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How hard is this problem?
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Consistency of local density matrices problem
Input: Reduced density matrices p1, ..., pm on k-qubits

Output: yes: J such that Vi : H Trs—i(@b) —pill < expl(n)

no: e, Ji ; H Trg () - p;‘ > ke
k qubits
P1 \ prn-1
T To—
— P, P ot
n qubits
@ Liu'06: containment in QMA, and partial result on QMA-hardness

@ Our work:
» QMA-hardness of CLDM
» Applications to complexity theory and quantum cryptography
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10) %( 0000000) + [1010101) + |0110011) + [1100110)
4+ |0001111) + [1011010) + |0111100) + [1101001))
1) 2\%( |1111111) + [0101010) + |1001100) + [0011001)

+ 1110000 + |0100101) + 1000011 + |0010110))

Enc(p
- [ ]

e For every p and i,j € [7], Tr{u}(Enc(p)) = %

» The reduced density matrix on 2 qubits can be efficiently computed
» Independently of the logical state

e Not true anymore for i, j, k € [7]
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Simulatable codes

logs(s)-fold concatenated Steane code is s-simulatable

© There is a poly(2°)-time classical algorithm that compute any reduced density matrix of
Enc(p) on s qubits, without knowing p

@ There is a poly(2°)-time classical algorithm that compute any reduced density matrix of s
qubits of (partial) computation on Enc(p)

transversal Clifford gates
T-gadgets

) Enc(|4))

o

Enc Enc(H
v HO By %%Encmw»
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5-Local Hamiltonian Hy such that
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CLDM is QMA-hard

Circuit-to-hamiltonian construction

Given a circuit V = Ur...U; and initial state |¢jn;t) = |¢)|0?), there is a reduction to a
5-Local Hamiltonian Hy such that

o If V accepts with high probability, then the history state

1
== > 1t ® Upe.Us [inie)

te[T+1]

has low energy in respect to Hy .

o If V accepts with low probability, then all states have high energy in respect to Hy, .

Goal

Tweak the verification algorithm such that we can compute the reduced density matrices of
history states.
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CLDM is QMA-hard

Encoded circuit

Instead of V = Ur...U; and proof |¢), we use the following circuit V'
@ Receive Enc(|¢) (¢|) from Prover
@ Check encoding of the witness
© Create Enc(|0)) and Enc(|T))

@ Perform logical V on encoded states

© Decode the output
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Encoded circuit

Instead of V = Ur...U; and proof |¢), we use the following circuit V'
QO Receive 5 > apEnc(la, b) (a, b| @ X3Zb|¢) (¢| ZPX?) from Prover
@ Check encoding of the witness
© Undoes the OTP of the witness
© Create Enc(|0)) and Enc(|T))
© Perform logical V on encoded states
© Decode the output

Theorem

There is a classical simulator that computes in polynomial time the 5-qubit reduced density
matrices of the history state of the encoded verifier. Moreover there is a global state
consistent with the reduced density matrices iff it is a yes-instance.

I /g



CLDM is QMA-hard - Overview of the proof

© There is a polynomial-time algorithm that computes the density matrices of snapshot of
the computation at time t

> At every step, every qubit is encoded and if it is decoded, we know exactly its value
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CLDM is QMA-hard - Overview of the proof

© There is a polynomial-time algorithm that computes the density matrices of snapshot of
the computation at time t

> At every step, every qubit is encoded and if it is decoded, we know exactly its value

@ There is a polynomial-time algorithm that computes the density matrices of “invervals” of
the computation
» Uses the snapshot simulation with some loss in the parameters

© There is a polynomial-time algorithm that computes the density matrices of the history
state

» Most of clock qubits are traced-out, so the remaining state is a mixture of intervals
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Quantum Zero-knowledge for L

— &
P |
p o

Quantum computational zero-knowledge

p and o cannot be efficiently distinguished:
V quantum poly-time A : |Pr[A(p) = 1] — Pr[A(c) = 1]| < negl(n)
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@ Assuming qOWF: QMA C QZK since PSPACE = CZK C QZK

Need to go through QMA C PP
Desired: Efficient prover with QMA witness

e BJSW'16: QMA C QZK with efficient prover

Multiple rounds of communication
Somewhat complicated
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Verification algorithm

Input: p1,...,pm
@ Prover sends ¥®, where 1 is consistent with all p;
@ Verifier picks i and random k-qubit Pauli P

© \Verifier measures the qubits corresponding to p; on each (supposed) copy of 9

© \Verifier accepts iff the the average of the measurement outcomes is close to Tr(Pp;)
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CLDM is in QMA [Liu’06]
Verification algorithm
Input: p1,..., pm
@ Prover sends ¥®¢, where v is consistent with all p;
@ Verifier picks i and random k-qubit Pauli P
© \Verifier measures the qubits corresponding to p; on each (supposed) copy of 9

© \Verifier accepts iff the the average of the measurement outcomes is close to Tr(Pp;)

o Completeness
Tr(P) =~ Tr(Pp;) + Hoeffding's inequality
@ Soundness

» Prover sends state o
Let 7); be the register that should be the j-th copy of ¥

Let § = § 3,9
Expected value of the outcomes is Tr(Pv) + Hoeffding's inequality
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Open questions

Complexity of CLDM with density matrices of size {2, 3,4}
Complexity of approximation of CLDM
QNIZK protocol for QMA in the CRS model

More efficient Proof of Quantum knowledge protocols
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QNIZK protocol for QMA in the CRS model

More efficient Proof of Quantum knowledge protocols

Thank you for your attention!
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