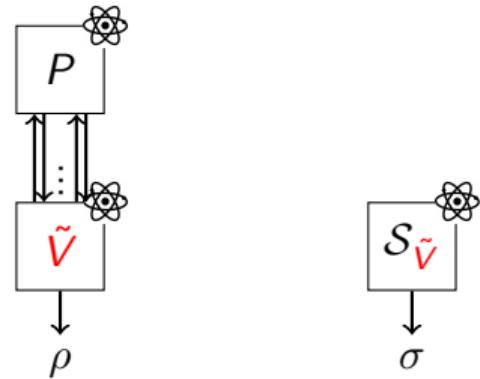
Quantum Zero-knowledge for L



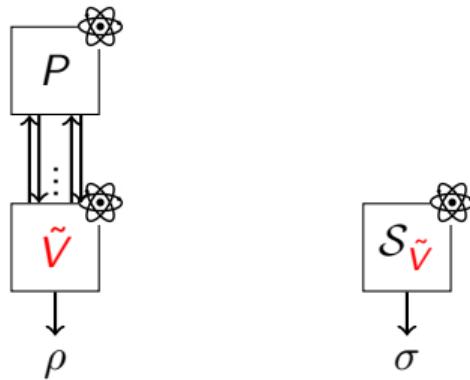
Quantum Zero-knowledge for L



Quantum Zero-knowledge for L



Quantum Zero-knowledge for L



Quantum computational zero-knowledge

ρ and σ cannot be **efficiently** distinguished:

$$\forall \text{ quantum poly-time } \mathcal{A} : |\Pr[\mathcal{A}(\rho) = 1] - \Pr[\mathcal{A}(\sigma) = 1]| \leq \text{negl}(n)$$

Zero-knowledge for QMA

Zero-knowledge for QMA

- Assuming qOWF: $\text{QMA} \subseteq \text{QZK}$ since $\text{PSPACE} = \text{CZK} \subseteq \text{QZK}$
 - Need to go through $\text{QMA} \subseteq \text{PP}$
 - Desired: Efficient prover with QMA witness
- BJSW'16: $\text{QMA} \subseteq \text{QZK}$ with efficient prover
 - Multiple rounds of communication
 - Somewhat complicated

Zero-knowledge for QMA

- Assuming qOWF: $\text{QMA} \subseteq \text{QZK}$ since $\text{PSPACE} = \text{CZK} \subseteq \text{QZK}$
 - Need to go through $\text{QMA} \subseteq \text{PP}$
 - Desired: Efficient prover with QMA witness
- BJSW'16: $\text{QMA} \subseteq \text{QZK}$ with efficient prover
 - Multiple rounds of communication
 - Somewhat complicated
- This work: explore CLDM
 - ▶ “commit-and-open” Proof of Knowledge QZK proof for QMA
 - ▶ “commit-and-open” Proof of Knowledge QSZK argument for QMA
 - ▶ QNISZK for QMA in the secret parameters setup

Zero-knowledge for QMA

- Assuming qOWF: $\text{QMA} \subseteq \text{QZK}$ since $\text{PSPACE} = \text{CZK} \subseteq \text{QZK}$
 - Need to go through $\text{QMA} \subseteq \text{PP}$
 - Desired: Efficient prover with QMA witness
- BJSW'16: $\text{QMA} \subseteq \text{QZK}$ with efficient prover
 - Multiple rounds of communication
 - Somewhat complicated
- This work: explore CLDM
 - ▶ “commit-and-open” Proof of Knowledge [QZK proof for QMA](#)
 - ▶ “commit-and-open” Proof of Knowledge QSZK argument for QMA
 - ▶ QNISZK for QMA in the secret parameters setup

CLDM is in QMA [Liu'06]

Verification algorithm

CLDM is in QMA [Liu'06]

Verification algorithm

Input: ρ_1, \dots, ρ_m

- ① Prover sends $\psi^{\otimes \ell}$, where ψ is consistent with all ρ_i
- ② Verifier picks i and random k -qubit Pauli P
- ③ Verifier measures the qubits corresponding to ρ_i on each (supposed) copy of ψ
- ④ Verifier accepts iff the average of the measurement outcomes is close to $\text{Tr}(P\rho_i)$

CLDM is in QMA [Liu'06]

Verification algorithm

Input: ρ_1, \dots, ρ_m

- ① Prover sends $\psi^{\otimes \ell}$, where ψ is consistent with all ρ_i
- ② Verifier picks i and random k -qubit Pauli P
- ③ Verifier measures the qubits corresponding to ρ_i on each (supposed) copy of ψ
- ④ Verifier accepts iff the average of the measurement outcomes is close to $Tr(P\rho_i)$

- Completeness
 $Tr(P\psi) \approx Tr(P\rho_i) + \text{Hoeffding's inequality}$

CLDM is in QMA [Liu'06]

Verification algorithm

Input: ρ_1, \dots, ρ_m

- ① Prover sends $\psi^{\otimes \ell}$, where ψ is consistent with all ρ_i
- ② Verifier picks i and random k -qubit Pauli P
- ③ Verifier measures the qubits corresponding to ρ_i on each (supposed) copy of ψ
- ④ Verifier accepts iff the average of the measurement outcomes is close to $Tr(P\rho_i)$

- Completeness

$$Tr(P\psi) \approx Tr(P\rho_i) + \text{Hoeffding's inequality}$$

- Soundness

- ▶ Prover sends state σ
- ▶ Let ψ_j be the register that should be the j -th copy of ψ
- ▶ Let $\tilde{\psi} = \frac{1}{\ell} \sum_j \psi_j$
- ▶ Expected value of the outcomes is $Tr(P\tilde{\psi}) + \text{Hoeffding's inequality}$

Very simple ZK proof for QMA

P

V

ρ_1, \dots, ρ_m

Very simple ZK proof for QMA

P

V

$\psi^{\otimes \ell}$

ρ_1, \dots, ρ_m

Very simple ZK proof for QMA

P

V

$$X^a Z^b \psi^{\otimes \ell} Z^b X^a$$

ρ_1, \dots, ρ_m

a_1, b_1

a_2, b_2

\dots

a_{n-1}, b_{n-1}

a_n, b_n

Very simple ZK proof for QMA

P

$$X^a Z^b \psi^{\otimes \ell} Z^b X^a$$

V

$$\rho_1, \dots, \rho_m$$

Very simple ZK proof for QMA

P

$a_1, b_1 \rightarrow 564651$

$a_2, b_2 \rightarrow 984565$

...

$a_n, b_n \rightarrow 894102$

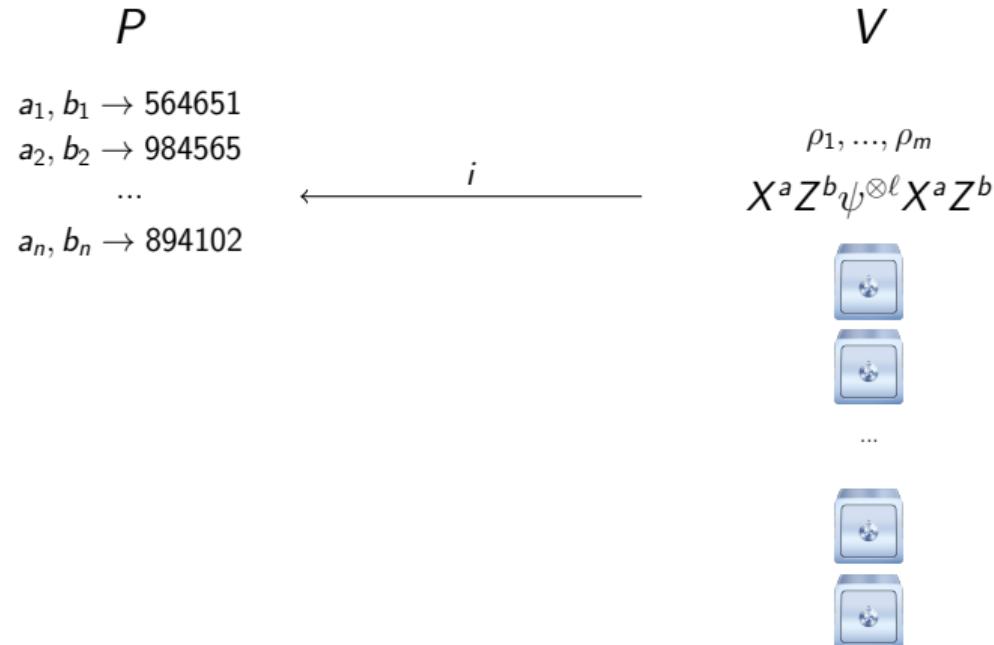
V

ρ_1, \dots, ρ_m

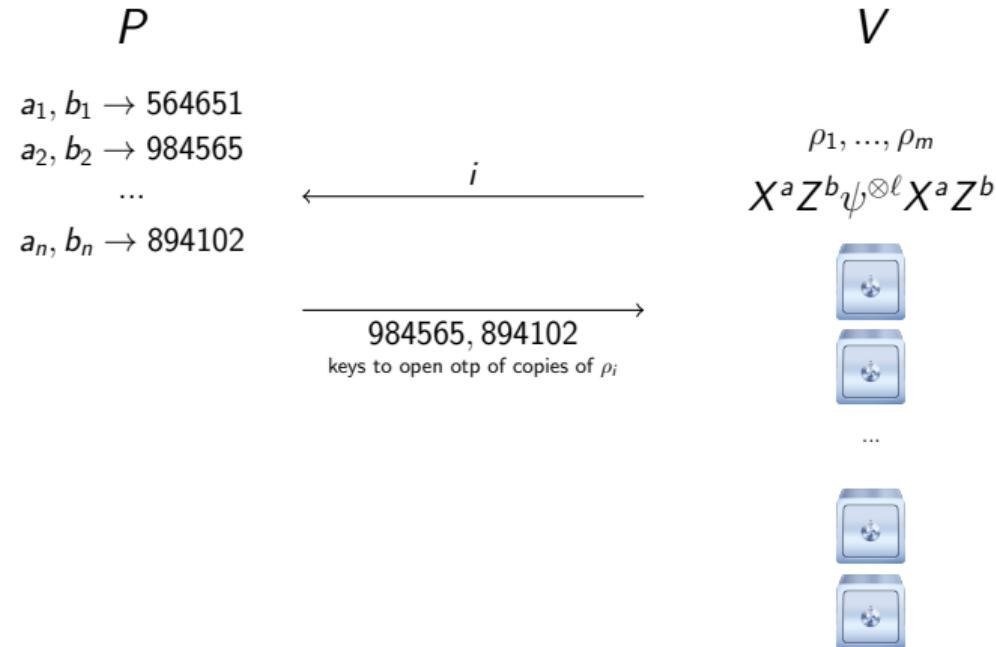
$X^a Z^b \psi^{\otimes \ell} X^a Z^b$

...

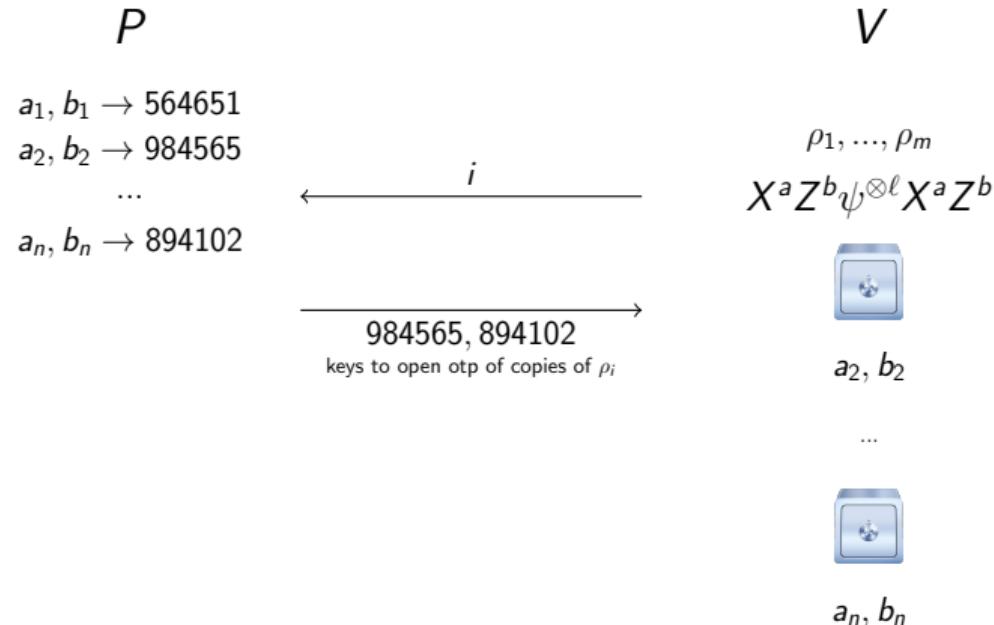
Very simple ZK proof for QMA



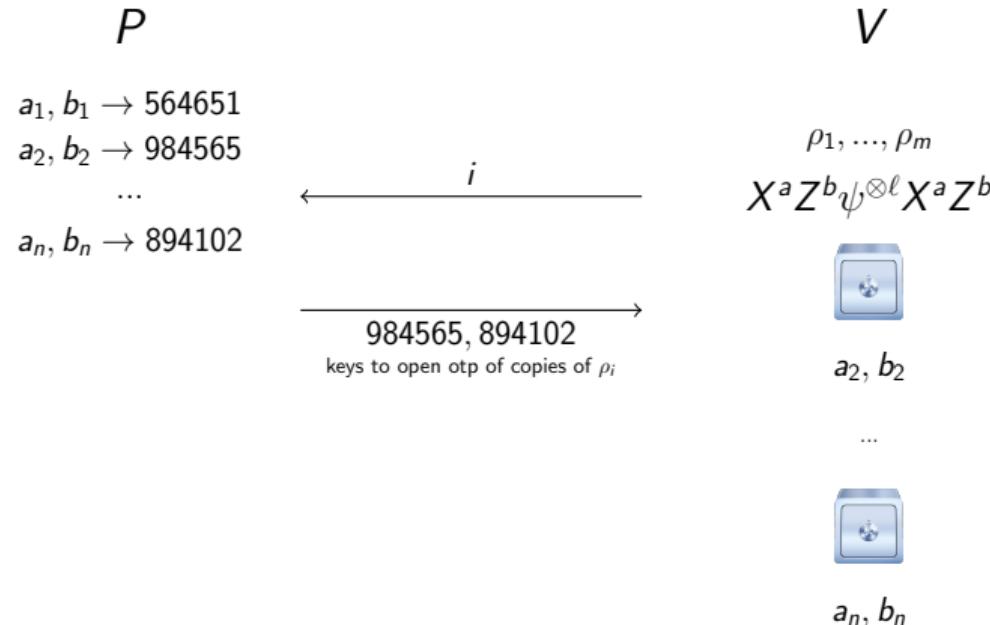
Very simple ZK proof for QMA



Very simple ZK proof for QMA



Very simple ZK proof for QMA



Completeness ✓

Soundness ✓

ZK ✓

Open questions

- Complexity of CLDM with density matrices of size $\{2, 3, 4\}$
- Complexity of approximation of CLDM
- QNIZK protocol for QMA in the CRS model
- More efficient Proof of Quantum knowledge protocols

Open questions

- Complexity of CLDM with density matrices of size $\{2, 3, 4\}$
- Complexity of approximation of CLDM
- QNIZK protocol for QMA in the CRS model
- More efficient Proof of Quantum knowledge protocols

Thank you for your attention!