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How does noise affect the
sensitivity of the clock?
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FEve,r] =0
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Knill-Laflamme,
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quantum error
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 Better clock states = those that hide energy from
Eve

 Ourresults hold forany fixed state | @)

« Ouruncertainty relations extend to infinite
dimensions

« Also applicable for sensing an unknown
parameter in the Hamiltonian

« Also applicable for continuous Markovian noise,
under some additional assumptions



 Information tradeoffs / uncertainty relations give
insight into the structure of quantum theory

« Fisherinformation counterpart to entropic
uncertainty relations Coles+ PRL 2019

« Characterization of the Fisherinformationin
intermediate regimes of n (non-asymptotic)

 general Fisherinformation bounds can be hard to
obtain Fujiwara & Imai JPA2008; Escher+ Nat Phys 20171; ...

e strongly interacting many-body probes might

offer better sensitivity in quantum metrology

NV centers lattice atomic clocks
Zhou+ PRX 2020 Goban+ Nat. 2018



Applications to
cryptography?
Coles+ RMP 2017; ...

Multi-parameter
metrology?

Gorecki+ Quantum 2020; ...

sensitivity loss of
“metrological codes” for
weak i.i.d. noise?
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