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Consistency of local density matrices problem

Input: Reduced density matrices ρ1, ..., ρm on k-qubits

Output: yes: ∃ψ such that ∀i :
∥∥∥TrSi (ψ)− ρi

∥∥∥ ≤ 1
exp(n)

no: ∀ψ, ∃i :
∥∥∥TrSi (ψ)− ρi

∥∥∥ ≥ 1
poly(n)

How hard is this problem?
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Complexity theory background

Problem L ∈ NP Problem L ∈ QMA

x
D

0/1

y

x
Q

0/1

|ψ〉

for x ∈ Lyes ,
∃y D(x , y) = 1

for x ∈ Lno ,
∀y D(x , y) = 0

for x ∈ Lyes ,
∃ |ψ〉 Pr [Q(x , |ψ〉) = 1] ≥ 2

3

for x ∈ Lno ,
∀ |ψ〉 Pr [Q(x , |ψ〉) = 0] ≥ 2

3
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Our work:

I QMA-hardness of CLDM
I Applications to complexity theory and quantum cryptography
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Simulatable codes - warm up

|0〉 7→ 1

2
√
2
( |0000000〉+ |1010101〉+ |0110011〉+ |1100110〉

+ |0001111〉+ |1011010〉+ |0111100〉+ |1101001〉)

|1〉 7→ 1

2
√
2
( |1111111〉+ |0101010〉+ |1001100〉+ |0011001〉

+ |1110000〉+ |0100101〉+ |1000011〉+ |0010110〉)

Enc(ρ)

For every ρ and i , j ∈ [7], Tr{i ,j}(Enc(ρ)) = I
4

I The reduced density matrix on 2 qubits can be efficiently computed
I Independently of the logical state

Not true anymore for i , j , k ∈ [7]
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Simulatable codes

log3(s)-fold concatenated Steane code is s-simulatable

1 There is a poly(2s)-time classical algorithm that compute any reduced density matrix of
Enc(ρ) on s qubits, without knowing ρ

2 There is a poly(2s)-time classical algorithm that compute any reduced density matrix of s
qubits of (partial) computation on Enc(ρ)

I transversal Clifford gates
I T-gadgets

H

H
Enc(ρ) · · · Enc(Hρ)

H

Enc(|ψ〉)

Enc(|T〉) Enc(T |ψ〉)P
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CLDM is QMA-hard

Circuit-to-hamiltonian construction

Given a circuit V = UT ...U1 and initial state |ψinit〉 = |φ〉 |0a〉, there is a reduction to a
5-Local Hamiltonian HV such that

If V accepts with high probability, then the history state

1√
T + 1

∑
t∈[T+1]

|t〉 ⊗ Ut ...U1 |ψinit〉

has low energy in respect to HV .

If V accepts with low probability, then all states have high energy in respect to HV .

Goal

Tweak the verification algorithm such that we can compute the reduced density matrices of
history states.
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CLDM is QMA-hard

Encoded circuit

Instead of V = UT ...U1 and proof |φ〉, we use the following circuit V ′:

1 Receive Enc(|φ〉 〈φ|) from Prover

2 Check encoding of the witness

3 Create Enc(|0〉) and Enc(|T〉)
4 Perform logical V on encoded states

5 Decode the output

Theorem

There is a classical simulator that computes in polynomial time the 5-qubit reduced density
matrices of the history state of the encoded verifier.

Moreover there is a global state
consistent with the reduced density matrices iff it is a yes-instance.
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CLDM is QMA-hard - Overview of the proof

1 There is a polynomial-time algorithm that computes the density matrices of snapshot of
the computation at time t

I At every step, every qubit is encoded and if it is decoded, we know exactly its value

2 There is a polynomial-time algorithm that computes the density matrices of “invervals” of
the computation

I Uses the snapshot simulation with some loss in the parameters

3 There is a polynomial-time algorithm that computes the density matrices of the history
state

I Most of clock qubits are traced-out, so the remaining state is a mixture of intervals
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Quantum Zero-knowledge for L

V

0/1

ρ

P

1. If x ∈ Lyes , V accepts whp

2. If x ∈ Lno , V rejects whp

3. If x ∈ Lyes , V learns nothing

..
.

SṼ

σ

Quantum computational zero-knowledge

ρ and σ cannot be efficiently distinguished:

∀ quantum poly-time A : |Pr [A(ρ) = 1]− Pr [A(σ) = 1]| ≤ negl(n)
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Zero-knowledge for QMA

Assuming qOWF: QMA ⊆ QZK since PSPACE = CZK ⊆ QZK

Need to go through QMA ⊆ PP
Desired: Efficient prover with QMA witness

BJSW’16: QMA ⊆ QZK with efficient prover

Multiple rounds of communication
Somewhat complicated

This work: explore CLDM

I “commit-and-open” Proof of Knowledge QZK proof for QMA
I “commit-and-open” Proof of Knowledge QSZK argument for QMA
I QNISZK for QMA in the secret parameters setup
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CLDM is in QMA [Liu’06]

Verification algorithm

Input: ρ1, ..., ρm
1 Prover sends ψ⊗`, where ψ is consistent with all ρi
2 Verifier picks i and random k-qubit Pauli P

3 Verifier measures the qubits corresponding to ρi on each (supposed) copy of ψ

4 Verifier accepts iff the the average of the measurement outcomes is close to Tr(Pρi )

Completeness

Tr(Pψ) ≈ Tr(Pρi ) + Hoeffding’s inequality

Soundness

I Prover sends state σ
I Let ψj be the register that should be the j-th copy of ψ
I Let ψ̃ = 1

`

∑
j ψj

I Expected value of the outcomes is Tr(Pψ̃) + Hoeffding’s inequality
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Very simple ZK proof for QMA

V

ρ1, ..., ρm

P

X aZ b

ψ⊗`

Z bX a

a1, b1

a2, b2

...

an−1, bn−1

an, bn

a1, b1 → 564651

a2, b2 → 984565
...

an, bn → 894102

i

984565, 894102
keys to open otp of copies of ρi

X aZ bψ⊗`X aZ b

...

a2, b2

an, bn

Completeness 3 Soundness 3 ZK 3
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Open questions

Complexity of CLDM with density matrices of size {2, 3, 4}
Complexity of approximation of CLDM

QNIZK protocol for QMA in the CRS model

More efficient Proof of Quantum knowledge protocols

Thank you for your attention!
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