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Our Results

Entangled games are hard(er) to approximate
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BPP, BQP: Problems for which there is a 

(randomized, quantum) polynomial-time 

algorithm that always returns the correct 

answer. 

MA, QMA: Problems that can be verified in 

(randomized, quantum) polynomial time, 

given a polynomial-size proof 

MIP* = RE



RE: Problems for which there is an 

algorithm that eventually terminates and 

returns ‘YES’ on positive instances (and 

doesn’t terminate/returns ‘NO’ on 

negative instances)

MIP*: Problems that can be verified in 

polynomial time by interacting with 

quantum provers sharing entanglement

MIP* = RE



Consequences of MIP* = RE

• Negative answer to Tsirelson’s problem: the tensor and commuting 

models for quantum correlations are strictly distinct

• Negative answer to Connes’ embedding problem: there exist type 

𝐼𝐼1 von Neumann algebras that are not ‘hyperfinite’

• Verification of quantum systems: asymptotically efficient tests for 

arbitrarily high-dimensional entanglement

• NISQ systems: provable advantage for small noisy quantum systems

using deep variational quantum Boltzmann learning 



Plan for the talk

1) Quantum correlations and Tsirelson’s problem

2) An approach to Tsirelson’s problem via algorithms & complexity

3) Quantum multiprover interactive proofs

4) Open questions



Quantum correlations and Tsirelson’s problem



Quantum nonlocality

Local measurements on distant particles can exhibit unexpected correlations

TU Delft, Netherlands (2015)



Bell & Tsirelson’s setup

• Correlation: family of distributions

𝑝 𝑎, 𝑏 𝑥, 𝑦 | 𝑥, 𝑦 ∈ 1, … , 𝑛 𝑎, 𝑏 ∈ 1, … 𝑘

• Bell’64: some correlations have a quantum model 

but no classical (LHV) explanation

• Tsirelson in the ‘80s introduces two possible 

representations for quantum correlations:  

𝑦

𝑏

𝑥

𝑎

𝑝 𝑎, 𝑏 𝑥, 𝑦 = 𝜓 𝑃𝑎
𝑥 ⊗ 𝑄𝑏

𝑦
𝜓 ∶ |𝜓〉 ∈ ℋ ⊗ ℋ

𝑝 𝑎, 𝑏 𝑥, 𝑦 = 𝜓 𝑃𝑎
𝑥𝑄𝑏

𝑦
𝜓 : 𝜓 ∈ ℋ,

[𝑃𝑎
𝑥, 𝑄𝑏

𝑦
] = 0



Tsirelson’s problem

Quantum Bell-type inequalities are defined in terms of two (or more) 

subsystems of a quantum system. The subsystems may be treated either 

via (local) Hilbert spaces, - tensor factors of the given (global) Hilbert space, 

or via commuting (local) operator algebras. The latter approach is less 

restrictive, it just requires that the given operators commute whenever 

they belong to different subsystems. 

Are these two approaches equivalent? 



• Both sets are convex

• 𝐶⊗ 𝑛, 𝑘 ⊆ 𝐶𝑐𝑜𝑚 𝑛, 𝑘 for all 𝑛, 𝑘. 

• 𝐶𝑐𝑜𝑚(𝑛, 𝑘) is closed, but [Slofstra’18] 𝐶⊗(𝑛, 𝑘) is not!

Is 𝐶⊗ 𝑛, 𝑘 = 𝐶𝑐𝑜𝑚 𝑛, 𝑘 for all 𝑛, 𝑘 ≥ 2 ?

𝐶⊗ 𝑛, 𝑘 = { 𝜓 𝑃𝑎
𝑥 ⊗ 𝑄𝑏

𝑦
𝜓

𝑎𝑏𝑥𝑦
: |𝜓〉 ∈ ℋ ⊗ ℋ }

𝐶𝑐𝑜𝑚 𝑛, 𝑘 = { 𝜓 𝑃𝑎
𝑥𝑄𝑏

𝑦
𝜓

𝑎𝑏𝑥𝑦
:

|𝜓〉 ∈ ℋ, [𝑃𝑎
𝑥, 𝑄𝑏

𝑦
] = 0}

𝐶𝑐𝑜𝑚

𝐶⊗

[0,1]𝑛2𝑘2

Tsirelson’s problem



The connection with operator algebras

• [Kirchberg’93, Fritz’11, Junge-NPPSW’11, Ozawa’13]:

Tsirelson’s problem ↔ CEP ↔ QWEP

•Connes’ 1976 “Embedding Problem” (CEP) : 

“Every type II1 von Neumann algebra embeds in an 

ultrapower of the hyperfinite II1 factor ℛ”

• Kirchberg’s 1993 QWEP conjecture:

𝐶∗ 𝐹2 ⊗𝑚𝑖𝑛 𝐶∗ 𝐹2 = 𝐶∗ 𝐹2 ⊗𝑚𝑎𝑥 𝐶∗ 𝐹2

• Multiple reformulations: free entropy (Voiculescu), group theory (Radulescu), etc.

Is 𝐶⊗ 𝑛, 𝑘 = 𝐶𝑐𝑜𝑚 𝑛, 𝑘 for all 𝑛, 𝑘 ≥ 2 ?

?



An approach to Tsirelson’s problem 
via algorithms & complexity



Computing the quantum bound

𝑂

𝜔∗ 𝜆 = sup
𝑝∈𝐶⊗ 𝑛,𝑘

𝜆 ⋅ 𝑝

= sup
𝑝∈𝐶⊗ 𝑛,𝑘

෍

𝑥𝑦𝑎𝑏

𝜆𝑥𝑦𝑎𝑏 𝑝(𝑎, 𝑏|𝑥, 𝑦)

𝜆
𝐶⊗ 𝑛, 𝑘 = { 𝜓 𝑃𝑎

𝑥 ⊗ 𝑄𝑏
𝑦

𝜓
𝑎𝑏𝑥𝑦

:

|𝜓〉 ∈ ℋ ⊗ ℋ }

𝐶𝑐𝑜𝑚 𝑛, 𝑘 = { 𝜓 𝑃𝑎
𝑥𝑄𝑏

𝑦
𝜓

𝑎𝑏𝑥𝑦
:

` |𝜓〉 ∈ ℋ, [𝑃𝑎
𝑥, 𝑄𝑏

𝑦
] = 0}

𝜔𝑐𝑜𝑚 𝜆 = sup
𝑝∈𝐶𝑐𝑜𝑚 𝑛,𝑘

𝜆 ⋅ 𝑝[0,1]𝑛2𝑘2



• Suppose exhaustive search & NPA 

converge to the same value, for all 𝜆

→ Tsirelson’s problem has a positive answer

• Suppose exhaustive search & NPA do not

converge to the same value,for some 𝜆

→ Tsirelson’s problem has a negative answer

• [Fritz-NT’14]  Suppose that 𝜔∗(𝜆)

is uncomputable

→ Tsirelson’s problem has a negative answer

Computing the quantum bound

𝑂

𝜆

[0,1]𝑛2𝑘2



Quantum multiprover interactive proofs



Interactive proofs

• BPP/BQP: efficient decision

Ex: Primality testing; Connectivity; Linear programming; Factoring

• MA/QMA: efficient verification

𝑧 is “yes” ⇒ ∃ 𝜋, accepted by 𝑉 whp

𝑧 is “no” ⇒ ∀ 𝜋, rejected by 𝑉 whp

Ex: Graph colorability; Local Hamiltonian

𝐴
𝑧 ∈ 0,1 𝑛 𝑦𝑒𝑠/𝑛𝑜

Time: randomized/quantum poly(𝑛)

𝑉
𝑧 ∈ 0,1 𝑛 𝑦𝑒𝑠/𝑛𝑜

Time: randomized/quantum poly(𝑛)

𝑃

𝜋 |𝜓⟩



• IP/QIP: efficient interactive verification

Ex: Graph non-colorability, GO, …

[Shamir’90, Jain-JUW’10] IP = QIP = PSPACE

• MIP/QMIP: efficient interactive verification

with two provers

Ex: Exponential-size graph coloring

[Babai-FL’91,Koabayahi-M’03] MIP = QMIP = NEXP 

𝑉

𝑥 𝑦

𝑎 𝑏

𝑃1 𝑃2

𝑉
𝑧 ∈ 0,1 𝑛 𝑦𝑒𝑠/𝑛𝑜

Time: randomized/quantum poly(𝑛)

𝑃

𝑎𝑥

𝑧 ∈ 0,1 𝑛 𝑦𝑒𝑠/𝑛𝑜

Interactive proofs

Time: randomized/quantum poly(𝑛)



𝑉

𝑥 𝑦

𝑎 𝑏

𝑃1 𝑃2

𝑧 ∈ 0,1 𝑛 𝑦𝑒𝑠/𝑛𝑜

• [Cleve-HTW’04] The class MIP* characterizes the complexity

of optimizing over the sets 𝐶⊗ 𝑛, 𝑘

Interactive proof systems as Bell functionals

MIP = QMIP: efficient interactive verification

with two provers

MIP* = QMIP*: efficient interactive verification

with two provers sharing entanglement



𝑉

𝑥 𝑦

𝑎 𝑏

𝑃1 𝑃2

𝑧 ∈ 0,1 𝑛 𝑦𝑒𝑠/𝑛𝑜

Max acc(𝑉, 𝑧) = sup
strategy

σ𝑥𝑦 𝜋 𝑥, 𝑦 σ
𝑎𝑏:correct for 𝑥𝑦

Prob 𝑎, 𝑏 𝑥, 𝑦

= 𝜔∗(𝜆) for     𝜆𝑎𝑏𝑥𝑦 = 𝜋 𝑥, 𝑦 1𝑎𝑏: correct for 𝑥 𝑦

= sup
strategy

Σ𝑥𝑦𝑎𝑏 𝜋(𝑥, 𝑦)1𝑎𝑏: correct for 𝑥 𝑦 ⟨𝜓|𝑃𝑎
𝑥 ⊗ 𝑄𝑏

𝑦
|𝜓⟩

Interactive proof systems as Bell functionals



𝑉

𝑥 𝑦

𝑎 𝑏

𝑃1 𝑃2

𝑧 ∈ 0,1 𝑛 𝑦𝑒𝑠/𝑛𝑜

• [Cleve-HTW’04] The class MIP* characterizes the complexity

of optimizing over the sets 𝐶⊗ 𝑛, 𝑘

• What can be said about problems in MIP*?

• 𝜔∗(𝜆) uncomputable↔ MIP* contains undecidable languages

MIP*: problems that admit efficient interactive verification

with two provers sharing entanglement

Interactive proof systems as Bell functionals



MIP* ⊇ RE

• [Ito-V’12] MIP* contains all problems in MIP = NEXP

• Proof shows that error correction-based probabilistically

checkable proofs used in the proof of NEXP = MIP are

sound in the presence of entanglement

• [Natarajan-W’19] MIP* contains all problems in NEEXP

• Proof leverages entanglement between the provers as a tool to aid verification

• [Natarajan-JVYW’20] MIP* ⊇ RE by recursively applying technique from [NW’19]

• [Turing’1936] RE contains the halting problem, which is undecidable

• MIP* contains undecidable languages



Using entanglement to delegate verification

𝑣

𝑝1 𝑝2

𝑧 ∈ 0,1 𝑛 𝑦𝑒𝑠/𝑛𝑜

time poly(𝑛)

𝑃1 𝑃2

• 𝑣 verifies that 𝑝1 and 𝑝2 simulate the 

interaction between 𝑉 and 𝑃1, 𝑃2 :

1) 𝑝1 and 𝑝2 locally generate 

questions 𝑋 and 𝑌 to 𝑃1, 𝑃2

2) 𝑝1 and 𝑝2 locally compute an 

answer 𝐴 and 𝐵 to the question 

they generated

3) 𝑝1 and 𝑝2 prove to 𝑣 that they 

generated the questions correctly 

and were able to obtain valid 

answers to them 

𝑉
Self-testing: 𝑣 verifies correlations 

which certify that each prover has 

obtained exactly the right information, 

in the right way. 

Builds on [Werner-S’88, Mayers-

Yao’98, Natarajan-V’18,++]

[Natarajan-W’19]

𝑦𝑒𝑠/𝑛𝑜

time exp(𝑛)

𝑧 ∈ 0,1 𝑛

Probabilistically checkable proofs: p1

and 𝑝2 prepare encoded certificate 

that they performed the correct 

classical computation. 𝑣 checks it 

efficiently by making small queries

Builds on [Arora-S’98, Harsha’04, Ben-

Sasson-S’08,++]



Recursive compression

• Recursive construction yields polynomial-time verifiers for 

languages in NTIME(2𝑛), NTIME(22𝑛
), NTIME(222𝑛

), …

• Main difficulty: identify a class of distributions 𝒞 for the questions 

such that sampling from a distribution in 𝒞 can be tested using a 

distribution in the same class 𝒞

• Class 𝒞 generalizes plane-point distribution from low-degree tests

[Fitzsimons-JVY’18]



The final step 

𝑛, 𝑀 𝑦𝑒𝑠/𝑛𝑜

𝑉𝑟𝑒𝑐

For any Turing machine 𝑀, there is a computable 𝜆 = 𝜆(𝑀) such that

• 𝑀 halts → 𝜔∗ 𝜆 = 1

• 𝑀 does not halt → 𝜔∗ 𝜆 ≤
1

2

RE ⊆ MIP∗



Summary

• Tsirelson’s problem: 

• We give a negative answer: 𝐶⊗(𝑛, 𝑘) ≠ 𝐶𝑐𝑜𝑚(𝑛, 𝑘) for some 𝑛, 𝑘

• Proof shows that that linear optimization over 𝐶⊗ (= computing the quantum 

value) for specific class of 𝜆 (coming from interactive proofs) is intractable

• Techniques combine proof verification and self-testing. Entanglement used to 

certify increasingly complex computations in a recursive fashion

Is 𝐶⊗ 𝑛, 𝑘 = 𝐶𝑐𝑜𝑚 𝑛, 𝑘 for all 𝑛, 𝑘 ≥ 2 ?

𝐶⊗ 𝑛, 𝑘 = { 𝜓 𝑃𝑎
𝑥 ⊗ 𝑄𝑏

𝑦
𝜓

𝑎𝑏𝑥𝑦
: |𝜓〉 ∈ ℋ ⊗ ℋ }

𝐶𝑐𝑜𝑚 𝑛, 𝑘 = { 𝜓 𝑃𝑎
𝑥𝑄𝑏

𝑦
𝜓

𝑎𝑏𝑥𝑦
: |𝜓〉 ∈ ℋ, [𝑃𝑎

𝑥, 𝑄𝑏
𝑦

] = 0}



Open questions



Complexity theory:

• What is the complexity of commuting-strategy MIP, MIPco? 

• Proof requires only two provers. Corollary: MIP(k provers) = MIP(2 provers)

• Direct argument? 

• Can we verify QMA statements using log-length questions and quantum polynomial-

time provers (+ access to the witness)? 

• Can we show uncomputability of 𝜆 ↦ 𝜔∗ 𝜆 for fixed 𝑛, 𝑘 ?

• Beyond RE: can higher levels of the arithmetical hierarchy be characterized by 

interactive proof variants? 

• [Coudron-S’19] characterize zero-gap MIPco

• [Mousavi-NY’20] characterize zero-gap MIP*

Some questions



Some questions

Operator algebras:

• Complexity-theoretic argument implies existence of a correlation that can be 

realized in the commuting model, but not in the tensor model

• Working through the proof gives an explicit example. 

• We could write python code to list the coefficients; at most 1020. Can we do better?

• To get an interesting “non-embeddable” von Neumann algebra, we need to 

identify the state and measurement operators. 

• Refining the construction could give a non-hyperlinear group

• Our correlation is a synchronous correlation

• A linear system game would give a group



Verification:

• Results characterize very high-complexity problems

• Can resources be scaled down to obtain highly efficient verifiers for, e.g. BQP? 

• Cryptographic techniques could reduce interaction or even remove the need for 

two provers

• Protocols inherently non robust to noisy entanglement

• [Yao’19] noisy-MIP* collapses to finite level of non-deterministic time hierarchy

Some questions



Thank you 

Zhengfeng Ji 
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