Bipartite energy-time uncertainty relation for quantum metrology with noise
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Introduction. In quantum metrology, one infers a parameter that is encoded in the quantum state
by applying suitable measurements. The fact that one cannot read out perfect time information
from a quantum clock, for instance, is a manifestation of an energy-time uncertainty relation [1-4].
Quantum entanglement between multiple probe systems enables a quadratic improvement (the
Heisenberg limit) over using independent probes [5]. Several innovative ideas allow to counteract
the negative effect of the noise on the entanglement of the probes [6-9], although there are general
sensitivity limits that apply to metrology with noise [10].

A promising approach is to protect the quantum clock from the noise by using a quantum error
correcting code. This is a potentially difficult task, because quantum error correction of a clock
requires a code that is time covariant [11] but such codes tend to perform poorly at correcting
errors [11-13|. Nevertheless, it was shown that techniques from quantum error correction could be
leveraged to recover the Heisenberg scaling in the presence of noise under suitable conditions [14-19].
Our work aims at providing a broad and robust set of tools to determine and optimize the sensitivity
of probe states exposed to noise in nonasymptotic regimes.

Our main results are: (i) A new type of time-energy uncertainty relation whereby an observer’s
sensitivity to the time stored in a quantum clock trades off with the environment’s ability to sense
the energy of the clock; (ii) Necessary and sufficient conditions for zero sensitivity loss, which are a
weaker form of the Knill-Laflamme quantum error correction conditions [20]; (iii) New upper bounds
on the Fisher information via our uncertainty relation; and (iv) The construction of noise-resilient
many-body strongly interacting probe states, whose first-order resilience is verified numerically.

Setting. Alice prepares a noiseless quantum clock in a state |1)(¢)) evolving under the Hamiltonian
H. The quantum clock is sent to Bob through a noisy channel Ny_,p (see Fig. 1). Bob’s task
is to infer the time ¢ from pp(¢). In the paradigm of local parameter estimation, we only require
measurements to estimate the value of the time parameter in a neighborhood of a given value
t. The precision to which one can estimate t of a one-parameter family of states p(t) is given
by the Cramér-Rao bound ((6t)2) > [F(t)] 7!, where ((6¢)?) is the time estimator’s average mean
squared deviation from the true parameter and F'(t) is the quantum Fisher information, defined as
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Hamiltonian H saturates the Cramér-Rao bound.

F(t) = tr(p(t) LQ) where L is a solution to pL + Lp = 2dp/dt. In Alice’s case of a pure, noiseless
clock evolving according to H, one has Fu(t) = 40% where oy := (H?)y — <H>12b
observable” T' is one that saturates the Cramér-Rao bound [2], optimally distinguishing p(¢) from
p(t + dt). Complementary to the time evolution |(t)) = e~®H |¢)) we define |¢(n)) = e T|). Tt
turns out that the sensing observable that optimally distinguishes [1(n)) from |¢)(n + dn)) is the

Hamiltonian H itself, and therefore 7 represents the energy of the probe (Fig. 2).

. A “local time

Main Results. We relate Bob’s sensitivity to the time ¢ with the sensitivity with which the environ-
ment Eve, as described by the output of the complementary channel A/, can sense a parameter n
that reveals the energy of the noiseless probe state:

Theorem 1 (Bipartite energy-time uncertainty relation): In the setup of Fig. 1, we have

FBob (t) FEve(n)
FAlice(t) FAlice(n)

=1. (1)

The proof proceeds by writing Fpop(t) in terms of the Bures metric, considering the purifying
space (Eve), rewriting the resulting expression as a semidefinite program as in Refs. [21, 22|, and
recasting that program as another semidefinite optimization whose optimal value is Fgye(7).

Theorem 2 (Necessary and sufficient conditions for zero sensitivity loss): Let |1¢) be
the probe state vector and H be the Hamiltonian, and let |§) = P$H|w> where PwL =1 — )]

Let N(-) = ZEk()E}; be the noise channel. Consider a logical qubit spanned by |+)r, = |¢) and
=) = &) /1), along with logical Pauli operators Xy = |[+X+| — |=)—|, ZL = |=X+| + |[+){—],
and let II = |+)(+| + |=){—|. Then

Five(n) =0 < N(Z1)=0
& (W ELELE) + (€| ELEL ) =0 YV kK o  to(ZOELEI) =0 VK . (2)

For II to define a code space, the Knill-Laflamme conditions [20] would require HE,t,EkH x IT;
the conditions in Eqs. (2) are a weaker version thereof, considering effectively only their projection
onto Zz,. Our relation in Eq. (1) can be extended to any two parameters that Bob and Eve might
wish to respectively measure. In this case the trade-off is quantified by the commutator of the
associated parameter generators.

Theorem 3 (General two-parameter uncertainty relation): Let H,Z be two Hermitian op-
erators and consider the associated parameters diy/dt = —i[H,v] and dy/dz = —i[Z,v]. Consider
the setup in Fig. 1. Then

FBob(t) + FEve(z) <1_*_2 1 <7’[H7Z]>2

Fitice(t)  Fatice(2) 40302

3)

The proof of Eq. (3) extends to infinite-dimensional spaces and to unbounded operators H, Z
such as position and momentum. The right hand side of Eq. (3) reduces to one, thus matching (1),



whenever H, Z saturate the Robertson relation 0%,0% > (i[H, Z]>2/4.

If Eve further processes her output into a system Eve’, the data processing inequality for the Fisher
information [23] along with Eq. (1) ensures that Fop (t)/Fatice(t) < 1—Fgye' (1)/Falice(n). We obtain
new general upper bounds to the Fisher information, of which relatively few are known [10, 21, 22].
E.g., for an independent and identically distributed (i.i.d.) noise channel, we obtain:

Theorem 4 (Upper bound on the Fisher information): Consider i.i.d. noise with two Kraus
operators Eg, E1. For any k,

- )
Foon(t) < 40% — 4 [2Re(y|HELE )]
’ b( ) o m:%gk <¢’ELE:D|¢>

i with By = Ey @@ E,, . (4)

The sum in Eq. (4) ranges over bit-strings @ of maximal Hamming weight || < k. There are a
polynomial number of terms and the individual terms can be computed efficiently given an efficient
description of |¢). Eq. (4) can be generalized to multiple Kraus operators.

Starting from any time-covariant quantum error-correcting code, one can construct a probe state
in the logical subspace that evolves nontrivially in time and loses no sensitivity under the action
of the noise. Exploiting this fact leads to metrological schemes for metrology with many-body
interacting Hamiltonians:

Theorem 5 (Code state for many-body metrology): Consider any graph with vertices repre-
senting qubits, and let the Hamiltonian H contain an Ising or a Heisenberg interaction for each
graph edge. Let ¢ be a assignment of bits for each vertex that violates ¢ of the Hamiltonian ZZ
terms, and which is such that the bit-strings 00 ... 0, 11 ... 1, " all differ on at least four sites. Let
) = $[]00 ... 0) +[11 ... 1) +[c") +[c™)]. Then the state vector |¢) loses no sensitivity under
any single localized error, and Fpop(t) = 402, > Q(c?).

Finally, our results can be applied to strongly interacting probe states subject to amplitude
damping noise. We compute the time sensitivity of a strongly interacting 1D spin chain with Ising
interactions for different probe states (Fig. 3).

Discussion. Our relation Eq. (1) offers a new paradigm of uncertainty relations for the Fisher
information, where the two physical quantities in question are accessed by complementary observers.
This setting mirrors analogous results for entropic uncertainty relations [4, 24, 25]. Our results
furthermore complement existing studies of quantum error correction in metrology [17-19, 26, 27|
by offering quantitative expressions for the sensitivity in nonasymptotic regimes for realistic noise
models and strongly interacting probes, and by accounting for imperfect error correction.

Ultra-precise quantum atomic clocks [28| has been one of the major successes of precise coherent
control of isolated quantum systems. As quantum clocks and metrology probes evolve into the
interacting many-body regime [29-31], we anticipate exciting possibilities for the use of our results
and other quantum error-correction inspired schemes for metrology applications.

100007 Fig. 3: Numerical calculation of the sensitivity of a 1D chain
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