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New Rényi divergence families defined via convex optimization and their applications

Part 1

The iterated mean divergences and their application to device-independent
cryptography

Based on Brown, P., Fawzi, H. and Fawzi, O., Computing conditional entropies for quantum
correlations, Nat Commun 12, 575 (2021), arXiv:2007.12575.
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m Nonlocal correlations are inherently random.

m Foundation for randomness expansion / key-distribution protocols!

m Security and analysis relies on being able to calculate the rates of such
protocols (bits per round).
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Randomness generated per round

Secure Laboratories

Asymptotic rates are given by:

= Randomness expansion
H(AB|X =x",Y =y*,E)

= QKD
H(AIX = x*, E) — H(AIX = x*, Y = y*, B)
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Randomness generated per round

Secure Laboratories

Asymptotic rates are given by:

= Randomness expansion

H(AB|X = x*,Y = y* E)

= QKD
— HAIX =x*,Y =y",B)

Want device-independent lower bounds
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Example

We want lower bounds on
inf  H(A|X =x",E)
s.t. Z c;bxyp(ab|xy) =w

abxy

where the infimum is over all finite dimensional states pg,q,c, POVMs
{{Max}a}x, {{Nsjy }»}y and joint Hilbert spaces Qs ® Qs @ E.
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Example

Difficult to solve
We want lower bounds on . .
nonconvex / unbounded dimension

inf  H(A|X =x",E)

s.t. Z c;bxyp(ab|xy) =w

abxy

where the infimum is over all finite dimensional states pg,q,c, POVMs
{{Max}a}x, {{Nsjy }»}y and joint Hilbert spaces Qs ® Qs @ E.

Known approaches

m Analytical bounds [PAB*09] — tight bounds / restricted scope
= Numerical bounds on Hpin — easy to compute / poor bounds

m Recent work [TSG19] — good bounds / computationally intensive
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Example

Difficult to solve
We want lower bounds on . .
nonconvex / unbounded dimension

inf  H(A|X =x",E)

s.t. Z c;bxyp(ab|xy) =w

abxy

where the infimum is over all finite dimensional states pg,q,c, POVMs
{{Max}a}x, {{Nsjy }»}y and joint Hilbert spaces Qs ® Qs @ E.

Known approaches

m Analytical bounds [PAB*09] — tight bounds / restricted scope

= Numerical bounds on Hpin — easy to compute / poor bounds

m Recent work [TSG19] — good bounds / computationally intensive
Our approach

m Define new conditional entropies that are easy to bound device-independently and
lower bound H(A|E).
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The IM divergences

Entropies are special cases of divergences

H'(A|B), := sup —D(pas||/ @ o5)
og
or

H'(A|B), := —D(pas||! ® ps).
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The IM divergences

Entropies are special cases of divergences

H'(A|B), := sup —D(pas||/ @ o5)
og
or

H'(A|B), := —D(pas||! ® ps).

We define our conditional entropies via a divergence

2007.12575 & arX
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The IM divergences

Definition (Iterated mean divergences)

Let ay = 2%/(2¥ — 1) for k =1,2,.... Then the iterated mean divergences are
defined as

Diayy(pll7) i= 108 Qo (o) 1)
with

Vit W
Qappllo) =, max  oyTr [p%} — (o — 1)Tr [02]

s.t. Vl + Vl* 2 0
/ Vi I Vo I Vi
. > * > >
(Vl* (V24;V2 )) = 0 <V2* (V3+2V3 )) = 0 (Vlj Z) = 07

where the optimization varies over Vi,..., Vi, Z € Z(H).
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The IM divergences

Discrete family — (2, ‘3—‘, % %6,
Definiti erated mean divergences)
Let or k =1,2,.... Then the iterated mean divergences are
defined
Doy (pllo) = log Qo (pllo) (1)
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with

Vit W
Qappllo) =, max  oyTr [p%} — (o — 1)Tr [02]

s.t. Vl + Vl* 2 0
/ Vi I Vo I Vi
. > « > >
(Vl* (V24;V2 )) = 0 <V2* (V3+2V3 )) = 0 (V: Z) = 07

where the optimization varies over Vi,..., Vi, Z € Z(H).



New Rényi divergence families defined via convex optimization and their applications

The IM divergences

Discrete family — (2, ‘3—‘, % %6,
Definiti erated mean divergences)
Let or k =1,2,.... Then the iterated mean divergences are
defined
Doy (pllo) = log Qo (pllo) (1)

o — 1
with

Vit W
Qaplpllo) =, max  oxTr [p%} — (o — 1)Tr [02]

st. Vi+W >0

Defined via SDP / Vi / Vo I Vi
« > * > N >
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The IM divergences

Discrete family — (2, ‘3—‘, % %6,
Definiti erated mean divergences)
Let or k =1,2,.... Then the iterated mean divergences are
defined
) 1
Doy (pl19) 1= ——— 10g Qo (pll0) (1)
with Linear in p and o

Vi+ Wy >
Qaplpllo) =, max  oxTr [p%} — (s — 1)Tr[02]

s.t. Vl + Vl* 2 0
Defined via SDP / Vi / Vo I Vi
. > « > >
(vl* erVy) ’) =0 <v2* ey ) 20 vi z)29%

where the optimization varies over Vi,..., Vi, Z € Z(H).

Structure independent of the dimension!
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IM divergence properties

m Satisfies data processing

Do) (E(P)IE()) < Diay(pllo)  V channels €.
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IM divergence properties

m Satisfies data processing

Do) (E(P)IE()) < Diay(pllo)  V channels €.

m Lies between geometric and sandwiched

Do, (pllo) < Day(pllo) < Day(pllo)

.\ Conditional entropies

will lower bound H

D(ak)(pHU) S D(ak_1)(p||0)
and so for the corresponding conditional entropies

m Decreasing in k

H(Oék)(A|B) > H(ak—l)(A|B)

NS Improving lower

bounds on H
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IM conditional entropies

Using the IM divergences we can construct a conditional entropy. Given a bipartitie state

pag we have

Qg
H(Tak)(A|B)p =1 log Q(Tak)(P)

o
where

Q(Tak)(/’): max Tr {pM]

Vi, Vi 2
s.t. Tra [Vk* Vk] <lIg
Vi+V>0

/ V1 I V2
vp L) ) 20 (e i ) 20

/ Vi—1
* >0.
<V;f_1 (szvk)> B
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IM conditional entropies

Using the IM divergences we can construct a conditional entropy. Given a bipartitie state
pag we have

Qg
H(Tak)(A|B)p =1 log Q(Tak)(P) (3)

o
where

Q(Tak)(/’): max Tr {pM]

Vi, Vi 2
st. Tra[ViVi] < Is
Vi+V>0
I Vi I Vs 4)

2
/ Vi—1
* >0.
<VE_1 (szvk)> B

Form still suitable for
DI optimization!
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IM conditional entropies |l

For example

Vi+ VW
H(Tz)(A|B)p = —2log mvalnx Tr {p%}
st. Tra[ViVi] < Ig (5)
Vi+ V>0

Compare with
Humin(A|B), = — log max Tr [pM]

s.t. Tra [M] <Ig (6)
M>0
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IM conditional entropies |l

For example

Hy)(AIB), = ~2log max Tr {pw}
st. Tra[V\Vi] < Ig ()
Vi+ V>0
Compare with
Humin(A|B), = — log max Tr [pM]
st. Tra[M] < Ig (6)

M>0

For DI applications we can rewrite this in terms of the initial entangled state |¢)(1)| and
the POVM operators used by Alice.

Can then be optimized in the Navascués Pironio Acin hierarchy [NPAO7].
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Application: DIRNG/DIQKD setup

m DIRNG - Lower bound A
H(AB|IX =x,Y =y,E)

m DIQKD - Lower bound X

H(AIX = x,E) — H(AIB,X = x,Y = y)
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Application: DIRNG/DIQKD setup

m DIRNG - Lower bound A

H(AB|X = x,Y =y, E)

m DIQKD - Lower bound X /
HAIX =x,E) — HAIB,X =x,Y =)

m Constrain devices by some full joint probability distribution pag|xy.
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Application: DIRNG/DIQKD setup

= DIRNG — Lower bound A B
H(ABIX =x,Y =y, E) :
:
. 1

= DIQKD - Lower bound M N
1

H(AIX = x,E) — H(AIB,X = x,Y = y)

m Constrain devices by some full joint probability distribution pag|xy.

m Assume devices have detection inefficiencies. With probability n device measures
correctly and with probability 1 — 7 device deterministically outputs 0.
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Application: DIRNG - full statistics / inefficient detectors

2
—— H{,/3(ABIE)
— H(,(ABIE)
150 Hmin(AB|E)
—— H(A|E) analytic
—— H(ABJE) TSGPL bound
B
@ 1
0.5 -
0 I | | |
0.7 0.75 0.8 0.85 0.9 0.95 1

Detection efficiency ()

H(A|E) bound from [PAB*09].
TSGPL bound from [TSG'19].
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Application: DIQKD - full statistics / inefficient detectors

1
(8/7 \(AIE) — H(A|B)

og| | T Hlrm(AIE) - H(AIB) ]
° ’ H 2 (AlE) — H(A|B)
© Hm;n(A|E) — H(A|B)
5 06— H(A|E) — H(A|B) analytic .
©
)
c
% 04| .
)
X

0.2 .

| | | | |
8.84 0.86 0.88 0.9 0.92 094 096 0.98 1

Detection efficiency (n)
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Application: DIQKD - full statistics / inefficient detectors

(8/7 )(AIE) —
(4/3 J(AIE) —
— Hb(AIE) —

Hm;n(A|E) -
—— H(A|E) — H(A|B) analytic

H(A|B)

H(A|B)
H(AB)
H(A|B)

1
0.8 |
(]
B
5 06
B
s
o
& 041
>
(]
Red
0.2

8.54

0.86 0.88
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Part 2

Divergences defined via convex optimization with applications to quantum
Shannon theory

Based on Fawzi, H. and Fawzi, O., Defining quantum divergences via convex optimization,
Quantum, 2021, arXiv:2007.12576.
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Motivation

Divergences are useful quantities in both classical and quantum Shannon theory.

m Can be used to define other important entropic quantities — entropies /
mutual information.
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Motivation
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m Can be used to define other important entropic quantities — entropies /
mutual information.

m Find direct operational meanings in rates for hypothesis testing — measures of
distinguishability.
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Motivation

Divergences are useful quantities in both classical and quantum Shannon theory.

m Can be used to define other important entropic quantities — entropies /
mutual information.

m Find direct operational meanings in rates for hypothesis testing — measures of
distinguishability.

m This work introduces another family of divergences D which provide new
insights for the sandwiched divergences

11—« 1—a\ &
log Tr [(aﬁpaﬁ) } .
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Definition

Given two PSD matrices A>> B and 3 € [0, 1], let

A#sB = AV2(A-Y2BA1/2)B A1/2,

arXiv:2007.12575 & arXiv:2007.12576 = Feb 01 2021



New Rényi divergence families defined via convex optimization and their applications

Definition

Given two PSD matrices A>> B and 3 € [0, 1], let

A#sB = AV2(A-Y2BA1/2)B A1/2,

Definition
For a > 1 let

D (pllo) = log Q% (pl|o)

a—1

where
# i
Qf (pllr) i=in Tr[A

st. p<o#HiaA
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Definition

Given two PSD matrices A>> B and 3 € [0, 1], let

A#sB = AV2(A-Y2BA1/2)B A1/2,

Definition
For a > 1 let

D (pllo) = log Q% (pl|o)

a—1
where

# i

Qf (pllr) i=in Tr[A

SDP when oo € Q
st. p<o#HiaA
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Definition

Given two PSD matrices A>> B and 3 € [0, 1], let

A#sB = AV2(A-Y2BA1/2)B A1/2,

Definition
For a > 1 let

D (pllo) = log Q% (pl|o)

a—1
where
Q*(pllo) :==min Tr[A
A0 SDP when oo € Q
st. p<o#HiaA

Same as IM divergence when o = 2
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Channel divergence

We can also define a corresponding divergence for channels
N, M : L(X') = L(Y) in the usual way

DF (N|M) = sup D ((Z @ N)(pxx:)|(Z ® M)(pxx))-

Pxx!
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Channel divergence

We can also define a corresponding divergence for channels
N, M : L(X') = L(Y) in the usual way

DF (N|M) = sup D ((Z @ N)(pxx:)|(Z ® M)(pxx))-

Pxx!

For D7 this can be reformulated as a convex optimization problem

1
DN M) = — log QI (VM)

o
with
# _ .
QI (VM) _Aicfzo [ Try [Axy] lloo

s.t. J)'/X/ < J)/(Vyl#l/any

arXiv:2007.12575 & arXiv:2007.12576 = Feb 01 2021
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Channel divergence

We can also define a corresponding divergence for channels
N, M : L(X') = L(Y) in the usual way

DF (N|M) = sup D ((Z @ N)(pxx:)|(Z ® M)(pxx))-

Pxx!

For D7 this can be reformulated as a convex optimization problem

1
DN M) = — log QI (VM)

o —

with
QF(WN|M) = 0, [Try [Axy] lloo
s.t. J)'/X/ < J)/(Vyl#l/any

N/

Choi matrices
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Properties

m Satisfies data processing

D¥(E(p)||E(0)) < DF(pllo) ¥ channels £.
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m Satisfies data processing

D¥(E(p)||E(0)) < DF(pllo) ¥ channels £.

m Relation to other divergences

Da(pllo) < DZ(pllo) < Dalpllo).
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Properties

m Satisfies data processing

D¥(E(p)||E(0)) < DF(pllo) ¥ channels £.

m Relation to other divergences

Da(pllo) < DZ(pllo) < Dalpllo).

m Regularizes to sandwiched divergence

1 -
i ZD#E( BN 500 —
nllm nDo‘ (p®"|e®™) = Dalpl|o).
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Application I: Computing lim,_ %DO(M@”HNX")

We can use DY to compute

1

lim
n—oo N

Dis(NIM) = Da(ME"|N®")

to arbitrary accuracy. Useful quantity in
channel discrimination
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Application I: Computing lim,_, =D, (M| N")

We can use DY to compute
Areg | 1P ®n ®n
DIFE(N||M) := lim +Dy(MO"[|NET)
n—oo
to arbitrary accuracy. Useful quantity in
channel discrimination

Theorem (Informal)
Foralla >1and m>1

LDENETIME) — g(m. 0) < DEENM)

and

DEE(NM) < —DEN®[M®™).

1
m
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Application I: Computing lim,_, =D, (M| N")

We can use DY to compute
Dy#(N|IM) = lim Do (M®"|N®")

to arbitrary accuracy. Useful quantity in
channel discrimination
Theorem (Informal)

Foralla >1and m>1
1 ~
~DF N ME™) — g(m, o) < DN M)

and

DEE(NM) < —DEN®[M®™).

1
m

Can also be used to compute bounds on the relative entropy analogue!
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Application II: A new chain rule for Ea

Theorem (Chain rule for D,,)
Let > 1, p,oc >0 and N M : L(X) — ZL(Y) be quantum channels. Then

Da(N(p)|M(0)) < DEE(N|M) + Dal(pllo)
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Application II: A new chain rule for Ea

Theorem (Chain rule for D,,)
Let > 1, p,oc >0 and N M : L(X) — ZL(Y) be quantum channels. Then

Da(N(p)|M(0)) < DEE(N|M) + Dal(pllo)

m Generalization of the DPI
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Application II: A new chain rule for Ea

Theorem (Chain rule for D,,)
Let > 1, p,oc >0 and N M : L(X) — ZL(Y) be quantum channels. Then

Da(N(p)|M(0)) < DEE(N|M) + Dal(pllo)

m Generalization of the DPI

m Same chain rule already known for the relative entropy [FFRS20]

arXiv:2007.12575 & arXiv:2007.12576 = Feb 01 2021



New Rényi divergence families defined via convex optimization and their applications

Application II: A new chain rule for Ea

Theorem (Chain rule for D,,)
Let > 1, p,oc >0 and N M : L(X) — ZL(Y) be quantum channels. Then

Da(N (p)[M(e)) < DEE(W M) + Dalplo)
m Generalization of the DPI

m Same chain rule already known for the relative entropy [FFRS20]
m Ex: useful for bounding repeated channel applications

Do(N¥(p)|M(0)) < tDEE(N M) + Dulpllo)
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Application Ill: Channel discrimination

Task: Given black box access to one of the channels V', M : Z(X’) — Z(Y),
determine if you received V.
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Application Ill: Channel discrimination

Task: Given black box access to one of the channels V', M : Z(X’) — Z(Y),
determine if you received V.

m Recent work [WBHK20] introduced the amortized divergence

DN M) = sup
Pxx’ 0 xx! ED(XX')

DN (pxx:)[M(oxx1)) — D(pxx:loxx)]

as a tool for computing rates of this task.
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m Recent work [WBHK20] introduced the amortized divergence

DN M) = sup
Pxx’ 0 xx! ED(XX')

DN (pxx:)[M(oxx1)) — D(pxx:loxx)]

as a tool for computing rates of this task.

m Using the chain rule one can prove

D3(N|M) = DEE(WN [ M).

arXiv:2007.12575 & arXiv:2007.12576 = Feb 01 2021




New Rényi divergence families defined via convex optimization and their applications

Application Ill: Channel discrimination

Task: Given black box access to one of the channels V', M : Z(X’) — Z(Y),
determine if you received V.

m Recent work [WBHK20] introduced the amortized divergence

DN M) = sup
Pxx’ 0 xx! ED(XX')

DN (pxx:)[M(oxx1)) — D(pxx:loxx)]

as a tool for computing rates of this task.

m Using the chain rule one can prove
D3(N|IM) = DN | M).
\

We can compute this!
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Application Ill: Channel discrimination

Task: Given black box access to one of the channels V', M : Z(X’) — Z(Y),
determine if you received V.

m Recent work [WBHK20] introduced the amortized divergence
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Pxx’ 0 xx! ED(XX')

as a tool for computing rates of this task.
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m It can also be shown in certain new regimes that adaptive strategies do not
help!
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Task: Given black box access to one of the channels V', M : Z(X’) — Z(Y),
determine if you received V.

m Recent work [WBHK20] introduced the amortized divergence

DAN[M) := sup DN (pxx:)[M(oxx1)) — D(pxx:loxx)]

Pxx’ 0 xx! ED(XX')

as a tool for computing rates of this task.

m Using the chain rule one can prove
D3(N|IM) = DN | M).
\

We can compute this!
m It can also be shown in certain new regimes that adaptive strategies do not

help! \

Strong converse exponent
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Further work

m Use to design better DI protocols / apply to different DI tasks. Can we
include preprocessing in DIQKD? [HST*20, WAP20]
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Further work

m Use to design better DI protocols / apply to different DI tasks. Can we
include preprocessing in DIQKD? [HST120, WAP20]

Analyze finite round key rates (feasibility of DIQKD).

Can we make the computations more efficient? (Symmetries/dilations?)

What are the limiting cases as o — 1
lim D (pllor) =7

lim D (pllo) = 7
a—1

Other applications to D,?

m Can we construct other families in a similar way?

arXiv:2007.12575 & arXiv:2007.12576 = Feb 01 2021
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