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MIP* = RE

BPP, BQP: Problems for which there is a
(randomized, quantum) polynomial-time
algorithm that always returns the correct

dNSWEeEr,

MA, QMA: Problems that can be verified in

(randomized, quantum) polynomial time,

given a polynomial-size proof




MIP* = RE

RE: Problems for which there is an
algorithm that eventually terminates and
returns ‘YES’ on positive instances (and
doesn’t terminate/returns ‘NO’ on

negative instances)

MIP*: Problems that can be verified in
polynomial time by interacting with

quantum provers sharing entanglement




Consequences of MIP* = RE

* Negative answer to Tsirelson’s problem: the tensor and commuting
models for qguantum correlations are strictly distinct

* Negative answer to Connes’ embedding problem: there exist type
I1; von Neumann algebras that are not ‘hyperfinite’

* Verification of quantum systems: asymptotically efficient tests for

arbitrarily high-dimensional entanglement




Plan for the talk

1) Quantum correlations and Tsirelson’s problem
2) An approach to Tsirelson’s problem via algorithms & complexity
3) Quantum multiprover interactive proofs

4) Open questions



Quantum correlations and Tsirelson’s problem




Quantum nonlocality

TU Delft, Netherlands (2015)

Local measurements on distant particles can exhibit unexpected correlations



Bell & Tsirelson’s setup

* Correlation: family of distributions
{p(a,blx,y)| x,y €{1,..,n} a,b € {1,..k}}

* Bell’64: some correlations have a quantum model
but no classical (LHV) explanation

* Tsirelson in the ‘80s introduces two possible
representations for quantum correlations:

p(a,blx,y) = (W|PF @ Q)|w): [Y)eH Q H

p(a,blx,y) = (Y|PFQY|yY):  |Y) € H,
[PF,Q1=0




Tsirelson’s problem

Quantum Bell-type inequalities are defined in terms of two (or more)
subsystems of a guantum system. The subsystems may be treated either
via (local) Hilbert spaces, - tensor factors of the given (global) Hilbert space,
or via commuting (local) operator algebras. The latter approach is less
restrictive, it just requires that the given operators commute whenever
they belong to different subsystems.

Are these two approaches equivalent?




Tsirelson’s problem

Co(n, k) = { (WP @ Q) |¥)) .+ 1) EH QH )

abxy

Cecom(m, k) = { ((ll)lpangW))) :

abxy’
1Y) € 3, [PF, Q)] = 0}

* Both sets are convex (e
*Co(n, k) € Coom(n, k) foralln, k. g

* Ceom(m, k) is closed, but [Slofstra’18] Cg (n, k) is not! [0,1]™ %

s Co(n, k) = Coom(n, k) foralln k=27




The connection with operator algebras

Is Co(n, k) = Coom(n, k) foralln, k=27

* [Kirchberg’93, Fritz’11, Junge-NPPSW’11, Ozawa’13]:
Tsirelson’s problem << CEP < QWEP

*Connes’ 1976 “Embedding Problem” (CEP) :
“Every type Il, von Neumann algebra embeds in an
ultrapower of the hyperfinite Il, factor R”

* Kirchberg’s 1993 QWEP conjecture:
?
C*(Fy) Qmin C*(F) = C*(F3) Qmax C*(F)

* Multiple reformulations: free entropy (Voiculescu), group theory (Radulescu), etc.



An approach to Tsirelson’s problem
via algorithms & complexity




Computing the quantum bound

Co(n k) = { ((W|PF ® Q) |y))

abxy
WYeH Q H }
w*(A) = sup |1-p|
pEC®(n,k)
= sup z Axyab p(a; b |x' y)
pECx(nk) xyab
Ceom@ k) = { (WIPFQY 1)) 1.

Y) € 1, [P, Q] = 03

Weom(A) = sup |4 pl
PECcom(N,k)




Computing the quantum bound

* Suppose exhaustive search & NPA
converge to the same value, for all 4

— Tsirelson’s problem has a positive answer

* Suppose exhaustive search & NPA do not
converge to the same value,for some 4
— Tsirelson’s problem has a negative answer

* [Fritz-NT’14] Suppose that w™ (1)
is uncomputable
— Tsirelson’s problem has a negative answer




Quantum multiprover interactive proofs

np §T qsﬂs i r /

y"' lh.l




Interactive proofs

z € {0,1}" yes/no
* BPP/BQP: efficient decision > A >

Time: randomized/quantum poly(n)

a

 MA/QMA: efficient verification T | |[Y)
Z is “yes” = 3 m, accepted by V whp z € {0,1}" é yes/no
Z is “no” = V m, rejected by V whp >V >

Time: randomized/quantum poly(n)



Interactive proofs

* IP/QIP: efficient interactive verification

yes/no
>

* MIP/QMIP: efficient interactive verification

with two provers

Time: randomized/quantum poly(n)



Interactive proof systems as Bell functionals

MIP* = QMIP*: efficient interactive verification
with two provers sharing entanglement

* [Cleve-HTW’04] The class MIP* characterizes the complexity
of optimizing over the sets Cg (n, k)



Interactive proof systems as Bell functionals

Max acc(V, z)

= sup Xyyap T(X,¥) 14, correct for xy (WI1Fe @ Qp 1)
strategy

= w* (1) for  Aapxy = (X, ¥)1 ;. correct for Xy



Interactive proof systems as Bell functionals

MIP*: problems that admit efficient interactive verification

with two provers sharing entanglement

* [Cleve-HTW’04] The class MIP* characterizes the complexity

of optimizing over the sets Cg (n, k)
* What can be said about problems in MIP*?

* w" (A1) uncomputable & MIP* contains undecidable languages



MIP* 2 RE

* [Ito-V’12] MIP* contains all problems in MIP = NEXP

* Proof shows that error correction-based probabilistically
checkable proofs used in the proof of NEXP = MIP are

sound in the presence of entanglement

* [Natarajan-W’19] MIP* contains all problems in NEEXP

* Proof leverages entanglement between the provers as a tool to aid verification

* [Natarajan-JVYW’20] MIP* 2 RE by recursively applying technique from [NW’19]

* [Turing’1936] RE contains the halting problem, which is undecidable

* MIP* contains undecidable languages



Using entanglement to delegate verification
[Natarajan-W’19]

ﬁrobabi/istically checkable proofs: pl\

and p, prepare encoded certificate (r N\ ( 3\
Py P,

that they performed the correct

classical computation. v checks it

efficiently by making small queries

Builds on [Arora-S’98, Harsha’04, Ben-

, yes/to
Sasson-S'08,++] >
0 )
in the right way.

y,
Builds on [Werner-S’88, Mayers-
%0’98, Natarajan-V’18,++] / yes/no
>

time poly(n)




Recursive compression
[Fitzsimons-JVY’18]

* Recursive construction yields polynomial-time verifiers for

languages in NTIME(2™), NTIME(22"), NTIME(22" ), ...

* Main difficulty: identify a class of distributions C for the questions
such that sampling from a distribution in C can be tested using a
distribution in the same class C

* Class C generalizes plane-point distribution from low-degree tests




The final step

n,M yes/no

4 )

For any Turing machine M, there is a computable A = A(M) such that
e Mhalts>w*(1) =1

e M does not halt » w*(1) < %

\_

{ RE € MIP* ]




Summary

Co(n, k) = { (Y|P ® Q3 [¥))
Coom(M k) = { (<¢|Pang|lp>)

Y EH QH }

abxy

abxy: |¢> € H, [Pax; Qg] — 0}

* Tsirelson’s problem: | Is Cg(n, k) = Ceom(n, k) foralln k=27

* We give a negative answer: Cg(n, k) # Ccom(n, k) forsome n, k

* Proof shows that that linear optimization over Cg (= computing the quantum

value) for specific class of A (coming from interactive proofs) is intractable

* Techniques combine proof verification and self-testing. Entanglement used to

certify increasingly complex computations in a recursive fashion



Open questions
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Some gquestions

Complexity theory:
* What is the complexity of commuting-strategy MIP, MIP?

* Proof requires only two provers. Corollary: MIP(k provers) = MIP(2 provers)

* Direct argument?

* Can we verify QMA statements using log-length questions and quantum polynomial-
time provers (+ access to the witness)?

* Can we show uncomputability of A » w*(A) for fixed n, k ?

* Beyond RE: can higher levels of the arithmetical hierarchy be characterized by
interactive proof variants?

* [Coudron-S’19] characterize zero-gap MIP<°

* [Mousavi-NY’20] characterize zero-gap MIP*



Some gquestions

Operator algebras:

* Complexity-theoretic argument implies existence of a correlation that can be

realized in the commuting model, but not in the tensor model

* Working through the proof gives an explicit example.

+ We could write python code to list the coefficients; at most 10%°. Can we do better?

* To get an interesting “non-embeddable” von Neumann algebra, we need to

identify the state and measurement operators.

* Refining the construction could give a non-hyperlinear group
* Our correlation is a synchronous correlation

* A linear system game would give a group



Some gquestions

Verification:

* Results characterize very high-complexity problems

* Can resources be scaled down to obtain highly efficient verifiers for, e.g. BQP?

* Cryptographic techniques could reduce interaction or even remove the need for

two provers

* Protocols inherently non robust to noisy entanglement

* [Yao’19] noisy-MIP* collapses to finite level of non-deterministic time hierarchy
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